The FFI Reference Manual

a Foreign Function Interface (version 1.0)

for MIT/GNU Scheme version 9.0.1
2018-06-10

by Matt Birkholz

Table of Contents

1 Introduction.................. 2
2 CDeclarations...............cooiiiiiiiiiiiia... 6
3 AlilenData................. ..., 7
4 Alien Functions.................................. 8
5 Callbacks....... ... 9
6 Compiling and Linking 10
7 HelloWorld 12

Appendix A GNU Free Documentation License .. 16
A.1 ADDENDUM: How to use this License for your documents. ... 22

This manual documents FFI 1.0.

Copyright (©) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013,
2014, 2015, 2016, 2017, 2018 Massachusetts Institute of Technology

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License.”

1 Introduction

This FFI provides Scheme syntax for calling C functions and accessing C data. The func-
tions and data structures are declared in a case sensitive . cdecl file, which is used by a shim
generator to produce callout and callback trampoline functions. The trampolines are com-
piled and linked to the C toolkit, producing a shared object that Scheme can dynamically
load.

Synopsis
Examples of the new syntax:
(C-include "prhello")

(malloc (C-sizeof "GdkEvent"))
= #[alien 42 0x081lafc60]

(C->= #042 "GdkEvent any type" 14)

(C-> #042 "GdkEvent any type")
= 14

(C-enum "GdkEventType" 14)
= |GDK_MAP|

(C-enum "GDK_MAP")
= 14

(C-sizeof "GdkColor")
= 12

(C-offset "GdkColor blue")
= 8

(C-array-loc #043 "GdkColor" (C-enum "GTK_STATE_NORMAL"))
= #[alien 44 0x081afc60] ; New alien.

(C-array-loc! #@43 "GdkColor" (C-enum "GTK_STATE_PRELIGHT"))
= #[alien 43 0x081afc78] ; Modified alien.

(C-call "gtk_window_new" retval args ...)
= #!unspecific

(C-callback "delete_event")
= #[alien-function 44 Scm_delete_event]

(C-callback (lambda (window event) ...))
= 13 ; A fixnum registration ID.

Chapter 1: Introduction 3

Summary

A Scheme-like declaration of a toolkit’s C functions, constants, and data types is given in
a case sensitive .cdecl file. The C declarations look like this:

(extern (* GtkWidget)
gtk_window_new
(type GtkWindowType))

(typedef GtkWindowType
(enum
(GTK_WINDOW_TOPLEVEL)
(GTK_WINDOW_POPUP)))

The c-generate procedure reads these declarations and writes three files:
library-types.bin (a fasdump of the parsed declarations), library-const.c (a C
program that prints C constants and struct offsets), and library-shim.c (trampoline
functions adapting Scheme procedure application to C function call). The -const.c
program generates a —const.scn file, which can be expanded into a —const.bin file.

(load-option ’FFI)
(c-generate "prhello" "#include <gtk/gtk.h>")

The -types.bin and -const.bin files together provide the information needed to ex-
pand C-... syntax, and are only needed at syntax time. The compiled -shim.so file is
used at run time, dynamically loaded into the Scheme machine. See Chapter 6 [Compiling
and Linking], page 10, which describes these files in more detail, and shows how they might
be built and installed.

(C-include "prhello")

The C-include syntax loads the -types.bin and -const.bin files at syntaz time. It
should appear at the top level of any file containing C-. .. syntax, or be expanded in the
syntax environment of such code.

The C-call syntax arranges to invoke a callout trampoline. Arguments to the trampoline
can be integers, floats, strings (or bytevectors) or aliens (non-heap pointers, to C data
structures, see Chapter 3 [Alien Datal, page 7). If a string argument might contain non-
ASCII characters (code points U+0080 and larger), it should be converted to a bytevector
e.g. by string->utf8, else an error could be signaled.

(let ((alien (make-alien ’|GtkWidget|)))
(C-call "gtk_window_new" alien type)
(if (alien-null? alien) (error "could not open new window"))
alien)

The C-callback syntax is used when registering a Scheme callback trampoline. The
two forms of the syntax provide two arguments for the registration function: the callback
trampoline’s address, and a “user data” argument. When the toolkit calls the trampoline,
it must provide the fixnum-sized user data as an argument.

