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Chapter 1

Introduction

Welcome to the MAVERIK Programmer’s Guide (MPG), which describes version 6.2 of GNU
MAVERIK — the MAnchester Virtual EnviRonment Interface Kernel. In this manual we’ll discuss
the ideas behind MAVERIK, its architecture, the facilities it provides to application programmers, and
also why we think it’s novel and interesting. For complete documentation of the functions and types
that make up the MAVERIK API, please refer the MAVERIK Functional Specification (MFS) [3]
which is included in the MAVERIK distribution as postscript, pdf, HTML, and as on-line nan pages.
Generally, when a function is first mentioned in this manual, we cross-reference its main entry in the
MFS.

Please also refer to the MAVERIK Frequently Asked Questions (FAQ) file, in the top-level directory
of the MAVERIK distribution. For your convenience the FAQ is also listed in Appendix E (page 175),
but the on-line version (http://ai g. cs. man. ac. uk/ maveri k/ f ag. php) is likely to be more up-to-
date.

1.1 Whatis MAVERIK?

In its simplest form, MAVERIK is a C toolkit for managing display and interaction in stand-alone (that
is, non-networked) single-user Virtual Environment applications. A complementary system under
development, Deva [18, 21, 22, 8], provides a networked multi-user, multi-environment layer on top
of MAVERIK, with the ability to efficiently specify behaviour, laws etc. As of release 4.3, MAVERIK
is an official component of the Free Software Foundation’s GNU Project located in Boston, USA
(http://ww. gnu. or g). However, as the copyright holders of the original MAVERIK source we are
able to distribute non-GPL’d versions of (our version of) MAVERIK under a commercial license. See
http://aig.cs.man. ac. uk/ maverik/ non-gpl . php for more details.

There are numerous other “VR toolkits” available, ranging from very low-level libraries of functions
for drawing three-dimensional graphics and interacting with peripherals, to fully-blown “systems”
that describe virtual environments in much higher level terms. MAVERIK lies somewhere in between
these extremes. It provides an application with the tools needed to create, manage, view, interact with,

3



4 CHAPTER 1. INTRODUCTION

and navigate around graphically complex Virtual Environments while making the minimum number
of assumptions about the nature of the application.

MAVERIK does not dictate the use of any fixed object/scene representations or viewing/interaction
techniques. Rather, it has the ability, where needed, to directly link into and exploit an application’s
own data structures and algorithms. This novel aspect of MAVERIK allows it to easily take advan-
tage of representations, optimisations, and techniques that are highly application specific giving the
resulting virtual environment a behaviour which is customized to, and consistent with, the nature of
the application.

MAVERIK’s flexible design means that applications with widely differing requirements can be sup-
ported.

MAVERIK has two components:

e a micro-kernel, which provides the framework within which applications are built;

e a collection of supporting modules, which provide optimised display management, culling,
spatial management, interaction and navigation techniques, control of input and output devices
etc. These modules are distributed as source code and act as a basis for customization.

It is important to appreciate that MAVERIK is not an “end-user application”: there are no graphical
user interfaces or “world editors” — it is strictly a programming tool.

A more detailed description of MAVERIK’s architecture and design philosophy is given in the next
chapter.

1.2 What platforms does MAVERIK support?

MAVERIK is available as source code and should compile under Windows, MacOS and on UNIX
systems — essentially any system that has OpenGL, Mesa (version 3.1 or above), IrisGL or DirectX
(version 7). However, while it is possible to use any of these libraries, OpenGL/Mesa is currently the
best supported library for MAVERIK to use.

MAVERIK is known to run on the following operating systems:

SGI Irix 5.3, 6.3 and 6.5;

RedHat 5.2 and 6.x;

FreeBSD 3.2;

SuSE 7.1;

SunOS 5.7;
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o Windows 98, 2k and NT;

e MacOS;

This list is not intended to be exhaustive but simply reflects operating systems that we, or others, have
access to and tried MAVERIK with. Ports to other UNIX platforms should be fairly trivial and we
believe the code to work on Window 95.

Since MAVERIK uses well supported graphics libraries to perform rendering (OpenGL, IrisGL or
DirectX) it can take advantage of the hardware acceleration available on certain graphics cards. For
example, as well as our SGI’s, we use MAVERIK on PCs, running GNU/Linux which are equipped
with GeForce3 graphics cards (we also use a machine fitted with two Voodoo2 cards in order to
produce stereo output).

1.3 What peripherals does MAVERIK support?

A standard compilation of MAVERIK provides supports for a desktop mouse, keyboard and screen.
This makes it easy to try out the examples and demonstrations.

The configuration of 3D peripherals used in VR labs tends to be site specific. Code is included in
the distribution to support Polhemus FASTRAK and ISOTRAK 11 six degree of freedom trackers (op-
tionally coupled to Division 3D mice); Ascension Flock of birds (ERC only); Spacetec SpaceBalls
and SpaceOrb360s; Magellan Space Mouse; InterSense InterTrax 30 gyroscopic trackers; 5DT data
gloves; and a serial Logitech Marble Mouse. With modification other similar specification 6 DOF
input devices/tracking technology can be supported. Code to support IBM’s ViaVoice speech recog-
nition engine is also provided. This code is not compiled by default since it is not relevant to everyone
and requires some manual configuration. See the README in the src/ extras sub-directory of the
MAVERIK distribution for more information.

We have also supported more peculiar peripherals in our own lab: Microsoft SideWinder Force-
Feedback joystick and our homebuilt MIDI server. These are relatively uncommon devices and so are
not included in a “standard” MAVERIK release. If you’re interested in this code, please contact us.

1.4 What has MAVERIK been used for so far?

The development of MAVERIK began in 1997, since when it has been used for many different projects
and applications, including:

e research into the improvement of interfaces to complex engineering tasks, such as the design
and operation of off-shore drilling platforms [13, 12, 24, 4, 10];

o large-scale electronic landscapes for way-finding and public information access [19, 14, 23, 20];
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e stereoscopic modelling of scenes of crime [9, 15];

e abstract data visualisation [17, 16];

e visualisation of physically based simulations [7, 5, 6];

e electronic artworks [2];

e tools for interactively creating and editing virtual environments;
e modelling nanotechnology;

o architectural modelling.

You can find details of these and other projects at the Advanced Interfaces Group’s MAVERIK appli-
cations Web page — http: // ai g. cs. man. ac. uk/ gal | ery/ i ndex. php.

1.5 MAVERIK levels

The MAVERIK API comprises over 550 functions, only a small subset of which will commonly be
used by programmers wishing to use MAVERIK “out of the box”. Similarly, many functions will be
of interest only to those users wishing to understand the internal workings of MAVERIK, and possibly
wishing to tailor it to their own requirements.

With these various requirements in mind, we have divided the MAVERIK functionality into three
“levels”, which we hope will help users to find their way around. This three-level structure is reflected
both in this manual, and in the MAVERIK Functional Specification.

e Level 1 functions are those which first-time users of MAVERIK will normally use. These func-
tions make use of the many defaults built into MAVERIK, and should enable users to create
interesting MAVERIK applications quickly.

e Level 2 functions are those which allow more advanced use of MAVERIK. Examples might
include defining new classes of object, or defining new methods of navigating around the virtual
environment.

e Level 3 functions are intended for “Research and Development” using MAVERIK. They are
low-level functions which provide interfaces to the MAVERIK kernel and associated modules.
For example, Level 3 functions would be required for extending MAVERIK to provide new
level-of-detail processing algorithms, new object culling algorithms, or to provide support for
new kinds of input devices.

1.6 Assumed readers’ background

Because MAVERIK is a research and development system, we assume that the reader is already famil-
iar with the basic concepts of computer graphics and virtual environments. In particular, we assume
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that the reader is comfortable with the ideas of modelling coordinates and world coordinates; trans-
formations; rendering in the OpenGL style; callback functions; and the object-oriented programming
ideas of classes and methods.

1.7 Contact

Comments, questions and feedback are actively encouraged and should be addressed to us personally
at maveri k@i g. cs. man. ac. uk, or to the MAVERIK user’s mailing list (details of which can be
found at http://ai g.cs. man. ac. uk/ contact . php). Bugs should be reported to the mailing list,
or to bug- maveri k@i g. cs. man. ac. uk, but only after you have consulted the FAQand list of known
bugs.

1.8 Authors and contributors

The following people are responsible for the design, development and implementation of MAVERIK
(in alphabetical order): Jon Cook, Tim Davis, Simon Gibson, Toby Howard, Roger Hubbold, Martin
Keates, Alan Murta, Steve Pettifer, Adrian West. We are also indebted to the many valuable contribu-
tions of the following research students: Mat Brooks, Mashhuda Glencross, James Marsh, Gary Ng,
Dan Oram, James Pearce, James Sinnott and Dongbo Xiao.

We would also like to thank the following people for contributing to MAVERIK: Robert Belleman (So-
laris support), Shamus Smith (ISOTRAK Il support), Joerg Anders (Windows support), Alex (MacOS
support), Joe Topjian (FreeBSD support), Jake Burkholder (FreeBSD support), Rob G (FreeBSD sup-
port); Daniel Amos (Ascension Flock of Birds support); Alessandro De Luca (SpaceOrb360 and 5DT
data glove support); and to everyone who mailed us with bug reports and fixes.

1.9 Acknowledgements

It’s a pleasure to have the opportunity to acknowledge the organisations and individuals who have
made the development of MAVERIK possible.

We thank the UK Engineering and Physical Sciences Research Council (EPSRC) for funding the
VRLSA (GR/K99701) and REVEAL (GR/M14531) projects; the ESPRIT programme for funding eS-
CAPE (ESPRIT 25377); our academic research partners at the Universities of Manchester, Lancaster
and Nottingham, the Swedish Institute of Computer Science, and ZKM in Karlsruhe; our industrial
partners CADCentre Ltd, Sharp Laboratories of Europe Ltd, Brown & Root, Greater Manchester
Police and Harlequin Ltd.
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Chapter 2

MAVERIK’s architecture and design

This chapter briefly describes the architecture and design principles behind MAVERIK. For a more
detailed description please see [11].

MAVERIK was designed to be a Virtual Reality system which addresses two key concerns: easy
customisation to meet the demands of different applications, and efficient operation so that very
large environments can be handled. Our approach adopts a “micro-kernel” design which minimises
assumptions about how environments are represented and stored by the system.

MAVERIK is one of two components in a complete VR “operating system” under development within
the Advanced Interfaces Group. We refer to MAVERIK as a micro-kernel because it provides a core set
of functions for implementing VR interfaces on behalf of a single user. The second component, called
Deva, provides a higher-level operating environment supporting multiple users, distributed shared
environments, and multiple persistent concurrent environments. We do not discuss Deva further in
this manual; for details please see [18, 8].

This chapter presents a description of the MAVERIK micro-kernel, its features and architecture, and
how it compares to other VR software systems.

2.1 Virtual environment representations

One defining characteristic of a VR system is the way in which representations of virtual environments
are stored and manipulated internally. In this section we contrast two common approaches: fixed
representations and immediate-mode rendering.

2.1.1 Fixed representations

Most VR systems use a fixed representation for the virtual environment. This is shown in the figure
below:
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Application VR system

Dataimport

P VR system’s
Angtt;atlon representation of
data

Here, an application’s data is imported into a separate VR system, which stores it internally in some
fixed format optimised for its own use. Often this will be a polygonal representation of the geometry
of the model in a format dictated by the underlying graphics system.

This approach works well if the required VE has limited possibilities for interaction, such as a simple
walk-through, or interaction with only a small number of objects. The advantage of the approach
is that a large number of “standard” capabilities suited to the chosen representation — for example,
culling and interaction mechanisms — can be provided as part of the VR system’s intrinsic design and
implementation.

However, as the complexity of an environment increases, and the requirement arises to associate ap-
propriate behaviours and affordances with objects, the “fixed representation” approach become prob-
lematic. The data required to achieve such behaviour will always be application specific — since only
the application can “know” what an object actually is, and what it means in the VE. Finding sensible
mappings between a semantically rich application database and the restricted graphics-oriented data
structure of the VR system is usually difficult and often unsatisfactory. Furthermore, it is often very
difficult to exploit this information to affect the behaviour of the core VR system’s functionality — for
example, its culling, level-of-detail and navigation routines — since the user has little or no access to
these.

Choosing a common representation, suitable for widely differing applications, is a difficult task, in-
evitably involving a trade-off between conflicting interests. For example, the needs of an application
involved in design work for the motor industry are clearly quite different from those involved in ab-
stract data visualization. A consequence of application diversity is that with a fixed representation, it
is difficult to create a truly general-purpose VR system which can exploit application semantics.

The “fixed representation” scheme has another drawback: it requires that the two separate represen-
tations of the same underlying data must be maintained, one for the application and one for the VR
system. It is a non-trivial programming task to keep separate representations synchronized.

2.1.2 Immediate-mode rendering

An alternative to storing graphical data in a separate fixed data structure as described above is to use
immediate-mode rendering. Here, pictures are generated algorithmically, directly from an applica-
tion’s data, by writing a program in a language such as C. Calls to functions in a graphics library,
such as OpenGL, embedded within the application, send data directly to the graphics hardware for
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immediate rendering.

The big advantage of this approach is its ability to directly use arbitrary application data structures
and also to exploit the application’s algorithms to give the VE meaningful behaviour. The disadvan-
tage is that since no standard representation is used, the graphics library cannot provide higher level
functionality, such as culling and navigation.

2.2 The MAVERIK system

Like OpenGL, MAVERIK can be thought of as a graphics library which links into an application and
directly uses its data structures and algorithms.

The crucial difference is that it also defines a standardized framework in which an application provides
MAVERIK with the means to access its objects. Through the use of this framework, MAVERIK can
provide high level functionality without dictating the use of any specific object representation.