(C-call "g_signal_connect" window "delete_event"
(C-callback "delete_event") 3 e.g. &Sem_delete_event
(C-callback ; e.g. 314
(lambda (window event)
(C-call "gtk_widget_destroy" window)
0

The first use of C-callback (above) expands into a callback trampoline address — an
alien function. The second use evaluates to a fixnum, which is associated with the given
Scheme procedure.

Chapter 1: Introduction 4

The C-> and C->= syntaxes peek and poke values into alien data structures. They take
an alien and a constant string specifying the alien data type and the member to be accessed
(if any).

(C-> alien "GdkRectangle y")

—
(#[primitive c-peek-int] alien 4)

(C->= alien "GdkRectangle width" 0)
[_>
(#[primitive c-poke-int] alien 8 0)

(C-> alien "GdkEvent any type")
'_>
(#[primitive c-peek-int] alien 0)

(C-> alien "gfloat")
—
(#[primitive c-peek-float] alien 0)
A three argument form of the syntax provides an alien to receive a peeked pointer. This
avoids consing a new alien.
(C-> alien "GtkWidget style" alien)

The above syntax is understood to say “The data at this alien address is a GtkWidget.
Load its style member into alien (clobbering alien’s old address).”

The C-enum, C-sizeof and C-offset syntaxes all transform into integer constants. The
last two transform into a padded byte size and a byte offset respectively.
(C-enum "GTK_WINDOW_POPUP")

=
1

(C-sizeof "GdkColor")
}_)
12

(C-offset "GdkColor blue")
>
8
The two element form of the C-enum syntax can be used to find the name of a constant
given its runtime value. It expects the name of an enum type in a constant string. If the
runtime (second) argument is not one of the constants declared by that type, the returned
value is #f£.
(C-enum "GdkEventType" (C-> #@42 "GdkEvent any type"))
= |GDK_MAP|
The c-array-loc and c-array-loc! syntaxes compute the locations of C array ele-
ments. They can be used to advance a scan pointer or locate an element by its index. The
examples in the synopsis might expand as shown here.

(C-array-loc #043 "GdkColor" (C-enum "GTK_STATE_NORMAL"))

—
(alien-byte-increment #043 (* (C-sizeof "GdkColor")
(C-enum "GTK_STATE_NORMAL")))
—>
(alien-byte-increment #043 (* 12 0))
= #044

(C-array-loc! #@43 "GdkColor" (C-enum "GTK_STATE_PRELIGHT"))

H
(alien-byte-increment! #@43 (* (C-sizeof "GdkColor")
(C-enum "GTK_STATE_PRELIGHT")))

}_)
(alien-byte-increment! #@43 (x 12 2))
= #043
A simple scan of characters in the wide string alien might look like this.
(let ((len (C-> alien "toolkit_string_type int_member"))
(scan (C-> alien "toolkit_string_type array_member")))
(let loop ((n 0))
(if (< n len)
(let ((wchar (C-> scan "wchar")))
(process wchar)
(C-array-loc! scan "wchar" 1)
(Loop (1+ n))))))
That is a quick look at the facilities. The next section describes the C declaration
language, and the following sections examine the FFI’s syntax and runtime facilities in

detail. Final sections provide an example program and show how its dynamically loaded
shim is built.

2 C Declarations

A shim between Scheme and a C toolkit is specified by a case sensitive . cdecl file containing
Scheme-like declarations of all relevant toolkit types, constants, and functions. Callback
functions to be passed to the toolkit are also specified here.

Each top-level form in the C declaration file must look like one of these:

(include "filename")
(typedef Name any)
(struct Name (Member type) ...)
(union Name (Member type) ...)
(enum Name (Member) ...)
(extern function-type Name (paraml arg-type) ...)
(callback callback-type Name (paraml callback-arg-type) ...)
The include expression includes another .cdecl file in the current .cdecl file. The

string argument is interpreted relative to the current file’s directory.
any can be a type or the word void.
arg-type can be any type except anonymous structs and unions.
function-type can be any arg-type or void.
callback-arg-type can be any type except struct and union types.
callback-type can be any callback-arg-type or void.
type can look like any of these:

Name

basics

(* any)

(enum Name)

(enum Name (Member) ...)

(struct Name)

(struct Name (Member type) ...)

(union Name)

(union Name (Member type) ...)

Name should be defined via a typedef form somewhere in the (included) file(s). It does

not have to be defined before it is referenced. It does not have to be defined at all if it is

only the target of a pointer type.

basics can be any of the words: char, uchar, short, ushort, int, uint, long, ulong,
float, or double (all lowercase).