MAVERIK has an object-oriented structure. It defines a set of classes for different kinds of object, and
mechanisms for defining new classes. Customisation for different applications is achieved by defining
methods associated with each class.

MAVERIK is implemented in standard C, so that it can be ported easily to different platforms and
can be used by anyone with basic C programming skills. Methods are implemented using callback
functions, with data passed via generic “typeless” pointer parameters. Note, however, that class
hierarchies and inheritance are not supported.

2.2.1 Object definition

An “object” is simply a convenient way of naming something which an application requires MAVERIK
to treat as an entity. No assumptions are made about how an object is represented by the application.
For example, an object might be a single polygon, a group of polygons defining some more complex
shape, such as a desk or chair, or some group of more complex primitive shapes which are specific to
that one application — such as a ladder, or a valve.

The way to define different kinds of objects is to create a class for each one. This is done by calling a
function, which returns a unique identifier for the new class. Different classes each have a (possibly
unique) set of methods, implemented as C functions accessed as callbacks. Methods govern operations
such as displaying primitives, computing their bounding boxes, or finding objects which are spatially
closest to a given point. MAVERIK arranges that these methods are called to render frames. Methods
which are specific to a particular application can also be defined, such as computing the mass of an
object, or finding its centre of mass. Generally speaking, the minimum set of methods necessary
to create a simple interactive VE comprises those for displaying objects, for computing a bounding
volume, and for selecting/manipulating them (usually by ‘grasping’ or pointing at them in some way).

To avoid the tedium of having to write callback functions every time a new application is implemented,
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MAVERIK provides default methods for a few common primitives such as polygons, polygon meshes,
spheres, cylinders, cones, tori, boxes, and sub-parts of these (such as an angular section of a cylinder
or torus). These default methods are distributed as source code, providing a set of examples and
facilitating customisation.

As well as defining classes and associated methods, individual objects to be managed by MAVERIK
must be registered. This is performed by a function which takes as input an object’s class and a
pointer to the data defining that object. This function binds these two elements into a single MAVERIK
object, whose identifier is returned for use in subsequent references. In this way, objects are stored so
that MAVERIK can find the class of any registered object — and hence any associated methods — and
can also pass to the callback functions the generic pointer to the application data. Callback functions
perform a cast into a pointer of the correct type for the data. The figure below illustrates the MAVERIK
framework for objects, classes and methods:

@

APPLICATION <:>\
OBJECT
DATA STRUCTURES
O\
<:>
DATA DATA DATA DATA
[ Mmavosn| [ mavosz| [ mav 0B | [ MAV OBH
CLASS CLASS CLASS CLASS
v\ OBJECT CLASS1
DRAW
APPLICATION K BOUNDING BOX
OBJECT — |
METHODS SELECT
APP SPEC
OBJECT CLASS2
\ 4 o
BOUNDING BOX
v APP SPEC

The application’s data structures are shown (as hexagons) to the left of the vertical line. The appli-
cation’s methods, which act upon the objects, are drawn as triangles. The shading illustrates which
algorithms operate on which data structures (black on black, white on white).

The framework by which MAVERIK can access the application is shown on the right of the vertical
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line. Each MAVERIK class contains a number of callback functions to process each class of object.
The MAVERIK objects are the encapsulation of the appropriate class and the application-specific data
structures which define the object.

Because MAVERIK objects only maintain pointers to — not copies of — the data structure and class,
they do not have to be notified of any changes to them.

Although not shown in the Figure, MAVERIK uses a similar callback mechanism for registering event
handlers and navigation functions.

The standard distribution of MAVERIK contains libraries of default methods for displaying and man-
aging many common types of graphical primitives, and for navigation around the virtual environment.
These can be customised easily by adding extra data and code, or simply replaced by alternative
versions which are intimately bound to the data structures used by the application.

2.2.2 Spatial management structures

Another important feature of a VR system is its support for spatial management — this is central
to many algorithms and techniques, such as culling, object selection, and collision detection, and is
essential for managing large models. A common approach is to use a hierarchy of bounding volumes
for spatial searching, which generally works efficiently because of its logarithmic complexity. How-
ever, as with object storage, it is possible to find optimisations which capitalise on application-specific
features to yield superior performance.

MAVERIK provides a framework which permits customisation of spatial management methods. In a
manner analogous to object definition, MAVERIK uses classes and methods to store and access spatial
data. An application defines a class for each object storage technique, registers the callback func-
tions corresponding to the different methods for each class, and defines generic object management
structures — called spatial management structures (SMSs) — to store and manage MAVERIK objects.

Typical methods associated with SMSs include object insertion, object deletion and cull to a region
of space. However, as with objects, an application can define whatever new classes and associated
methods are most appropriate. An example of application-specific SMS processing might be to en-
force a minimum spatial separation between objects.

As with objects, default methods are supplied which implement a range of useful techniques. One
default class of SMS stores objects as a simple linked list, and processes them (for example, for
display) in the order in which they were inserted, but only if an object’s bounding box lies inside
the current view frustum. Another class of SMS implements a hierarchy of bounding volumes. Any
application-specific object that provides the “calculate bounding box” method can be used with these
spatial management structures.

Although SMSs, as their name implies, are generally used for spatial management, objects can be
stored in a non-spatial manner. For example, a linear list which maintains objects in insertion order
is usually non-spatial. Such a list can be re-ordered to optimise graphics hardware context changes
during display. Alternatively, objects could be sorted on a particular application-specific data field in
order to accelerate processing of other kinds of queries.
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Multiple SMSs

Objects can be inserted in any number of SMS’s and processing can be performed on the SMS most
suited to a particular task. One case where a simple linear list is useful is object manipulation. Sup-
pose that a hierarchy of bounding volumes (HBV) is the default SMS for a large-scale model. Objects
to be manipulated can be temporarily removed from the HBV SMS and inserted into a simple linked
list for the duration of the manipulation. Subsequently, they can be reinserted into the HBV structure.
The advantage of this is that potentially expensive alterations to the HBV structure are not needed
during dynamic changes to the model. Because MAVERIK can manage several SMS structures simul-
taneously, the programming effort required to manage this is small.

A second example of multiple SMSs is to use one for view frustum culling and a second for object
display. The first structure is used to flag visible objects and is organised for efficient spatial searching.
A good choice for this would be an HBV. Objects referenced in the HBV are actually stored in the
second SMS, which is ordered to minimise graphics context switches. This second SMS is then
traversed displaying only the flagged visible objects.

Data consistency is maintained because all SMSs store references to MAVERIK objects, which in turn
contain references to the application-specific objects. MAVERIK maintains, for each object, a list of
the SMSs into which it has been inserted, and automatically removes it from each SMS if the object
is deleted.

2.3 Summary
The design approach we have adopted for MAVERIK has three advantages:

e First, none of the application data is imported into, or replicated within, MAVERIK. This avoids
the problem of synchronising changes to multiple representations.

e Second, the framework encapsulates all the information needed by MAVERIK to access data
and methods stored externally within the application, so that object classes can be reused easily
in other applications.

e Third, the philosophy is simple to understand and use, and straightforward to link to existing
applications. This last point is important in domains such as CAD, where there is a major legacy
problem with large-scale databases and existing code.

It might be argued that other VR systems can be tailored in much the same way. For us, the issue
is the ease with which alternative behaviours can be implemented. The callback mechanism is a fa-
miliar programming technique, popularised by windowing systems such as X Windows, and graphics
systems such as OpenGL. In MAVERIK a simpler parameter-passing mechanism has been adopted
than that in X. Our design provides a clean interface which enables customisation to be configured
dynamically at run-time. Callbacks can be switched (re-registered) to change the dynamic behaviour
of the system.
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For example, suppose that an environment comprises a city populated by buildings which the user is
permitted to enter and move around. The insides of the buildings and the city outside may be opti-
mised to use completely different spatial management methods for culling, navigation and interaction.
Specifically, we use an occlusion culling algorithm for displaying the city, and a cell and portal method
for the interior of the buildings. In MAVERIK, we can treat the objects representing the exterior of
the buildings as belonging to a different class from those on the insides, and we register appropriate
methods for each. However, the method employed by the user for moving around may need to be
changed dynamically at run-time. Thus, the methods for a user walking around the streets or inside a
building will be quite different from one driving a virtual car — the constraints and affordances in each
case will be quite different. The navigation methods can be re-registered as the user enters or leaves
buildings, or climbs into the car.

The remainder of this manual describes MAVERIK from a programmer’s point of view. In the next
chapter we present an introduction to programming with MAVERIK, using a series of worked example
programs, all of which are available in the MAVERIK distribution.
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Chapter 3

Introduction to MAVERIK programming

In this chapter we introduce some of the fundamental MAVERIK concepts in enough detail to allow
you to write simple applications.

We’ll present and work through a set of example programs, each of which builds on the previous
example, as follows:

Example 1: a minimal MAVERIK application;

Example 2: defining and displaying an object;

Example 3: surface parameters and navigation around the virtual environment;

Example 4: a more complex environment with multiple objects.

The source code for the example programs in this manual, along with the Makefi | e to build them,
can be found in the exanpl es/ MPGdirectory of the MAVERIK distribution. If you installed MAVERIK
yourself, you’ll know where this is. If not, ask your friendly system administrator.

We suggest you take copies of the examples, and the Makef i | e, to familiarise yourself with compiling
and linking with MAVERIK. See Appendix A (page 127) for full details of how to compile and execute
these examples.

3.1 The structure of a MAVERIK application

Broadly speaking, a MAVERIK application has a simple logical structure, comprising the following
five sections:

e MAVERIK initialisation;

19
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Define the objects which comprise the virtual environment;

Define the application’s “behaviour” —how objects are managed, responds to interactions, defin-
ing navigation etc;

Enter the MAVERIK rendering and interaction loop; once entered, this loop never quits, until
the application does;

Within each cycle of the loop, react to interaction events, and draw a frame.

3.2 Example 1: A minimal MAVERIK application

Our first example program is about as minimal as it’s possible to get, but we hope it will serve to
illustrate the logical structure outlined above. It will also ensure that you have correctly compiled the
example, have a working version of the MAVERIK library, and that any paths are correctly set.

Try compiling and running egl. ¢c. You should see a window appear with the MAVERIK welcome
message in it. This message consists of a spiraling MAVERIK logo with various copyright, version
and contact information displayed. By default this message appears at the start of every MAVERIK
application.

When the message clears you should see an empty blue window. The window will sit there forever,
or until you move the mouse focus into the window, and type Shift-Esc on the keyboard. This key
sequence is recognised by all MAVERIK applications and causes them to quit.

Here’s the source code for egl. c:

I* egl.c */
#i ncl ude "maverik. h"

int main(int argc, char *argv[])

{
[* Initialise the Maverik system */
mav_initialise(&rge, argv);

/* Rendering |oop */
while (1) {

[* Check for and act on any events */
mav_event sCheck();

/* Request start of a new frame */
mav_frameBegin();

/* Request end of the frane */
mav_franeEnd();
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The program begins with an include file. maveri k. h is the standard MAVERIK include which must
appear in all MAVERIK programs. It contains all the definitions for MAVERIK constants, typedefs,
and prototypes for the MAVERIK functions.

MAVERIK must be initialised before it can be used. Either one of two functions can be used to
perform this—mav_i ni tial i se (MFS p 140) or mav_i ni tial i seNoArgs (MFS p 140) — and one of
these must be the first MAVERIK function called by the application. The two function are essentially
the same, the difference being the former takes the command line arguments which can be used to
control the initialisation process (see Appendix D (page 171) for a full description of this).

By default initialisation opens a screen window for rendering which will be a quarter of the overall
screen size, and positioned in the lower left quadrant of the screen.

The shape and position of the window created by the initialisation call are examples of a number of
aspects of MAVERIK’s behaviour which are controlled by a set of global variables. These global vari-
ables are named nmav_opt _*, and their default values can be explicitly overwritten by an application.
For example, setting the variables mav _opt x, mav_opt _y, mav_opt -wi dt h and mav _opt _hei ght prior
to the initialisation call allows an application to customise the position (bottom-left) and size of the
window opened by mav_i ni ti al i se. See Appendix C (page 157) for a complete list of the mav opt _*
variables.

Once initialised, MAVERIK is ready for use. In this example, we immediately enter the main rendering
and interaction loop without defining any objects or “behaviour”. The main loop typically has the
following structure:

e The application calls mav_event sCheck (MFS p 130) to check if any interaction events have
occurred (triggered, for example, by the use of a mouse or keyboard). If MAVERIK detects that
any events have occurred, it automatically calls functions to process the events. We’ll describe
how this works in Chapter 4 (page 35). Calling mav_event sCheck also triggers navigation, as
we’ll see in Example 3.

e Next, the application calls mav_f rameBegi n (MFS p 133) to request MAVERIK to start a new
rendering frame. mav _frameBegi n actually causes quite a few things to happen behind the
scenes, which we’ll discuss later. MAVERIK uses double-buffering by default, so for now, think
of this function as just clearing the back buffer in preparation for rendering a new frame.

e The next step would be to ask MAVERIK to do something useful for us, which would normally
be to request an up-to-date display of all the objects in the virtual environment. We’ll discuss
this in Example 2.

e Finally, we call mav_f rameEnd (MFS p 135) to inform MAVERIK that the frame is now com-
plete, and ready for display. MAVERIK then swaps the buffers and updates the display (assuming
we are using the default double-buffered configuration).

The wallclock time elapsed between the calls to mav _f r aneBegi n and nav _f r anmeEnd gives the
time taken to render a frame. The reciprocal of this value, the frame-rate, is stored in the global
MAVERIK variable mav_f ps, which the application can consult.

For example, you could print it in the shell window using the following code (placed after
mav_f r aneEnd):
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printf ("frame rate: % 2f\n", mav_fps);

N.B. For high frame rates (short elapsed time) this value will inevitably fluctuate from frame to
frame due to variations in system load and the resolution and inaccuracies of the internal clock.
The variable mav _f ps_avg gives the frame rate averaged over the last second and does not suffer
from these problems.

3.3 Example 2: defining and displaying an object

We now extend the first example to define and render an object. In this example, eg2. ¢, we’ve
rearranged the code slightly from Example 1 by introducing some functions. We’ve done this to keep
the code more manageable as we work through the examples.

We’ll present the example as a whole and then describe it:
I* eg2.c */
#include "maverik. h"

/* Define a box */
voi d def Box( MAV_box *b)

{

b->size.x= 1.0; /* Specify its size */

b->si ze.y= 2.0;

b->si ze.z= 3.0;

b->matrix= MAV_ID MATRIX; /* Position and orientation */

b->sp= mav_sp_defaul t; I* Surface paraneters, i.e. colour */
}

/* Render a frame */

voi d dr awFrame( MAV_SMS *sns)

{
[* Check for and act on any events */
mav_event sCheck();

/* Request start of a new frame */
mav_frameBegin();

[* Display the SM5 in all w ndows */
mav_SMSDi spl ay(nmav_win_all, sns);

/* Request end of the frane */
mav_frameEnd();

}

int main(int argc, char *argv[])
{

MAV_box box;

MAV_obj ect *obj ;
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MAV_SMS *snis;

[* Initialise the Maverik system */
mav_initialise(&rge, argv);

/* Define a box object */
def Box( &box) ;

/* Register the box as a Maverik object */
obj = mav_obj ect New( mav_cl ass_hox, &box);

/[* Create a SMS */
sne= mav_SMSQhj Li st New() ;

/* Add object to SMB */
mav_SMSChj ect Add(sns, obj);

/* Rendering loop */
while (1) drawrrame(sms);

Example 2 defines a single object — a box. MAVERIK supports 19 different default primitive object
classes, including box, sphere, cone, cylinder, polygon and text — Appendix B (page 135) gives the
complete list. An application can also define its own new object classes, as described in Chapter 7

(page 69).

This is the MAVERIK data structure to represent a box, MAV_box (MFS p 6):

typedef struct {

MAV vector size; I* size of object */
MAV surfaceParanms *sp; /* surface paraneters */
MAV matrix matrix; [* transformation matrix */
voi d *userdef; [* user-defined data */

} MAV_box;

and comprises of:

e A MAV_vector (MFS p 34), si ze, to define the dimensions of the box about its local coordi-
nate system origin. MAV_vect or ’s, comprising of three floats, X, y and z, are used extensively
throughout MAVERIK to define 3D vectors.

MAVERIK, like OpenGL, is intrinsically unitless, in that it does not dictate the use of any par-
ticular set of units for its local or world coordinate systems. The choice of units is an arbitrary
decision made by the application.

There are, however, occasions when MAVERIK needs to convert from one set of units into
those used by the application. For example, we will see later how the mouse can be used to
navigate around the virtual environment. To achieve this MAVERIK needs to convert mouse
movements, measured in pixels, into eye position movements, measured in the units chosen by
the application. In these cases MAVERIK relies on the application to specify this conversion.
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e A MAV_surfaceParans (MFS p 29), sp, which specifies the “surface parameters”, and deter-
mines how the object is rendered, enabling the application to specify colour, material charac-
teristics, and texture mapping. In this example we use mav _sp _def aul t , the MAVERIK default
value for the surface parameters, which renders the box in a pinky-red colour. We’ll show how
to change the surface parameters in Example 3.

By default, all objects are drawn filled. You can toggle between filled and wire-frame rendering
in a window at any time by pressing Shift-F8. MAVERIK responds to a number of function keys
at run-time, and the complete set is listed in Appendix A.3 (page 128).

e AMV.matrix (MFS p 75), matrix. In MAVERIK, each object is defined in its own private
local coordinate system. This is subsequently mapped into the world coordinate system of the
virtual environment using the 4x4 transformation matrix specified by this field.

In the example we have set this to be the identity matrix (MAV_I D_MATRI X) so that the box is
positioned with its centre at the world coordinate origin and aligned along the major axis.

e Thevoi d *userdef is a pointer to any extra data an application wishes to attach to the object.
We don’t use this in this example.

We define the box as follows:

voi d def Box( MAV_box *h)

{
b->si ze.x= 1.0; I* Specify its size */
b->si ze.y= 2.0;
b->si ze.z= 3.0;
b->matrix= MAV_ID MATRIX; /* Position and orientation */
b->sp= mav_sp_defaul t; [* Surface paraneters, i.e. colour */
}

Having defined the box, we now need to register it as a new MAVERIK object:

obj = mav_obj ect New( mav_cl ass_box, &hox);

The function mav_obj ect New (MFS p 176) takes two arguments: the first is an identifier which in-
dicates the class of the object — in this case, it’s mav_cl ass_box, one of the default object classes
provided by MAVERIK; the second argument is a pointer to the data structure which defines the
object.

mav_obj ect New registers the new object with MAVERIK, and returns a “handle” to the object, which
MAVERIK will subsequently use to refer to the object. Note that whatever the class of an object, its
handle will always be of the generic object handle type ( MAV_obj ect *). And because the handle was
created by using a pointer to, rather than a copy of, the box object, the handle remains independent of
any changes the application makes to the box, such as changing its size.

One of the key aims of MAVERIK is to provide powerful methods for efficiently managing the 3D
space of a virtual environment, and the objects which inhabit that space. To achieve this, MAVERIK



3.3. EXAMPLE 2: DEFINING AND DISPLAYING AN OBJECT 25

introduces the concept of a Spatial Management Structure (SMS). An SMS dictates how objects are
stored, the culling strategy, level-of-detail processing, and the order in which objects are displayed.

SMS’s are, however, too complex an issue to deal with in any depth at this point in this tutorial. At
this stage it is sufficient to say that objects must be inserted into an SMS if they are to be displayed.

In the example, we first create a new SMS to manage our virtual environment with mav _SM5Qbj Li st New (MFS
p 206):

MAV_SMS *snis;

sne= mav_SMSQhj Li st New() ;

which creates a new SMS of type “object list” (we’ll explain exactly what this means in a moment).
The call returns a “handle” to the SMS, of type MAV_SM5 (MFS p 103), which is used to refer to it in
future calls.

Next we add the box object into the SMS we’ve just created with mav _SMSChj ect Add (MFS p 204):

mav_SMBChj ect Add(sns, obj);

A similar function, mav_SMShj ect Rmv (MFS p 205), removes an object from an SMS. Within the
main frame loop function dr awFr ame we request display of the SMS in all windows with mav _SMsDi spl ay (MFS
p 203):

mav_SMSDi spl ay(mav_win_all, sns);

Note that we have not specified any viewing parameters — the eyepoint, the view direction vector, and
so on. Unless changed, MAVERIK uses a default set of viewing parameters, with the eyepoint some
distance along the positive world-coordinate Z axis looking down that axis towards the origin, with
the view-up vector parallel to the world coordinates Y axis. Viewing is described in detail in Chapter 5

(page 47).

The *“object list” is the simplest type of SMS and stores objects inserted into it as a simple linked list.
When displayed with mav_SMSDi spl ay, this type of SMS uses the axis-aligned bounding box of each
object to determine if it is visible.

More complex types of SMS are also provided, such as the “hierarchical bounding box” SMS, which
offers a more efficient culling strategy for large models. Users can also make their own SMS’s to suit
the needs of an application, e.g. one based on cells and portals or one optimized for particular shaped,
say long and thin, objects.

Whatever type of SMS is used, the process of creating it always results in the same generic handle:
(MAV_SMS *). Therefore, switching between different SMS’s is simply a case of changing the single
function call which creates the SMS.
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When you run Example 2 you should see, after the welcome message has cleared, a blue screen with
a red rectangle in the middle. Since the box is viewed edge-on it appears as a rectangle. Quit the
program in the same way as for Example 1, by pressing Shift-Esc.

3.4 Example 3: Surface parameters and navigation

Our next example, eg3. ¢, demonstrates two more features of MAVERIK: controlling the way an
object is rendered using its surface parameters, and how to navigate around the virtual environment:

I* eg3.c */

#i ncl ude "maverik. h"
#i ncl ude <stdio. h>
#include <stdlib. h>

/* Define a box */
voi d def Box( MAV_box *b, int col)

{
b->size.x= 1.0; /* Specify its size */
b->si ze.y= 2.0;
b->si ze.z= 3.0;
b->matrix= MAV_ID MATRIX; /* Position and orientation */
[* Define its "surface paraneters", i.e. the colour with which it's rendered */
/* Use the sign of col toindicate a material or texture, and the value */
/* of col gives the material or texture index to use */
if (col>=0)
{
b->sp= mav_surfaceParansNew( MAV_MATERI AL, 0, col, 0); /* Use material index col */
}
el se
{
b->sp= mav_surfaceParansNew MAV_TEXTURE, 0, 0, -col); /* Use texture index col */
}
}

/* Render a frame */
voi d drawFrame( MAV_SMS *sns)

{

[* Check for and act on any events */
mav_event sCheck();

/* Request start of a new frame */
mav_frameBegin();

[* Display the SM5 in all w ndows */
mav_SMSDi spl ay(nmav_win_all, sns);

/* Request end of the frane */
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mav_frameEnd();

}
int main(int argc, char *argv[])
{
MAV_box box;
MAV_obj ect *obj ;
MAV_SMS *snrs;
[* Initialise the Maverik system */
mav_initialise(&rgc, argv);
if (argc !'=2) {
printf("usage: % colour\n", argv[0]);
exit(l);
}
/* Define a box object */
def Box( &ox, atoi(argv[1]));
[* Use default mouse navigation */
mav_navi gati onMouse(nmav_wi n_al |, mav_navi gati onMouseDefaul t);
/* Register the box as a Maverik object */
obj = mav_obj ect New( mav_cl ass_hox, &box);
/* Create a SMS */
sms= mav_SMSQhj Li st New() ;
/* Add object to SMB */
mav_SMBChj ect Add(sns, ohj);
/* Rendering loop */
while (1) drawFrame(sns);
}

In eg3. ¢, we’ve extended the def Box function to take an argument, col , which is used to control the
object’s surface parameters, i.e. the colour with which it is rendered.

Every MAVERIK window has a “palette” associated with it. This contains a colour table, material
table, texture table, font table, and light table, each of which is intialised with a number of default
values when the window is created. An object’s “surface parameters” specify which table entries in
the palette to use when rendering the object.

In Example 2, we used mav_sp_def aul t as the surface parameters; here, we define the surface param-
eters using mav_sur f acePar amsNew (MFS p 210):

MAV_surfaceParans *mav_surfaceParanmsNew (int nmode, int colour,
int material, int texture);
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This function creates a new set of surface parameters. Depending on the value of mode, objects may
be rendered with a simple colour, a material type, a texture, or a combination of these — see Section 6.1
(page 55) for details. The remaining values, col our, mat eri al andt ext ur e, specify which entry or
entries in the palette to use. Rarely does more than one of these three values need to be given, and
values which are not applicable should be set to zero.

In the example, if col is positive, it’s used to select a material from the window’s material table; if it’s
negative, it selects a texture:

if (col>=0)
{
b->sp= mav_surfaceParamsNew( MAV_MATERI AL, 0, col, 0); /* Use material index col */
}
el se
{

b->sp= mav_surfaceParamsNew( MAV_TEXTURE, 0, 0, -col); /* Use texture index col */
}

The other MAVERIK feature introduced in this example is “navigation”. Navigation is an example
of the “application behaviour” aspect of a MAVERIK program, and is enabled by calling the function
mav_navi gat i onMouse (MFS p 168):

mav_navi gati onMouse(nmav_wi n_al |, mav_navi gati onMouseDefaul t);

This activates the default navigation method in all active windows, controlled by the desktop mouse,
as follows:

o With the left mouse button pressed, mouse movement translates the eyepoint forwards/backwards,
and yaws (rotates about the Y axis) the view.

e With the right mouse button pressed, mouse movement translates the eyepoint up/down and
left/right;

In case you’re wondering how this works, navigation is actually triggered by the mav_event sCheck
function. In Chapter 5 (page 47) we discuss navigation in detail, listing the various navigation methods
avaliable to the application. You can also create your own customised kinds of navigation which is
described in Chapter 8 (page 93).

To execute this example you have to provide an integer on the command line to determine which
material or texture to use, e.g “eg3 5” uses default material 5 (a white-ish colour), “eg3 -1” uses
default texture 1 (a marble effect). There are 20 default materials (numbered 0-19) with number
1 being used to make the pinky-red default set of surface parameters. There are 2 default textures
(numbers 1 and 2). Section 6.1 (page 55) describes how to specify your own colours, materials and
textures.
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The initial view should be the same as the last example (except it will be a different coloured rectan-
gle), but now you will be able to move around the box using the mouse commands described above.
Quit the example in the usual manner.

3.5 Example 4: a more complex environment

Our next example, ex4. c, draws together features we have seen in the previous examples, to create
a more complex virtual environment, comprising a number of different classes of object in random
positions and orientations, with random surface parameters, and a textured ground plane.

This example demonstrates:

defining other classes of object: a rectangle, cylinder and composite object;

using the mat ri x field of an object to set its position and orientation;

defining a texture map from a file;

populating the virtual environment with multiple objects.