While the informal grammar above allows anonymous structs to be member types, they
are useless outside a named type declaration. The peek and poke (C-> and C->=) syntaxes
require a type name (e.g. "GdkEventAny" or "struct _GdkEventAny") before any member
names.

(C-include "prhello")

The C-include syntax takes a library name and loads the corresponding -types and
-counst files at syntax time. This makes the C types and constants available to the other
C-... syntax expanders. The form binds c-includes in the syntax environment unless it
is already defined there. Thus a (C-include "library") form can be placed at the top of
every file with C-. .. syntax, or loaded into the syntax-time environment of those files.

3 Alien Data

A C data structure is represented by an alien containing the data structure’s memory
address. “Peek” primitives are available to read pointers and the basic C types (e.g. ints,
floats) at small (fixnum) offsets from an alien’s address. They return to Scheme an alien
address, integer or flonum as appropriate. “Poke” primitives do the reverse, storing pointers,
integers or floats at fixnum offsets from alien addresses. Other procedures on aliens are
alien?, alien-null?, alien-null!, copy-alien, alien=7, alien-byte-increment, and
c-peek-cstring. Refer to £fi.pkg in The Source for a complete list.

The C-> and C->= syntaxes apply the peek and poke primitives to constant offsets.
They expect their first argument subform to be a constant string — space-separated words
naming a C type and any member to be accessed. A member within a struct or union
member is specified by appending its name. For example "struct _GdkEvent any window"
would specify a peek at the window member of the any member of the struct _GdkEvent
data at some alien address. Note that the final member’s type must be a basic C type,
pointer type, or enum type. Otherwise, an error is signaled at syntax time.

(C-> alien "struct _GdkEvent any window" window-alien)
N

(#[primitive c-peek-pointer] alien O window-alien)

= #[alien 44 (* GdkWindow) 0x081afc60]

Note that in the example above, the final member has a pointer type. In this case an
extra alien argument can be provided to receive the peeked pointer. Otherwise a new alien
is created and returned.

Malloc

The malloc procedure returns an alien that will automatically free the malloced memory
when it is garbage collected. It can also be explicitly freed with the free procedure.
The alien address can be incremented to scan the malloced memory, then freed (without
returning it to the original, malloced address). A band restore marks all malloced aliens as
though they have been freed.

(free (malloc ’|GdkRectanglel))

4 Alien Functions

The C-call syntax produces code that applies call-alien to an alien function structure
— a cache for the callout trampoline’s entry address.

(C-call "gtk_button_new" (make-alien ’(* |GtkWidget|)))

}_)

(call-alien ’#[alien-function gtk_button_new] (make-alien ...))

The alien function contains all the information needed to load the callout trampoline on
demand (i.e. its name and library). Once the alien function has cached the entry address,
call-alien can invoke the trampoline (via #[primitive c-calll). The trampoline gets
its arguments off the Scheme stack, converts them to C values, calls the C function, conses
a result, and returns it to Scheme.

A function returning a pointer type is treated specially. Its trampoline expects an extra
(first) argument. If the argument is #f, the return value is ignored. If the argument is an
alien, the function’s return value clobbers the alien’s address. This makes it easy to grab
pointers to toolkit resources without dropping them, and to avoid unnecessary consing of
aliens.

A function returning a struct or union type is treated similarly. Its trampoline expects
an extra (first) argument. If the argument is #£, the return value is ignored. If the argument
is an alien, the returned struct or union is copied to that address.

Struct and union type parameters of a function are treated similarly. The function’s
trampoline expects an alien argument for each such parameter and copies the struct or
union from the argument address into a local variable. Callbacks currently cannot receive
struct or union type arguments, though they can receive pointer type arguments (consing
an alien for each).

The alien-function structures are fasdumpable. The caching mechanism invalidates

the cache when a band is restored, or a fasdumped object is fasloaded. The alien function
will lookup the trampoline entry point again on demand.

5 Callbacks

A callback declaration must include a parameter named “ID”. The ID argument will be used
to find the Scheme callback procedure. It must be the same “user data” value provided to
the toolkit when the callback was registered. For example, a callback trampoline named
Scm_delete_event might be declared like this:

(callback gint
delete_event
(window (* GtkWidget))
(event (* GdkEventAny))
(ID gpointer))
The callback might be registered with the toolkit like this:

(C-call "g_signal_connect" window "delete_event"
(C-callback "delete_event") 3 e.g. &Sem_delete_event
(C-callback ; e.g. 314
(lambda (window event)
(C-call "gtk_widget_destroy" window)
0)))
The toolkit’s registration function, g_signal_connect, would be declared like this:

(extern void
g_signal_connect
(object (* GtkObject))
(name (* gchar))
(CALLBACK GtkSignalFunc)
(ID gpointer))

This function should have parameters named CALLBACK and ID. The callout trampoline
will convert the callback argument from a Scheme alien function to an entry address. The
ID argument will be converted to a C integer and then cast to its declared type (in this
example, gpointer).

Note that the registered callback procedures are effectively pinned. They cannot be
garbage collected. They are “on call” to handle callbacks from the toolkit until they are
explicitly de-registered. A band restore automatically de-registers all callbacks.

Callback procedures are executed with thread preemption suspended. Thus Scheme will
not switch to another thread, especially not one preempted in an earlier callback. Such a
thread could finish its callback and return from the later callback, not to its original caller.

Scheme will not preempt a callback, but if the callback calls suspend-thread it will
switch to a running thread. If the callback does IO (and blocks), suspends, yields, sleeps,
or grabs (waits for) a mutex, the runtime system will switch to another thread, possibly
a thread that blocked for IO during an earlier callback but is now recently unblocked and
determined to finish and return to the wrong caller. Thus callback procedures should be
written as if they were interrupt handlers. They should be short and simple because they
must not wait.

The outf-error procedure is provided for debugging purposes. It writes one or more
argument strings (and writes any non-strings) to the Unix “stderr” channel, atomically,
via a machine primitive, bypassing the runtime’s IO buffering and thread switching. Thus
trace messages from multiple threads will appear on stderr intact, uninterrupted.

10

6 Compiling and Linking

The c-generate procedure takes a library name and an optional preamble. It reads the
library.cdecl file and writes two .c files. The preamble is included at the top of both. It
typically contains #include C pre-processor directives required by the C library, but could
include additional shim code. Here is a short script that generates a shim for the example
“Hello, World!” program.

(load-option ’FFI)

(c-generate "prhello" "#include <gtk/gtk.h>")

This script will produce three files:

prhello-shim.c
This file contains the trampoline functions — one for each declared C extern
or callback. It includes the mit-scheme.h header file, found in the AUXDIR
directory — e.g. /usr/local/lib/mit-scheme-i386/.

prhello-const.c
This file contains a C program that creates prhello-const.scm. It is compiled
and linked as normal for programs using the toolkit, and does not depend on the
Scheme machine. It does not actually call any toolkit functions. It just collects
information from the compiler about the declared C types and constants.

prhello-types.bin
This file is a fasdumped c-includes structure containing all of the types, con-
stants and functions declared in the .cdecl file.

The following Makefile rules describe the process of building and installing a shim for
the example “Hello, World!” program.

AUXDIR=/usr/local/lib/mit-scheme-i386

install: build
install -m 644 prhello-types.bin $(AUXDIR)
install -m 644 prhello-const.bin $(AUXDIR)
install -m 644 prhello-shim.so $(AUXDIR)

uninstall:
rm $(AUXDIR)/prhello-*

clean:
rm prhello-const* prhello-types* prhello-shim*

build: prhello-shim.so prhello-types.bin prhello-const.bin

prhello-shim.so: prhello-shim.o
$(CC) -shared -fPIC -o $@ $~ ‘pkg-config --libs gtk+-3.0°

prhello-shim.o: prhello-shim.c
$(CC) -I$(AUXDIR) -Wall -fPIC ‘pkg-config --cflags gtk+-3.0¢ -o $@ -c $<}i

11

prhello-shim.c prhello-const.c prhello-types.bin: prhello.cdecl
echo ’(generate-shim "prhello" "#include <gtk/gtk.h>")’ \
| mit-scheme --batch-mode

prhello-const.bin: prhello-const.scm
echo ’(sf "prhello-const")’ | mit-scheme --batch-mode

prhello-const.scm: prhello-const
./prhello-const

prhello-const: prhello-const.o
$(CC) $(CFLAGS) -o $@ $~ $(LDFLAGS) ‘pkg-config --libs gtk+-3.0°

prhello-const.o: prhello-const.c
$(CC) ‘pkg-config --cflags gtk+-3.0¢ $(CFLAGS) -o $@ -c $<
The FFI also supports libraries created by GNU automake (libtool). The source dis-
tribution includes several simple plugins. Each uses a portable Makefile.am to build and
install its shared object.