I* egd.c */

#i ncl ude "maverik. h"
#i ncl ude <stdio. h>
#include <stdlib. h>

MAV_sur f aceParanms *sp[4];

/* Define a rectangle */
voi d def Rect (MAV_ rectangl e *r)

{
r->w dth= 500.0; /* Size */
r->hei ght = 500. 0;
r->xtile= 3; /* Texture repeat tiling */
r->ytile= 3;
/* Orientation (RPY 0,-90,0) and position (XYZ 0,-2,0) */
r->matrix= mav_matrixSet(0,-90,0, 0,-2,0);
[* Use decal texture with index 5 */
r->sp= mav_surfaceParansNew( MAV_TEXTURE, 0, 0, 5);
}

/* Define a box */
voi d def Box( MAV_box *b)
{
/* Random box size, position/orientation and set of surface parans */
b->si ze. x= mav_randon() *30;
b->si ze. y= mav_randon() *30;
b->si ze. z= mav_randon() *30;
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b->matri x= mav_matrixSet (0, 0, mav_randon() * 360,
- 200+mav_r andom() *400, 0, - 200+mav_r andon( ) *400) ;
b->sp= sp[(int) (mav_random()*4)];
}

/* Define a cylinder */
voi d def Cyl (MAV_cyl i nder *c)

{
/* Random cylinder size, position/orientation and set of surface parans */
c->radi us= mav_randon() * 20;
c->hei ght = mav_randon() * 20;
c->endcap= 1,
c->nverts= 10;
c->matrix= mav_matrixSet (0, mav_randon() *360, 0,
- 200+mav_r andom() *400, 0, - 200+mav_r andon( ) *400) ;
c->sp= sp[(int) (mav_random()*4)];
}

/* Define a conposite object */
voi d def Conp( MAV_conposite *c)
{
/* Read AC3D object fromfile */
if (!'mav_conpositeReadAC3D(" mavl ogo.ac", ¢, MAV_ID MATRI X)) {
printf("failed to read mavl ogo.ac\n");
exit(l);
}

/* Fixed position and orientation */
c->matrix= mav_matrixSet(0,0,0, 0,0.2,-15);
}

/* Render a frame */
voi d drawFrame( MAV_SMS *sns)

{
[* Check for and act on any events */
mav_event sCheck();
/* Request start of a new frame */
mav_frameBegin();
[* Display the SM5 in all w ndows */
mav_SMSDi spl ay(mav_win_all, sns);
/* Request end of the frane */
mav_f rameEnd();

}

int main(int argc, char *argv[])
{

MAV_rectangl e gp;

MAV_SMB *obj s;

MAV_box box[ 10];

MAV_cylinder cyl[10];
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MAV_conposite conp;
int i

[* Initialise the Maverik system */
mav_initialise(&rgc, argv);

/* Define a texture map fromfile, texture index 5 */
mav_pal etteTextureSet (mav_pal ette_default, 5, "marble floor.ppnt);

/* Define a set of "surface paraneters", i.e. the colour with */
/* which an object is rendered */

sp[ 0] = mav_surfacePar anmsNew( MAV_MATERI AL, 0, 1, 0); /* Material index 1 */
sp[ 1] = mav_surfacePar ansNew( MAV_MATERI AL, 0, 2, 0); /* Material index 2 */
sp[ 2] = mav_surfacePar ansNew( MAV_MATERI AL, 0, 3, 0); /* Material index 3 */

[* Texture 1 nodulated with material 2 */
sp[ 3] = mav_surfaceParansNew MAV_LI T_TEXTURE, 0, 2, 1);

/* Define a rectangle to act as the ground plane */
def Rect (&gp) ;

/* Create an SM5 for the objects and add the ground plane to it */
obj s= mav_SMBbj Li st New() ;
mav_SMSChj ect Add( obj s, mav_obj ect New(mav_cl ass_rectangle, &gp));

/* Create 10 boxes and cylinders */
for (i=0; i<10; i++) {

/* Define a box and a cylinder */
def Box( &ox[i]);
def Oyl (&eyl [i]);

/* Add the box and cylinder to the objs SM5 */
mav_SMSChj ect Add( obj s, mav_obj ect New( mav_cl ass_box, &box[i]));

}

mav_SMSChj ect Add( obj s, mav_obj ect New( mav_cl ass_cylinder, &cyl[i]));

/* Define a conposite object and add it to objs SM5 */
def Conp( &conp) ;
mav_SMSChj ect Add( obj s, mav_obj ect New( mav_cl ass_conposite, &conp));

/* Use default nouse navigation */
mav_navi gati onMouse(nmav_win_all, nav_navi gationMuseDefaul t);

/* Rendering |oop */
while (1) drawFrame(objs);
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The example begins by defining from file mar bl e_f | oor . ppmentry number 5 in the default palette’s
texture table. All windows are associated with the default palette (mav_pal ette_defaul t) unless
explicitly re-assigned. MAVERIK can read textures defined in virtually any image file format since it
uses ImageMagick’s convert program to convert the file into PPM format which is trivial to parse.

N.B. if ImageMagick is not installed then you will be limited to PPM image files.



32 CHAPTER 3. INTRODUCTION TO MAVERIK PROGRAMMING

It then initialises an array of surface parameters. Array indices 0-2 are set to be materials from the
default set, while index 3 is default texture 1 modulated with default material 2 (effectively giving a
lit texture).

Next, new objects are defined by the functions def Rect, def Box, def Cyl and def Conp. def Rect
defines a textured rectangle:

->wi dth= 500.0; /* Size */

- >hei ght = 500. 0;

->xtile= 3; /* Texture repeat tiling */

r->ytile= 3;

[* Orientation (RPY 0,-90,0) and position (XYZ 0,-2,0) */
r->matrix= mav_matrixSet(0,-90,0, 0,-2,0);

/* Use decal texture with index 5 */

r->sp= mav_surfaceParansNew( MAV_TEXTURE, 0, 0, 5);

e —

The rectangle object, fully described in Section B.14 (page 150), is centered at its local coordinate
frame origin and defined by a wi dt h along its local coordinate frame X axis and a hei ght along its Y
axis.

The rectangle is defined in the local coordinate frame XY plane with its normal along the positive Z
axis, but we want to use it in this example to represent the ground plane which is the world coordinate
frame XZ plane with a normal along the Y axis. So, the transformation between local and world
coordinate frames needs to rotate the rectangle by 270 (or -90) degrees about its local coordinate
frame X axis. Such a transformation would place the rectangle on the world coordinate frame XZ
plane atY = 0. (MAVERIK uses a right handed coordinate system and so a rotation of just 90 degrees
would place the rectangle in the XZ plane, but with its normal aligned with the negative Y axis. We
need to rotate it a further 180 degrees in order for its normal to be correctly oriented.)

The default eyepoint is also at Y = 0 and therefore the rectangle would not be visible since we would
be viewing it exactly along the plane. To overcome this, the rectangle needs to be offset by some
amount along the negative Y axis so it appears beneath us. The same effect could more correctly be
achieved by moving the eyepoint upwards, and we show how to perform this is Chapter 5 (page 47).

This transformation matrix to achive this is defined using the function mav _mat ri xSet (MFS p 152):

MAV matrix mav_matrixSet(float roll, float pitch, float yaw,
float x, float y, float z);

where rol |, pi t ch and yaw, are defined to be rotation, in degrees, about the Z, X and Y axes respec-
tively. Rotations are applied in the order roll, yaw, then pitch.

So the rectangle’s matrix is set as follows:

r->matrix= mav_matrixSet(0,-90,0, 0,-2,0);
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This places it the world coordinate frame XZ plane atY = —2.

The box and cylinder objects are given a random size, position, orientation and surface parameters, as
def Cyl illustrates:

->radi us= mav_randon() *20;
->hei ght = mav_randon() * 20;
->endcap= 1;
->nverts= 10;
->matrix= mav_matrixSet (0, mav_random()*360, O,
-200+mav_random() *400, 0, -200+nav_randon()*400);
c->sp= sp[(int) (mav_random()*4)];

[ I o I o B o B )

where mav_r andom(MFS p 200) returns a pseudo-random number in the range zero to one.

3.5.1 Level of detail

The cylinder in this example is rendered with nver t s facets. If you set the option variable mav _opt cur veLCD
to MAV_TRUE, then MAVERIK will ignore the nvert s value and render the cylinder with as many, or as

few, facets as it deems necessary to accurately represent the curved surface. However, it will never use

more than mav_opt _vert siax or less than mav_opt _vert sM n facets. Furthermore, the rate at which

the number of vertices used is reduced as the object recedes from the eye point, is controlled by the
arbitrary constant mav_opt _cur veFact or. An undocumented example in the exanpl es/ nmi sc/ LCD
sub-directory of the MAVERIK distribution allows you to dynamically change these variables and
observe the effects.

Note however that even if you are using automatic level of detail, nvert s must be set to a valid value
(i.e. greater than 2) since it is used for other purpose besides rendering, such as in calculating the
cylinder’s bounding box.

3.5.2 Reading objects from file

As well as its simple primitive object classes, MAVERIK also supports a “composite object”, which
comprises a set of other objects linked together. Although an application can define composite objects
“pby hand”, MAVERIK provides a convenient way to create them automatically, by reading object
definitions from AC3D [1], VRML97 or Lightwave format files.

AC3D is an interactive geometry modeler which, as well as creating and editing objects, can im-
port objects defined in a number of common 3D file formats (including 3DS, DXF, Lightwave and
VRML1). def Conp defines a “composite object”, read in from the AC3D file mavl ogo. ac (it’s a 3D
MAVERIK logo). See Section B.18 (page 154) for full details of composite objects.

We’ll return to this example in Chapter 4.
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3.6 Summary

We hope these four simple examples have given you an insight into how to create simple applications
with MAVERIK. In subsequent chapters we’ll cover MAVERIK’s functionality in more detail, and
present more example programs to illustrate more advanced techniques.



Chapter 4

Keyboard and mouse events

In MAVERIK, an application defines the actions to be taken when mouse and keyboard events occur
using a generalised callback mechanism. In this chapter we describe how MAVERIK handles input
events, how these relate to objects, and how to write and register callback functions.

4.1 Example 5: basic event handling

This example, eg5. ¢, expands Example 2 from Section 3.3 (page 22) so that when the middle mouse
button is pressed while the cursor is pointing at the box, it increases in size, and when a key is pressed
a message is printed to the shell window. Note that the navigation has also been included in this
example.

If you don’t have a middle mouse button, and can’t emulate one on your operating system, then it is
trivial to modify this example to work with either the left or right buttons. However, note that the left
and right buttons will also trigger navigation.

/* eg5.c */
#i ncl ude "maverik. h"
#i ncl ude <stdio. h>

[* Define a box */
voi d def Box( MAV_box *b)

{

b->size.x= 1.0; /* Specify its size */

b->si ze.y= 2.0;

b->size.z= 3.0;

b->matrix= MAV_ID MATRIX; /* Position and orientation */

b->sp= mav_sp_defaul t; [* Surface paraneters, i.e. colour */
}

/* Render a frame */
voi d drawFrame( MAV_SMS *sns)

35
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{
[* Check for and act on any events */
mav_event sCheck();
/* Request start of a new frame */
mav_frameBegin();
[* Display the SM5 in all w ndows */
mav_SMSDi spl ay(mav_win_all, sns);
/* Request end of the frane */
mav_f rameEnd();

}

/* Mouse event callback */
int mouseEvent (MAV_obj ect *o, MAV_npbuseEvent *ne)

{
MAV_box *box;

/* Convert from generic Maverik object to the box object */
box= (MAV_box *) mav_obj ect Dat aGet (0);

if (me->movenment==MAV_PRESSED) { /* Only consider button presses */
box->si ze. x+=1.0; /* Make box a bhit bigger */

}

return 1;

}

/* Keyboard event callback */
int keyEvent (MAV_object *o, MAV_keyboardEvent *ke)

{
if (ke->movement==MAV_PRESSED) { /* Only consider button presses */
if (ke->key<255) { /* Only consider printable ASCI| characters */
printf("Pressed % (%)\n", ke->key, ke->key);
}
}
return 1,
}
int main(int argc, char *argv[])
{
MAV_box box;
MAV_obj ect *obj ;
MAV_SMS *snrs;

[* Initialise the Maverik system */
mav_initialise(&rge, argv);

/* Define a box object */
def Box( &ox) ;
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/* Register the box as a Maverik object */
obj = mav_obj ect New( mav_cl ass_box, &box);

/* Create a SMS */
sme= mav_SMSOhj Li st New() ;

/* Add object to SM5 */
mav_SMBChj ect Add(sns, ohj);

/* Use default nouse navigation */
mav_navi gati onMouse(mav_wi n_al |, mav_navi gati onMouseDefaul t);

/* Define nouse cal |l back */
mav_cal | backMouseSet (MAV_M DDLE BUTTON, mav_win_all, nav_class_box, nouseEvent);

[* Define keyboard event callback */
mav_cal | backKeyboar dSet (mav_win_al |, mav_class_world, keyEvent);

/* Rendering |oop */
while (1) drawFrame(sms);

Mouse and keyboard event callbacks are defined with the functions mav _cal | backMouseSet (MFS
p 127) and mav _cal | backKeyboar dSet (MFS p 126) respectively. Mouse event callbacks are defined
for a specific button, while keyboard event callbacks are defined for any key.

In addition, event callbacks are defined on a per-window and per-object-class, rather than per-object,
basis. This means that, for example, all boxes will share the same event callback function. This may
seem unusual at first, but it is a fundamental way in which MAVERIK deals with objects. It would be
trivial to implement a per-object event callback mechanism by having the per-object-class callback
function execute another function which was stored in the object’s data structure and setting this to be
a different function for different objects.

Setting the callback on a per-window basis allows for objects to respond differently to events in dif-
ferent windows (we shall see in Section 6.2.6 (page 64) how to open multiple windows). However,
here we use the “all windows” identifier mav Wi n_al | to set the event callback.

In this example a mouse event callback function (mouseEvent ) will be called for middle mouse button
events which occur while the mouse is pointing at any box.

The keyboard event callback function (keyEvent) is set for the primitive class mav cl ass wor | d.
Callbacks set for this class are activated when an event occurs anywhere in the window. Two similar
classes also exist: mav_cl ass_any and mav_cl ass_m ss. Respectively, these allow callbacks to be
defined for events which occur when the mouse is over any object, regardless of its class, and when
the mouse is over no object.

The callback functions take as their arguments the MAVERIK object which the mouse was over when
the event occurred, and a data structure which details the event. No attempt should be made to in-
terpret the MAVERIK object passed to the callback function set for the classes mav cl ass worl d,
mav_cl ass_any and mav_cl ass_mi ss.
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At this stage we will ignore the significance of the return value of the callback function, and return to
this in Section 4.3 (page 40).

The first action the mouse event callback function needs to perform is to convert the MAVERIK object
which it receives in its 0 argument, into the box object so it can operate on it. The function which
does this, mav _obj ect Dat aGet (MFS p 173), simply returns the object data pointer maintained by the
MAVERIK object. However, this is returned as a generic voi d pointer, rather than a pointer to a box
object, but since this callback will only be activated for MAVERIK objects which are of the box class
(observe how the callback was set), we can safely cast this pointer into a box object pointer.

The keyboard event callback function simply prints a message in the shell window indicating which
key was pressed. This data is the key field of the MAV_keyboar dEvent (MFS p 16) data structure
which details the event. Note that non-ASCII symbols, such as the pound and euro signs, may not
correctly interpreted.

4.2 Example 6: modifying the rendering loop

Now we have introduced some of the subtleties of event callbacks with a simple example, we return to
the “ground plane and objects” of Example 4 (page 29). We now allow the user to increase the radius
of a cylinder and scale of the composite object (the MAVERIK logo) by clicking on these objects with
the middle mouse button. The keyboard event function traps two key presses: ‘q’ which quits the
application and “h” which displays a help message.

The following is excerpted from eg6. ¢, and shows how the event functions are used:

/* eg6.c [excerpt] */
[ * code onmtted */

/* Mouse event for cylinders */
int cyl Event (MAV_obj ect *obj, MAV_npbuseEvent *ev)

{
MAV cylinder *cyl;

[* Convert fromgeneric Maverik object to a cylinder object */
cyl = (MAV_cylinder *) mav_object Dat aCGet (0bj);

if (ev->novenent==MAV_PRESSED) { /* Only consider button presses */
cyl->radi us+=1; /* Increase cylinder radius */

}

return 1;

}

/* Mouse event for conposites */
int conpEvent (MAV_obj ect *obj, MAV_nmpuseEvent *ev)

{
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if (ev->novenent ==MAV_PRESSED) {
MAV_conposite *conp= (MAV_conposite *) mav_obj ect Dat aGet (obj);
/* Scale conmposite by a factor of 1.1 */
comp->natrix= mav_natrixScal eSet (conp->matrix, 1.1);

}

return 1;

}

/* Display a help nessage */
voi d hel pMsg(voi d *ignored)

{
mav_stringDisplay(mav_win_all, "Left nmouse button - navigate forward/ backward and yaw',
MAV_COLOUR BLACK, 0, -0.95, 0.90);
mav_stringDisplay(mav_win_all, "R ght nouse button - navigate up/down and left/right",
MAV_COLOUR BLACK, 0, -0.95, 0.83);
mav_stringDisplay(mav_win_all, "Mddle nouse click on cylinder - increase radius",
MAV_COLOUR BLACK, 0, -0.95, 0.76);
mav_stringDisplay(mv_win_all,
"M ddl e nouse click on conposite (Maverik | o0go) - increase scale",
MAV_COLOUR BLACK, 0, -0.95, 0.69);
mav_stringDisplay(mav_win_all, "h - help", MAV_COLOUR BLACK, 0, -0.95 0.60);
mav_stringDisplay(mav_win_all, "q - quit", MA_COLOUR BLACK, 0, -0.95, 0.53);
}

/* Keyboard event */
int keyEvent (MAV_object *obj, MAV keyboardEvent *ke)

{
switch (ke->key) {
case 'q': [* Qit */
exit(l);
break;
case 'h': [* Help */
i f (ke->movenent ==MAV_PRESSED)
{
/* Begin executing function hel pMsg at the end of each frame */
mav_franeFn3Add( hel pMsg, NULL);
}
el se
{
/* Stop executing function hel pMsg at the end of each frane */
mav_f rameFn3Rmv( hel pMsg, NULL);
}
break;
}
return 1,
}
int main(int arge, char *argv[])
{

[* code omtted */
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/* Define nouse event callbacks */
mav_cal | backMouseSet (MAV_M DDLE BUTTON, mav_win_all, nav_class_cylinder, cylEvent);
mav_cal | backMouseSet (MAV_M DDLE BUTTON, mav_win_all, nav_class_conposite, conpEvent);

[* Define keyboard event callback */
mav_cal | backKeyboar dSet (mav_win_all, mav_class_world, keyEvent);

[* code omtted */

This example shows how we can modify the rendering loop by dynamically adding and removing
application-defined functions which are executed at various stages in the rendering loop.

Rendering a frame can be broken down into 3 phases:

e Phase 1: before the window is cleared and the view for the frame is fixed:;
e Phase 2: the window is now cleared, the view is fixed, but no objects have yet been drawn;

e Phase 3: all objects have now been drawn and the frame is complete, but the buffers have not
yet been swapped.

The functions mav _f rameFn1Add (MFS p 136) and mav _f rameFn1Rmv (MFS p 136) respectively add
and remove functions to be executed at phase 1; there are corresponding functions for the other ren-
dering phases, named mav _f r ameFnNAdd (where Nis 1, 2 or 3). There is no limit on the number of
functions which can be added to each phase. The second argument to mav _f raneFnNAdd is not in-
terpreted by MAVERIK, rather it forms the single parameter to the application defined function thus
allowing data to be passed into the function. This feature is not used in this example.

Example 6 adds the function hel pMsg to be executed at phase 3 when the ‘h’ key is pressed. When
that key is released the function is removed. hel pMsg prints a help message on screen using the
function mav _stringDi spl ay (MFS p 208) which takes as its arguments the window on which it
acts, the string to display, the colour and font to use and where to position the text. This text is not a
3D object in the world, but rather “annotation text” overlayed on the 2D window. The position of the
string is given as an x,y position where (—1,—1) maps to the bottom left of the screen and (1,1) to
the top right.

Note that either of phases 2 or 3 would suffice to display this message, but if phase 1 was used nothing
would have been displayed since the message would have been rendered before the window was
cleared.

4.3 Example 7: advanced event handling

We now extend Example 6 to demonstrate more advanced event handling and the use of so-called
“process-based” callbacks. This term refers to callbacks which perform arbitrary operations on objects
— it does not refer to “processes” in the Unix sense of the word.
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The following code is excerpted from eg?7. c.

I* eg7.c [excerpt] */

[* code omitted */

MAV natrix *obj Mat1l, *obj Mat2;
float objDist;

int fc=0;

/* Function to nmake object junp */
voi d junp(void *ignored)

{
/* Increase Y conponent of matrix by an ammount which ranges
+4 to -4 over 60 interactions */
obj Mat 1- >mat [ MAV_MATRI X_YCOWP] +=cos( MAV_DEG2RAD( f ¢*3. 0)) *4. 0;
/* Stop executing this function after 60 frames */
fc++;
if (fc>60) {
fc=0;
mav_frameFnlRmv(junp, NULL);
}
}

/* Function to drag object with nouse */
voi d pick(void *ignored)
{

MAV_vect or pos;

[* Calculate the position of a point a distance objDist away fromthe eye along */
/* the nornalized vector defined by the eye point and the mouse’s projection */

/* onto the near clip plane (this is mav_mouse dir) */

pos= mav_vect or Add(mav_wi n_current->vp->eye, mav_vectorScal ar(mav_nouse dir, objDist));

[* Set the object’s matrix to this position */
*obj Mat 2= mav_mat ri xXYZSet (*obj Mat 2, pos);
}

/* Keyboard event */
int keyEvent (MAV_object *obj, MAV keyboardEvent *ke)
{

MAV_surfaceParans **spptr;

switch (ke->key) {
case 'q': [* Qit */
exit(1);
br eak;

case 'h': [* Help */
if (ke->nmovenent ==MAV_PRESSED)
{
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/* Begin executing function hel pMsg at the end of each frame */
mav_franeFn3Add( hel pMsg, NULL);
}

el se

{
/* Stop executing function hel pMsg at the end of each frame */
mav_f rameFn3Rmv( hel pMsg, NULL);

}

break;

}

[* Only consider event if the nouse was pointing at an object */
if (ke->intersects) {
if (ke->movenent==MAV_PRESSED) { /* Only consider button press event */
switch (ke->key) {
case 'd': /* Delete an object */
mav_obj ect Del et e( ke- >obj ) ;
br eak;

case 'b': /* Increase size of box */
[* Ensure object is a box */
i f (mav_object d assGet (ke->obj)==mav_cl ass_box)
{
/* Convert from generic Maverik object to a box object */
MAV_box *box= (MAV_box *) mav_obj ect Dat aCet (ke->obj ) ;
box->si ze. x+=0.5; /* Increase size of box */

}

el se

{
printf("Cbject is not a box\n");

}

break;

case 'c¢': /* Change colour */
if (mav_cal | backGet SurfaceParansExec(mav_wi n_current, ke->obj, &spptr)) {
[* Get a ptr to the surfaceParnmas field of the object */
*spptr= sp[(int) (mav_randonm()*4)]; /* Set it to some random val ue */

}

break;

case 'j': /* Make object junp */
if (fc==0) { /* Only if sonething is not currently in flight */
[* CGet a ptr to the matrix field of the object */
if (mav_cal | backGet Matri xExec(mav_wi n_current, ke->obj, &objMtl)) {
/* Begin executing function junp at the start of each frane */
mav_f rameFnlAdd(j unp, NULL);
}
}
br eak;
}
}

switch (ke->key) {
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case 'p': /* Pick object */
i f (ke->movenent==MAV_PRESSED)
{
[* Get a ptr to the matrix field of the object */
if (mav_cal | backGet Matri xExec(mav_wi n_current, ke->obj, &objMt2)) {
/* Remenber distance fromeye to object intersection */
obj Di st= ke->objint.ptl;
/* Begin executing function pick after the view has been set */
mav_franmeFn2Add(pi ck, NULL);

}
}

el se

{

/* Stop executing function pick after the view has been set */
mav_frameFn2Rmv(pi ck, NULL);

}

break;

}
}

return 1;
} I* keyEvent */

int main(int argc, char *argv[])

{

/* code omtted */

/* Create an SM5 for the ground plane and add rectangle object to it */
groundPl ane= nmav_SMSQhj Li st New() ;
mav_SMBChj ect Add( groundPl ane, nmav_obj ect New( mav_cl ass_rectangl e, &gp));

/* Make objects in groundPl ane SM5 unsel ectable to keyboard and nouse event */
mav_SMSSel ect abi | i tySet (groundPl ane, mav_win_all, MA_FALSE);

[* code omtted */

Recall that the keyboard event callback is registered for the mav _cl ass_wor | d class and as such the
MAVERIK object passed to the callback function should not be interpreted. However, stored in both
the keyboard and mouse event data structures is the object which the mouse was over when the event
occurred. This information is stored in the obj field of the data structure along with i nt ersects
which indicates if the cursor was pointing at an object.

In Example 7, pressing the ‘d’” key deletes the object the mouse is pointing at. This is achieved by
calling mav _obj ect Del et e (MFS p 175) which removes the object from any SMS’s which it is in
before deleting the object.

By default, any object which is in an SMS can activate the event callbacks. However, an SMS can
be set to be “non-selectable” and objects in such an SMS will not trigger event callbacks if the
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mouse was pointing at them. So, by having multiple SMS’s an application can maintain groups of
objects which are selectable, and groups which are not. Example 7 uses two SMS’s: one for the
ground plane, and one for the remaining objects. The SMS containing the ground plane object is set
to be non-selectable and so pointing at this object will not trigger keyboard and mouse events. Note:
setting the selectability of an SMS also determines whether it is searched in the functions which check
whether a line or bounding box intersect any objects — mav_SMSI nt er sect Li neAl | (MFS p 289) and
mav_SMSI nt er sect BBAI | (MFS p 287) respectively.

Pressing ‘b’ increases the size of a box. This is similar to Example 5 (page 35) except that now we
first have to ensure that the object pointed to by the mouse really is a box. This is achieved with the
function mav_obj ect d assGet (MFS p 172) which returns the class of an object.

4.3.1 Process-based callbacks

The ‘¢’ key changes the set of surface parameters which are used to render the object which the mouse
is pointing at. All of the default MAVERIK primitives have this field, named sp, in their data structure.
The problem is: how can we access this field when we only have a generic MAVERIK object to work
with?

One way would be to have a large switch statement which checked the class of the MAVERIK object
(using the function described above for the ‘b’ key) and then casts the data portion of the MAVERIK
object to be the data structure appropriate for this type of primitive, thus allowing direct access to the
required field.

Alternatively, it could be arranged that for each class of object there was a function which returned
a pointer to its surface parameters field (a pointer being more useful since it can be used to change
the value stored in the data structure). The function would take as input a MAVERIK object, cast the
data portion of this to be the relevant data structure for the class of object and return a pointer to the
required field. Furthermore, if this function was accessible via the MAVERIK class data structure, then
there is enough information encapsulated in a MAVERIK object to execute the relevant function and
gain access to the surface parameters field.