12

7 Hello World

This chapter includes the C declarations and Scheme code required to implement Havoc
Pennington’s Hello World example from GGAD (http://developer . gnome . org/doc/
GGAD/). For an extra, Schemely treat, its delete_event callback is a Scheme procedure
closed over a binding of counter that is used to implement some impertinent behavior.

#| —-*x-Scheme—*-

This is Havoc Pennington’s Hello World example from GGAD, in the raw
FFI. Note that no arrangements have been made to de-register the
callbacks. |#

(declare (usual-integrations))
(C-include "prhello")

(define (hello)
(C-call "gtk_init" 0 null-alien)
(let ((window (let ((alien (make-alien ’|GtkWidgetl|)))
(C-call "gtk_window_new" alien
(C-enum "GTK_WINDOW_TOPLEVEL"))
(if (alien-null? alien) (error "Could not create window."))N
alien))
(button (let ((alien (make-alien ’|GtkWidget|)))
(C-call "gtk_button_new" alien)
(if (alien-null? alien) (error "Could not create button."))N
alien))
(label (let ((alien (make-alien ’|GtkWidget|)))
(C-call "gtk_label_new" alien "Hello, World!")
(if (alien-null? alien) (error "Could not create label."))Nl
alien)))
(C-call "gtk_container_add" button label)
(C-call "gtk_container_add" window button)
(C-call "gtk_window_set_title" window "Hello")
(C-call "gtk_container_set_border_width" button 10)
(let ((counter 0))
(C-call "g_signal_connect" window "delete_event"
(C-callback "delete_event") ;trampoline
(C-callback ;callback ID
(lambda (w e)
(outf-error ";Delete me "(- 2 counter)" times.\n")
(set! counter (1+ counter))
;; Three or more is the charm.
(if (> counter 2)
(begin
(C-call "gtk_main_quit")
0)

http://developer.gnome.org/doc/GGAD/
http://developer.gnome.org/doc/GGAD/

Chapter 7: Hello World 13

1))

(C-call "g_signal_connect" button "clicked"
(C-callback "clicked") ;trampoline
(C-callback ;callback ID

(lambda (w)

(let ((gstring (make-alien ’(* |gchar|))))
(C-call "gtk_label_get_text" gstring label)
(let ((text (c-peek-cstring gstring)))
(C-call "gtk_label_set_text" label
(list->string (reverse! (string->list text))))))l
unspecific))))
(C-call "gtk_widget_show_all" window)
(C-call "gtk_main")
window))

Here are the C declarations.

#| -*-Scheme-*-
C declarations for prhello.scm. [#

(typedef gint int)

(typedef guint uint)

(typedef gchar char)

(typedef gboolean gint)
(typedef gpointer (* mumble))

(extern void
gtk_init
(argc (* int))
(argv (x (x (* char)))))

(extern (* GtkWidget)
gtk_window_new
(type GtkWindowType))

(typedef GtkWindowType
(enum
(GTK_WINDOW_TOPLEVEL)
(GTK_WINDOW_POPUP)))

(extern (* GtkWidget)
gtk_button_new)

(extern (* GtkWidget)
gtk_label_new
(str (x (const char))))

Chapter 7: Hello World

(extern

(extern

(extern

(extern

(extern

void

gtk_container_add
(container (* GtkContainer))
(widget (* GtkWidget)))

void

gtk_window_set_title
(window (* GtkWindow))
(title (* (const gchar))))

void
gtk_container_set_border_width
(container (* GtkContainer))
(border_width guint))

void
gtk_widget_show_all
(widget (* GtkWidget)))

void
g_signal_connect
(instance gpointer)
(name (* gchar))
(CALLBACK GCallback)
(ID gpointer))

(typedef GCallback (* mumble))

(callback gboolean

delete_event

(window (* GtkWidget))
(event (* GdkEventAny))
(ID gpointer))

(callback void

(extern

(extern

clicked
(widget (* GtkWidget))
(ID gpointer))

void
gtk_widget_destroy
(widget (* GtkWidget)))

(x (const gchar))
gtk_label_get_text
(label (* GtkLabel)))

14

(extern void
gtk_label_set_text
(label (*x GtkLabel))
(str (* (const char))))

(extern void gtk_main)
(extern void gtk_main_quit)

15

16

Appendix A GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix A: GNU Free Documentation License 17

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 18

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix A: GNU Free Documentation License 19

o

N.

0.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at