While appearing overly complicated at first, the second method is, in fact, preferable since it allows
for new classes of objects to be seamlessly added. (Using the first method you would have to extend
the switch statement to accommodate the new class). The ability to add new classes of objects is a
key aspect of MAVERIK and we show how this is performed in Chapter 7.

Essentially this is a callback mechanism and it can be thought of as being analogous to the event-
based callbacks introduced earlier in this chapter. To distinguish between the two, we call the type
of callback just introduced “process-based” since they perform an arbitrary processing operation on a
object — such as accessing a specific data field. A conceptual difference between the two is that event-
based callbacks are executed by MAVERIK, whereas process-based callbacks are explicitly invoked
by the application itself. However, this does not prevent them being implemented with the same
mechanism.

The function mav_cal | backGet Sur f acePar anmsExec (MFS p 263) executes the “get surface param-
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eters” process-callback on an object. Its full prototype is:

int mav_cal | backGet Sur f acePar ansExec( MAV_wi ndow *w, MAV object *o,
MAV_surfaceParans ***sp);

Let’s break this function prototype down into each parameter.

The first argument, w, is a MAVERIK window and indicates which window the callback is being
executed for. This seems very strange at first, but recall from earlier in this chapter that event-based
callbacks are defined on a per-window and per-object class basis (thus allowing objects the ability to
respond to mouse event differently in different windows). And, as the two different types of callback
are implemented by the same mechanism, process-based callbacks are also defined on the same basis.
That said, the authors cannot envisage the case where, for example, the “get surface parameters”
callback function would be implemented differently in different windows!

The second argument, o, is the MAVERIK object in question.

The third argument is a triple pointer to a MAVERIK surface parameters data structure — actually, it’s
the address of a pointer to the required field in the data structure. Put another way, recall that a pointer
to the desired field in the data structure is required so that its value can be set. Unfortunately, the
required field is itself a pointer, and so a pointer to this pointer is needed. Furthermore, this value can
not be passed back as the functions return value since that is used for another purpose (see below).
Therefore, the only option is to pass into the function the address of a pointer to the required field so
that the function can set the contents of this address to be the appropriate value. Hopefully, its use in
Example 7 (summarized below) will help clarify this:

MAV_surfaceParans **spptr;
if (mav_cal | backGet SurfaceParamsExec(mav_win_current, ke->obj, &spptr)) {
*spptr= sp[(int) (mav_randon()*4)]; /* Set it to some random val ue */

Note the use of the “current window” handle mav_wi n_cur rent to specify the window the callback is
being executed for. Virtually all process-based callbacks are executed in this manner.

The return value of this function call is MAV_TRUE or MAV_FALSE and indicates if the callback was
successful. There are two reasons why the execution of a callback can fail: either there is no callback
function provided for this class of object, or the callback function could not successfully complete the
operation for some reason.

The ‘j” key makes the object pointed at “jump in the air”. This is achieved by using the “get matrix”
process-based callback to obtain a pointer to the transformation matrix of the object under the cursor.
The Y position component of this matrix is then manipulated by a mav_f rameFnl function to move
the object vertically up 4 units and then back down by the same amount over 60 consecutive frames.
One point worth noting in the implementation of this is that the frame function automatically removes
itself after the 60 frames have elapsed.

Holding down the ‘p’ key allows the user to drag an object around the scene with the mouse.
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In order to describe how this is achieved we have to introduce the concept of the mouse’s 3D world
position. While the desktop mouse is intrinsically a 2D device, its position can be mapped onto the
near clip plane to give it a 3D position in the world. A vector can be defined using the eyepoint and
this position. It is the intersection of any objects with this vector thats allows MAVERIK to determine
if the mouse is pointing at any object. This vector turns out to be very useful and so is calculated by
MAVERIK at the start of each frame and stored in the global variable mav _nouse dir.

Back to moving objects around. When the key press event occurs, the distance from the eye to the first
point of intersection on the objects surface is noted. This value, pt 1, is part of the MAV_obj ect | nt er secti on (MFS
p 78) data structure, obj i nt, which itself is part of both the keyboard and mouse event data struc-
tures. In addition, the “get matrix” process-based callback is executed on the selected object and a

mav_f r ameFn1l function is added.

This function sets the positional part of the transformation matrix so that the object is maintained at
the noted distance from the eyepoint along the vector described above.

When the ‘p” key is released the frame function is removed and the object stops following the cursor.



Chapter 5

Viewing and navigation

So far the examples have used the default viewpoint and mouse navigation. In this chapter we will
show how an application can override these defaults and specify its own.

5.1 View parameters

The MAVERIK viewing model is based on the standard computer graphics viewing model, where the
application defines:

e an eyepoint — the position of the eye in world coordinates;
e aview direction — a normalized vector indicating the direction of view from the eyepoint;

e the view up — a normalized vector defining the viewer’s “up” direction.
In addition, an application also needs to define the following:

o the World up (or fixed up) vector — a normalized vector indicating the direction of the World
“up” direction. This is not actually used to define the view but needed by the default navigation.

o the view modifier function — the meaning of which can be ignored for now (it is described in
Chapter 11.2 (page 116)) but we need to mention it because its value must explicitly be set to
NULL.

Collectively, all the above data is called the “view parameters” and are stored in the MAV_vi ewPar ans (MFS
p 36) data structure:

typedef struct {

47
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MAV vector eye; /* eyepoint */

MAV_vector view /* view direction vector */
MAV_vect or up; /* view up vector */

MAV vector fixed up; /* world up vector */

MAV_vi ewhbdi fierFn mod; /* view nodifier function */
} MAV_vi ewPar arns;
The data structure actually contains additional fields, but we’ll ignore them for now.

We’ll describe how to define the parameters for a perspective view (the horizontal and vertical fields
of view), in Chapter 6.

Each MAVERIK window has an associated set of view parameters which, by default, is mav _vp_def aul t
which is:

eye= (0, 0, 10); /* eye on the positive z-axis... */

Vi ew (0, 0, -1); [* ...looking down z-axis towards origin */
up= (0, 1, 0); [* "up" direction parallel to world y-axis */
fixed_up= (0, 1, 0); [* "world up" is world y-axis */

mod= NULL; /* no view nodifier function */

A window can be associated with a different set of view parameters with the function
mav_w ndowVi ewPar ansSet (MFS p 241):

voi d mav_w ndowvi ewPar ansSet ( MAV_wi ndow *w, MAV_vi ewParans *vp);

where w is the window in question and vp a pointer to the view parameters to use. (Since a pointer
is used the window does not need to be notified if the values of the view parameters subsequently
change).

A pointer to the view parameters associated with a window is held in the vp field of the MAV_w ndow (MFS
p 94) data structure.

Example 8 (eg8. c) modifies Example 7 (page 40) to define a set of view parameters, and to associate
them with all windows, as follows:

MAV_vi ewPar ans vp;

[* Define initial view paraneters */
vp. eye. x= 0; /* Eyepoint */

vp. eye.y= 25;

vp. eye. z= 200;

vp. vi ew. x= 0; /* View direction */
vp. view y= 0;
vp. view z= -1,
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vp. up. x= 0; I* View up direction */

vp. up.y= 1,
vp. up. z= 0;

vp.fixed_up= vp.up; /* World up direction */
vp. mod= NULL; /* No view nodification required */

/* Use these view paraneters in all windows */

mav_wi ndowVi ewPar ansSet (mav_win_all, &vp);

The keyboard event callback has been modified in this example to trap the ‘r’ key which will reset the
view parameters to their initial values as follows:

MAv_Wi n_current - >vp- >eye. x= 0; [* eyepoint */
mav_Wi n_current->vp- >eye. y= 25;
mav_wi n_current->vp- >eye. z= 200;

mav_win_current->vp->view. x= 0; /* View direction */
mav_W n_current->vp->vi ew. y= 0;

mav_W n_current->vp->vi ew. z= -1;

mav_wi n_current->vp->up. x= 0; /* View up direction */

mav_W n_current->vp->up.y= 1,
mav_wi n_current - >vp->up. z= 0;

Note how the values are set since the view parameters data structure (vp) is defined in the nai n routine
and hence is not visible to the keyboard callback routine.

5.2 Navigation

We saw in Example 3 (page 26) how default mouse navigation was invoked using the function
mav_navi gat i onMouse (MFS p 168):

mav_navi gati onMouse(nmav_win_all, nav_navi gationMuseDefaul t);
Related to this is the function mav _navi gat i onMbuseDef aul t Par ams (MFS p 170):

voi d mav_navi gati onMouseDef aul t Par ans( MAV_wi ndow *w, int but,
MAV navigatorFn x, float xls, float xas,
MAV navigatorFn y, float yls, float yas);

which controls the default mouse navigation.
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wand but respectively specify the window and mouse button. The remaining arguments are two sets
of three values, the first set for horizontal (or x) mouse movement, the second for vertical (or y). The
three arguments in each set are:

e X (and y): a navigator function to perform the type of navigation required (described below).

e x| s (and yl s): the scaling factor to convert from pixels into application units in order to apply
linear movements.

e xas (and yas): the scaling factor to convert from pixels into radians in order to apply angular
movements (this is usually independent of the application).

For example, the following defines navigation triggered by the left mouse button. Horizontal move-
ments of the mouse yaws the view; and vertical movement moves the view forward:

mav_navi gat i onMouseDef aul t Parans(mav_win_al |, MAV_LEFT BUTTON,
mav_navi gateYaw, 0.002, -0.0001,
mav_navi gat eForwar ds, 0.002, 0.0001);

A vertical mouse movement of 100 pixels equates to the eyepoint moving 0.2 (100 x 0.002) applica-
tion units forwards.

Note that as is negative for mav_navi gat eYaw. This is because a right-handed coordinate system is
assumed which implies that a positive yaw will rotate the view to the left. This is the opposite to what
is required, and so a negative scaling factor is used to compensate.

Section A.3 describes how the linear scaling factor can be changed at run-time.

5.2.1 The default navigator functions

This section lists all the default navigator functions in MAVERIK. See Chapter 8 (page 93) for details
of how to create your own customised navigators.

The scaling factor applicable to each navigator function is shown in brackets at the end of the descrip-
tion. All the navigator functions implemented so far use either | s or as but never both (however, it is
conceivable that a navigator function could be written which does).

mav_navi gat eNul | does nothing.

mav_navi gat eTr ansX translates the eyepoint along the world x-axis (I s).

mav_navi gat eTransY translates the eyepoint along the world y-axis (I s).

mav_navi gat eTr ansZ translates the eyepoint along the world z-axis (I s).
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e mav_navi gat eRot Ri ght rotates the view direction vectors and the eyepoint about the view
right vector (as). The center of rotation is defined by mav_nav _cent er which defaults to the
origin.

e mav_navi gat eRot Up rotates the view direction vectors and the eyepoint about the view up
vector (as). The center of rotation is defined by mav_nav _cent er which defaults to the origin.

e mav_navi gat eRot Fi xedUp rotates the view direction vectors and the eyepoint about the fixed
view up vector (as). The center of rotation is defined by mav _nav _cent er which defaults to the
origin.

e mav_navi gat eFor war ds moves the eyepoint forwards along the view direction vector (I s).

e mav_navi gat eFor war dsFi xedUp moves the eyepoint along the projection of the view vector
onto the plane normal to the global up vector (I s).

e mav_navi gat eUp moves the eyepoint along the view up vector (I s).
e mav_navi gat eUpFi xedUp moves the eyepoint along the global up vector (I s).
e mav_navi gat eRi ght moves the eyepoint along the view right vector (I s).

e mav_navi gat eRi ght Fi xedUp moves the eyepoint along the projection of the view right vector
onto the plane normal to the global up vector (I s).

e mav_navi gat eRol | rotates the view vectors about the view direction vector (as).
e mav_navi gat ePi t ch rotates the view vectors about the view right vector (as).

e mav_navi gat ePi t chFi xedUp rotates the view vectors about the projection of the view right
vector onto the plane normal to the global up vector (as).

e nmav_navi gat eYaw rotates the view vectors about the view up vector (as).
e mav_navi gat eYawFi xedUp rotates the view vectors about the world up vector by an amount
(as).

The default mouse navigation parameters are internally set within MAVERIK with the calls:

mav_navi gat i onMouseDef aul t Parans(mav_win_al |, MAV_LEFT BUTTON,
mav_navi gat eYawri xedUp, 0.001, -0.00005,
mav_navi gat eFor war dsFi xedUp, 0.001, 0.00005);

mav_navi gat i onMouseDef aul t Parans(mav_win_al |, MAV_RI GHT_BUTTON,

mav_navi gat eRi ght, 0.001, 0.00005,
mav_navi gateUp, 0.001, 0.00005);

The behaviour of the default mouse navigation is modified in Example 8 by the call:
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mav_navi gat i onMouseDef aul t Parans(mav_win_al |, MAV_RI GHT_BUTTON,
mav_navi gat eYawri xedUp, 0.001, -0.00005,
mav_navi gat ePi t chFi xedUp, 0.001, 0.00005);

so that the right mouse button yaws and pitches the view.

5.2.2 Keyboard navigation

Example 8 also uses keyboard navigation, the interface to which is very similar to that of mouse
navigation. Keyboard navigation is invoked using mav_navi gat i onKeyboar d (MFS p 164):

mav_navi gat i onKeyboard(mav_win_all, mav_navi gati onKeyboardDefaul t);

The default keyboard navigation gives you the following “Doom” style controls:

Cursor keys — navigate forwards/backwards and yaw;

Page up/down — navigate up/down;

Alt-Cursor left/right — sidestep left/right;

Alt-Page up/down — pitch view up/down;

Holding down “shift” doubles the rate of movement.
Control of the default keyboard navigation is more limited that the mouse variety since you can’t
redefine the actions taken by the various keys.

The function mav_navi gat i onKeyboar dDef aul t Par ans (MFS p 167):

voi d mav_navi gati onKeyboar dDef aul t Par ams( MAV_wi ndow *w, float am float |Is, float as);

allows you to define the linear and angular scaling factors (I s and as) used by the default keyboard
navigation. The value amcan be thought of as the amount of movement a key gives (this value is
multiplied by the appropriate scaling factor to give the true movement). Setting amto 50 (its default
value) makes a navigation function invoked by the keyboard equivalent to it being invoked by 50
pixels of mouse movement.

5.3 User-defined data

Example 8 demonstrates a method of associating application-specific data structures with the standard
MAVERIK object.
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Recall that each MAVERIK object has a void pointer field, user def , in its data structure. As the name
suggests, this is a user-definable field that an application is free to use as it wishes — MAVERIK never
interprets it. Typically, an application will use this field to point to its own data structures.

In this example a unique number is associated with each box in the scene as follows:

/* Application specific data structure */
typedef struct {

int no;
} MyStruct;

/* Define a box */
voi d def Box(MAV_box *b, int no)

{
[* Create and fill in application specific data structure */
MyStruct *ms= (MyStruct *) mav_mal | oc(si zeof (MyStruct));
M- >N0= No;

/* code omtted */

/* Set userdef part to point to application-specific data structure */
b->user def = ns;

The boxes are then created in mai n with:
def Box(&box[i], i);

where i is the loop counter.

This number is obtained in the keyboard event callback trap which increases the size of the box (the
‘b” key):

/* Convert from generic Maverik object to a box object */
MAV_box *box= (MAV_box *) mav_obj ect Dat aCGet (ke->obj ) ;

/* Get application specific data structure */
MyStruct *ms= (MyStruct *) box->userdef;

/* Increase size of box */
box- >si ze. x+=0. 5;

/* Print contents of application specific data structure */
printf("box nunber %\n", ns->no);
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Chapter 6

Miscellaneous Level 1 topics

We’ve now come to the end of the worked examples for the MAVERIK Programming Level 1 section
of this manual. This chapter describes various miscellaneous concepts and function calls that a Level
1 programmer will need to know about, but which have not been covered by the worked examples. For
example: changing the background colour; defining materials; opening multiple windows; and stereo
viewing. Some of these ideas and functions are demonstrated by undocumented examples which can
be found in the various sub-directories of the exanpl es/ m sc directory of the MAVERIK distribution.

This chapter should be considered as an appendix or reference section to Programming Level 1. Some
repetition of the material in the earlier chapters is inevitable.

6.1 Rendering

In this section we describe the MAVERIK functions and datatypes used to control object rendering.
The MAVERIK rendering model is very similar to the OpenGL rendering model, and we assume that
the reader is familiar with the OpenGL approach (if not, please refer to OpenGL documentation).

6.1.1 Rendering palettes

The way in which an object is rendered is controlled by its “surface parameters”, which index into a
rendering palette. By default, MAVERIK uses a single rendering palette, called mav _pal et t e _def aul t,
which is created and initialised by mav_i ni tial i se.

A palette contains an ambient light specification, a light table, a colour table, a materials table, a
texture table and a font table.

Each MAVERIK window is associated with a palette, and when the window is first created, it automat-
ically becomes associated with mav_pal ette_defaul t .

55
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An application can define a new palette using mav _pal et t eNew (MFS p 283):

MAV_pal ette *mav_pal et t eNew(voi d);

and can associate a palette p with a window wusing mav_w ndowPal et t eSet (MFS p 292):

voi d mav_w ndowPal et t eSet (MAV_wi ndow *w, MAV palette *p);

Upon creation the contents of the palette are undefined. A palette supports a maximum of mav _opt _maxCol our s
colours, mav_opt _maxMat er i al s materials, mav_opt _maxText ur es textures, mav _opt _maxFont s fonts

and nmav_opt _maxLi ght s lights. The default for these values, 150, 150, 150, 10 and 5 respectively,

can be changed before MAVERIK is initialised but they must not be modified afterwards.

6.1.2 Surface parameters

An object’s surface parameters refer to entries in the palette associated with the window in which
the object is rendered. Surface parameters are encoded in the MAV_sur f acePar ans (MFS p 29) data
structure. Each object stores a pointer to a MAV_sur f acePar ans data structure, which allows several
objects to share a common set of surface parameters:

typedef struct {
int node; /* rendering nmode */
int colour; /* em ssive col our */
int mterial; /* anbient, diffuse and specular material */
int texture; /* texture map */
} MAV_surfacePar ans;

The way the fields are interpreted depends on node, as follows:

mode = MAV_COLOUR: the object has a uniform emissive colour, obtained from palette colour table
entry col our.

mode = MAV_MATERI AL: the object has ambient, diffuse, specular and emissive surface material prop-
erties, obtained from palette material table entry materi al .

mode = MAV_TEXTURE: the object has a texture mapped onto its surface, obtained from palette texture
table entry t ext ure.

mode = MAV_LI T_TEXTURE: the object has a texture mapped onto its surface, which is also lit as
specified for MAV_VATERI AL mode. Both the palette material table entry mat eri al , and the
palette texture table entry t ext ur e are used.
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nmode = MAV_BLENDED_TEXTURE: the object has a colour which is an interpolation between the mate-
rial and texture colours, governed by the alpha value of the texture. When alpha = 0, colour=
material; when alpha = 1, colour = texture. Both the palette material table entry mat eri al , and
the palette texture table entry t ext ur e are used.

An example program showing the different texture rendering modes can be found in the t ext ures
sub-directory of the miscellaneous examples.

To create a new set of surface parameters, use mav_surf acePar amsNew (MFS p 210), which for
convenience also sets the initial values:

MAV_surfaceParanms *mav_surfaceParanmsNew(int node, int col, int mat, int texture);

For example,
box. sp= mav_surfacePar amsNew( MAV_COLOUR, 5, 0, 0);

creates and assigns to box. sp a new set of surface parameters which specify that the object is to
be rendered using MAV_COLOUR mode, using palette colour index 5. In this example, the irrelevant
material table and texture table indexes are set to 0.

6.1.3 Defining colours, materials and textures

An emissive colour is defined using four floats, each in the range 0-1, for the red, green, blue and
alpha (RGBA) components, using mav_pal et t eCol our Set (MFS p 180):

voi d mav_pal ett eCol our Set (MAV_pal ette *p, int index, float r, float g, float b, float

The alpha component is used to define the “transparency” of a colour, i.e. how much of the underlying
RGB colour is visible through the defined RGB colour. An alpha value of zero makes the colour fully
transparent, a value of one makes it fully opaque and fractional values cause the resultant colour to be
a blending of the underlying colour with the defined colour. N.B. In order for transparency to work
correctly the option variable mav_opt _t rans must be set to MAV_TRUE before MAVERIK is initialised.

A material has four sets of RGBA values for the ambient, diffuse, specular and emissive components
plus a value for its “shininess”, set using mav _pal ett eMat eri al Set (MFS p 186):

void mav_pal etteMaterial Set (MAV_pal ette *p, int index,
float ar, float ag, float ab, float aa,
float dr, float dg, float db, float da,
float sr, float sg, float sh, float sa,
float er, float eg, float eb, float ea,
float shin);
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Texture maps are defined from file using nmav_pal et t eText ureSet (MFS p 193):

int mav_pal etteTextureSet (MAV_palette *p, int index, char *filename);

MAVERIK itself only supports the PPM (raw or ASCII encodings) and PNG? file formats for textures.
However, MAVERIK can use the ImageMagick convert program, if installed, to convert almost any
other image file format into PPM or PNG and then parse that. This conversion process is hidden from
the user so that MAVERIK appears to support virtually all image file formats. Furthermore, MAVERIK
uses ImageMagick’s convert program to resize the image, if needed, so that it is an integer power of
2 in both width and height — a requirement placed on texture images by OpenGL.

To use this feature you must ensure that the PATH environment variable is set such that the convert
program is picked up.

6.1.4 Texture manipulation

mav _pal et t eText ur eSet Fr omvem(MFS p 194) defines a texture map from an area of memory rather
than a file, to allow the procedural generatation of textures:

int mav_pal etteTextureSet Fromven( MAV pal ette *p, int index, int width, int height,
unsi gned |ong *nen);

where memis ABGR ordered.

The mipmapping of textures is controlled by the global option variable mav _opt _m pmappi ng (which
is MAV_FALSE by default) and by the function mav _pal ett eText ureM pmappi ngSet (MFS p 192)
which overrides the global default for a specific texture:

voi d mav_pal ett eText ureM pmappi ngSet (MAV_pal ette *p, int index, int v);

where v is set to either MAV_TRUE or MAV_FALSE to enable or disable mipmapping respectively. If a tex-
ture is to be mipmapped then this must be specified before it is defined with mav _pal et t eText ur eSet
or mav_pal et t eText ur eSet Fromvem Once defined with mipmapping enabled, this function can be
used to specify if a texture is mipmapped when rendered. An example of mipmapping can be found
in the t ext ur es sub-directory of the miscellaneous examples .

mav_pal ett eText ur eAl phaSet (MFS p 188) sets the alpha component of a texture to be some value.
This allows for transparent textures:

voi d mav_pal ett eText ureAl phaSet (MAV_pal ette *p, int index, float a);

1PNG support must be specified when MAVERIK is compiled and the PNG and zlib libraries must be installed.
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mav_pal et t eText ur eCol our Al phaSet (MFS p 189) is similar to the above but only sets the alpha
for pixels whose colourisr, g, b:

voi d mav_pal ett eText ur eCol our Al phaSet (MAV_pal ette *p, int index,
int r, int g, int b, float a);

This gives textures, portions of which are transparent. Since r, g, b are used in a comparison test they
are ints in the range 0-255 rather than floats.

Typically you would make a texture with the portions you wish to be transparent to be, say, black and
then use this function to set the alpha component of that colour.

A texture environment is a set of parameters governing how textures are applied. Specially it covers
how minification and magnification of the texture is to be performed and if texture coordinates are
clamped or repeated. These are separate issues from whether the texture is applied decal or modulating
the underlying colour.

Rather than try to cater for all the possible combinations, MAVERIK relies on the application to define
a callback function to set the relevant texture environment for the texture. The callback function
is called each time a texture is rendered. mav_pal etteText ureEnvPal etteSet (MFS p 190) and
mav_pal ett eText ur eEnvSet (MFS p 326) sets this callback function on a per-palette and per-texture
basis.

voi d mav_pal ett eText ureEnvPal etteSet (MAV_pal ette *p, MAV_texEnvFn fn);
int mav_pal etteTextureEnvSet (MAV pal ette *p, int index, MAV_texEnvFn fn);

A callback set for a texture takes precedence over one defined for a palette. When a palette is created it
has a default per-palette callback defined for it and when textures are created they have no per-texture
callback defined. The default per-palette callback implements the common texture environment of
repeating texture coordinates and using linear interpolation to perform minification and magnification.

6.1.5 Defining fonts

A font is defined using the function nmav _pal et t eFont Set (MFS p 181):

voi d mav_pal ett eFont Set (MAV_pal ette *p, int index, char *s);

where p and i ndex have the usual meaning and s is a string defining the X font to use. X fonts have a
cryptic, but logical, naming scheme. Look at the f ont s sub-directory of the miscellaneous examples
to see this function in action. The names of the X fonts available on your machine can be found with
the standard xf ont sel program.



60 CHAPTER 6. MISCELLANEOUS LEVEL 1 TOPICS
6.1.6 Defining lights

Material definitions only make sense if the scene is lit. MAVERIK provides the following default light
and lighting model:

e Lighting model: RGBA (0.4, 0.4, 0.4, 1.0) using a local viewer;

e Light: ambient (0,0,0,1), diffuse (1,1,1,1), specular (1,1,1,1), positioned at (100, 150, 150).

An application can redefine the lighting model using mav_pal et t eLi ght i nghbdel Set (MFS p 182):

voi d mav_pal etteLi ghti nghbdel Set (MAV_pal ette *p, float ar, float ag, float ab, float aa,
int local);

which takes as its parameters the ambient RGBA value for the scene and an indication of whether to
use local, as opposed to infinite, viewer lighting calculations.

The definition of a light source specifies RGBA values for the ambient, specular and diffuse compo-
nents, via mav_pal et t eLi ght Set (MFS p 185):

voi d mav_pal ettelLi ght Set (MAV_pal ette *p, int index,
float ar, float ag, float ab, float aa,
float dr, float dg, float db, float da,
float sr, float sg, float sh, float sa);

Lights are positioned using a vector to define their location using mav _pal ett eLi ght Pos (MFS
p 183):

voi d mav_pal etteLi ght Pos(MAV_pal ette *p, int index, MAV_vector pos);

The function mav_pal et t eLi ght Posi ti oni ng (MFS p 184) defines whether this position is relative
to the eye point or is in world coordinates:

voi d mav_pal ettelLi ght Positioning( MAV pal ette *p, int index, int pos);

If pos is set to MAV_LI GHT_RELATI VE (the default) the position is relative to the eye point, and sub-
sequently follows it, to give a car-headlight effect. Setting pos to MAV_LI GHT _ABSOLUTE specifies the
position is in world coordinates to give the effect of a light at a fixed position in the model.

An example of positioning lights can be found in the I'i ghts sub-directory of the miscellaneous
examples.
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6.1.7 Finding an empty or matching palette index

Functions exist for obtaining an empty (i.e. unused) index for the various components in a palette.
For example, mav _pal et t eCol our | ndexEnpt yGet (MFS p 177):

int mav_pal etteCol our | ndexEnpt yGet (MAV _pal ette *p);

returns an empty colour index in the supplied palette. I1f no empty index can be found, -1 is returned
and a warning message printed to st derr .

Similar functions exist, described in the MFS on the same page as the above function, for returning
empty indices for the other components of a palette.

A matching colour index in a palette can be found by using mav _pal et t eCol our | ndexMat chCGet (MFS
p 178):

int mav_pal etteCol our I ndexVat chGet (MAV_pal ette *p, float r, float g, float b, float a);

which returns the index of a colour which matches the supplied values, or -1 if no match can be found.
As above, similar functions exist for the other components of a palette.

6.2 Windows

6.2.1 Specifying a perspective view

So far, we have discussed the viewing parameters which describe the application’s view of the virtual
environment. In order to display this view in a window we also need to define how that view is
projected onto the screen to give the final scene. Using the standard analogy of a camera, we not only
need to position the camera but to also decide which type of lens to use.

In common with most graphics systems, MAVERIK makes a distinction between the processes of
defining the view and defining how that is projected onto the screen. The most common type of
projection is a perspective projection, which is specified using mav _wi ndowPer spect i veSet (MFS
p 236):

voi d mav_w ndowPer spect i veSet (MAV_wi ndow *w, float ncp, float fcp, float fov,
float aspect);

This function defines a perspective projection for window wwith near clip plane distance ncp, far clip
plane distance f cp, a vertical field of view f ov and aspect ratio aspect . f ov is defined in degrees and
is in the range [0-180]. To give a distortion-free projection, aspect should match the aspect ratio of
the window.
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The figure below shows how these parameters are used (please refer to the standard OpenGL docu-
mentation if you are unfamiliar with the terms).

Near clip plane distance

Far clip plane distance

The default values are:

ncp= 0.1,

fcp= 1000. 0;

fov= 60;

aspect = sane as the wi ndow

Section A.3 describes how the perspective view parameters can be changed at run-time.

6.2.2 Specifying an orthogonal view

An orthogonal projection is specified using mav_wi ndowQr t hogonal Set (MFS p 235):

voi d mav_w ndowOrt hogonal Set (MAV_wi ndow *w, float ncp, float fcp, float size,
float aspect);

w, ncp, fcp and aspect are described above. si ze is the vertical extent, in application units, of the
orthogonal projection.

6.2.3 Stereo viewing
Hardware

There are basically two ways of achieving stereo output both of which are supported by MAVERIK.
The first is to create two separate windows, one for the left eye view the other for the right eye view,
and employ some hardware, such as SGI’s multi-channel option, to generate separate video signals
for each window. The other method is to use a stereo graphics context, more commonly known as
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guad-buffer stereo. Modern LCD shutter glasses typically use quad-buffer stereo (the older interlaced
type of shutter glasses can be supported by using two separate windows carefully positioned such that
they completely overlap when the monitor is in stereo mode).

Software

The first step to achieve stereo output is to request a pair of windows be opened by mav i niti al i se,
one for the left eye view the other for the right eye view (while for quad-buffer stereo only one win-
dow is actually opened, conceptually the left and right buffers/views are addressed separately). This is
achieved by setting the MAVERIK global variable mav _opt _st er eo (see Section C.1.3, page 160) be-
fore the initialisation call. Acceptable values are MAV_STEREO_TWO_W NS and MAV_STEREO_QUAD_BUFFERS:

mav_opt _stereo= MAV_STEREO TWO W NS;
mav_initialise(&rgce, argv);

The two views are associated with a single set of stereo parameters, which by default is mav st p_def aul t,
the contents of which defines the offset between the left and right eye views. The default implemen-
tation of stereo viewing, as described here, produces two parallel views of the virtual environment
offset by some amount. There is no view convergence. We will discuss in Chapter 11.2 (page 116)
how users can define their own methods of stereo viewing.

The stereo offset is set as follows:

[* Define stereo parameters, i.e. the stereo offset */
mav_stp_default.offset= 0.5;

The eye point in the left and right views is offset from its original position along the view right
vector by an amount —offset/2.0 and +offset/2.0 respectively. Unlike navigation, this offset is only
temporary and does not affect the values stored in the view parameters.

MAVERIK provides some keyboard function keys for fine-tuning stereo views at run-time. These are
described in Section A.3 (page 128).

An example of stereo viewing can be found in the st er eo sub-directory of the miscellaneous exam-
ples.

Note that in a quad-buffer setup there is usually only one depth buffer which is shared by the two
views. MAVERIK clears the depth buffer as each view becomes active for rendering. This means that
all of one view must be rendered before all of the other view — you cant swap between them more than
once per frame. Some machines support separate depth buffers and this can be indicated by setting
mav _opt _st er eo to be MAV_STEREO_QUAD _BUFFERS_SEPARATE Z.
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6.2.4 Background colour

When a new window is created, its background colour is set by default to RGB value (0.0, 0.5, 1.0).
This can be changed using mav_wi ndowBackgr oundCol our Set (MFS p 226):

voi d mav_w ndowBackgr oundCol our Set (MAV_wi ndow *w, float r, float g, float b);

wis the window to set, and r, g and b specify the required RGB background colour.

6.2.5 Backface culling

By default, backface culling is disabled. It can be set using mav_w ndowBackf aceCul | Set (MFS
p 225):

voi d mav_w ndowBackf aceCul | Set (MAV_wi ndow *w, int v);

Setting v to MAV_TRUE enables backface culling; MAV_FALSE disables it. Vertices must be ordered
anti-clockwise around the normal for backface culling to work.

6.2.6 Opening multiple windows

mav_w ndowNew (MFS p 234) opens a new window, and returns its handle:

MAV_wi ndow *mav_wi ndowNew(int x, int y, int w, int h, char *name, char *disp);

where x, y, wand h specify the window’s horizontal and vertical position on screen, and its width and
height. nane defines the window title that appears in the menu bar. di sp is the name of the X display
on which to open the window (setting the value to NULL uses the DI SPLAY environment variable).
Note, the window manager may not honor the requested parameters.

Windows are of X resource class “MaverikApp”. This can be used to control various window at-
tributes, such as the amount of window decoration and borders. For example, adding the line

4Dwrr Maver i kApp*client Decoration: none to the. Xdef aul t s file will open a window without
any decoration when using SGI’s default window manager 4Dwm.

An example of opening multiple windows be found in the wi ndows sub-directory of the miscellaneous
examples.
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6.2.7 Deleting windows

mav_wi ndowDel et e (MFS p 228) deletes a window:

voi d mav_w ndowDel et e( MAV_wi ndow *Ww) ;

N.B. You can not delete the first window opened, only subsequently opened windows, since the initial
window creates data which other windows share.

An example of deleting windows be found in the wi ndows sub-directory of the miscellaneous exam-
ples.
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Chapter 7

Creating new classes of object

As we discussed in Chapter 2, the needs of, say, an application involved in architectural walkthroughs
are quite different from one involved in abstract data visualization. Rather than trying to create a
compromise system, our approach is to design a system that can be fully and easily customized so
that the resultant virtual environment exhibits a behaviour which is customized to, and consistent
with, the nature of the application.

This is a fundamental concept of MAVERIK and one which sets it apart from other VR systems. A key
aspect in achieving this is the ability to create new object primitives tailored to the application.

For example, an application wishing to populate a virtual environment with particle systems which
model smoke or fire, will probably want to represent this with its own object primitives which are
defined and rendered in a particular way, rather than attempting to map its particles onto — say — the
MAVERIK “sphere” object.

The objects MAVERIK provides such as box, sphere, polygon, and so on (see Appendix B for a full
list), should be seen as (hopefully useful) defaults. Applications are under no obligation to use any of
these objects.

An application can use whatever data structure it likes to represent an object. We use the term
“object” as simply a convenient way of naming something which an application requires MAVERIK
to treat as an entity. To take an example from a real project in which MAVERIK has been used
extensively, an existing Computer-Aided Design application from the oil industry might wish to use a
“pipe” primitive, which in addition to geometrical data, also contains non-geometric information such
as the temperature and pressure of the liquid it carries.

To use such a data-rich primitive with a “traditional” VR system is very difficult. The pipe’s geomet-
rical data would typically have to be re-cast into a form dictated by the VR system — often polygon
or solid primitive based. While the non-geometric information can be incorporated into “traditional”
VR systems, it is usually in the form of “passive” data. Here, the data can not be exploited to affect,
for example, the rendering or collision detection functions since these are buried deep in the system
where the user has little or no access to them. Furthermore, importing application data into a VR
system means there are two separate copies of the same underlying data. Keeping these two sets of
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data synchronized is problematic.

With MAVERIK this is not the case — whatever data structure you choose to use to represent the pipe
primitive can be used directly — without modification — by MAVERIK. For example, the data structure
can be exactly the same as that required by an existing automated pipe routing algorithm that you wish
to use to give your virtual environment a realistic behavior. Furthermore, since MAVERIK is a toolkit
which is linked into your application, and not a separate executable, it can process the application data
directly rather than requiring its own copy.

The user has full control of how the object is processed by MAVERIK, and so all of the information in
the data structure can be used to customize the virtual environment to a specific application.

In this chapter, we describe how an application can define new classes of objects.

7.1 Example 9: creating a new class

An application defines a separate class for each kind of object it wishes MAVERIK to manipulate. It
also defines a set of methods which operate on that class. Some of these methods are required by
MAVERIK, if it is to be able to manage the object in a virtual environment — methods such as “draw
object”; other methods will only ever be used by the application itself.

We begin with a simple generic example. Suppose an application uses the following data structure to
represent an object, and creates an instance of it:

[* The data structure to represent the Apphject */
typedef struct {
char *nane;

} Appoj ect;
AppChj ect app_object; /* Create the instance */

app_obj ect.name= "1’ m an object";

To use this object with MAVERIK, the application first needs to call mav_cl assNew (MFS p 267) to
create a new MAVERIK class to represent it:

MAV cl ass *Appoj ect d ass;

/* Create a new Maverik class to represent the object */
AppQhj ect O ass= mav_cl assNew ();

The next step is to register the application object as a MAVERIK object of the class we’ve just created,
as follows:
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MAV_obj ect *obj ;

/* Register the AppOhject as a Maverik object */
obj = mav_obj ect New (AppQbj ect O ass, &app_object);

This is exactly the same mechanism as when registering an object which is one the MAVERIK default
object classes as seen in the previous examples. The mav _obj ect New function takes two arguments:
the name of the object’s class (AppQbj ect O ass), and a pointer to the data structure defining the
object (&app_obj ect). It’s sometimes helpful to think of mav_obj ect New as binding the object’s
data to the MAVERIK object instance.

7.2 Object methods

Every class of MAVERIK object has two components: a data structure, and a set of methods which
operate on the data structure. This is analogous to the object-oriented paradigm of data and methods,
however it is implemented in C using callback functions.

Normally, MAVERIK arranges to execute the methods (or callback functions) at an appropriate time
— the “draw” method for a particular class of object, for example, will be executed when MAVERIK
encounters an instance of that class of object in an SMS which is being processed for display.

The draw method for an object class, MAV_cal | backDr awFn (MFS p 45), has the following prototype:

typedef int (*MAV_cal | backDrawFn) (MAV_object *, MAV drawinfo *);

This is how an application defines a draw method, which MAVERIK will execute every time it wishes
to draw an AppChj ect object:

[* Draw an AppQhj ect */
int AppChjectDraw (MAV_object *o, MAV drawinfo *di)

/* Convert from generic Maverik object to the App(hject object */
AppCbj ect *a= (AppChject *) nav_obj ect Dat aGet (0);

[* This would normally be the graphics code to draw the object */
printf("Drawing AppQhject whose nanme is %\n", a->nane);

return MAV_TRUE,

AppChj ect Draw is executed with the MAVERIK object to draw, o, and a set of so-called “drawing
information”, di . The generic MAVERIK object, 0, has to be converted into the AppChj ect object so
the function can access its data to render it. This is achieved using the mav _obj ect Get Dat a function
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and is exactly the same process as seen with event-based callbacks for the “default” MAVERIK object
classes.

The MAV_dr awl nf o (MFS p 66) data structure contains such information as the view clip planes and
the eye point, and can be used to apply level of detail or fine culling on the object. We’ll ignore this
argument until Section 7.9.

The return value of the function indicates if the operation was successfully completed or not (for this
simple example there is no reason why it should fail).

The draw callback is registered with MAVERIK using mav cal | backDr awSet (MFS p 264), as fol-
lows:

/* Set the draw cal | back for the new class */
mav_cal | backDrawSet (mav_win_all, AppChjectd ass, AppQhjectDraw);

which sets the draw callback for a particular class of object to be a particular function. Note that this
is set on a per-window basis so that the object could be rendered, for example, as wireframe in one
window and as filled in another.

The full example, eg9. c, looks like this:

I* eg9.c */
#i ncl ude "maverik. h"
#i ncl ude <stdio. h>

/* The data structure to represent the AppQhject */
typedef struct {
char *nane;

} AppQoj ect;

/* Define an AppChject */
voi d def AppChj ect (Apphj ect *a)
{

a->nane= "|’man object";

}

/* Draw an AppQnj ect */

int AppQbj ect Draw( MAV_obj ect *o, MAV_drawinfo *di)

{
/* Convert from generic Maverik object to the App(hject object */
AppQbj ect *a= (AppCbject *) mav_obj ect DataGet (0);

/* No code for drawing the object -- this would normally be graphics! */
printf("Drawi ng AppChj ect whose name is %\n", a->nane);

return MAV_TRUE,
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/~k

Render a frane */

voi d drawFrame( MAV_SMS *sns)

{

}

[* Check for and act on any events */
mav_event sCheck();

/* Request start of a new frame */
mav_franeBegin();

[* Display the SM5 in all w ndows */
mav_SMSDi spl ay(mav_win_all, sns);

/* Request end of the frane */
mav_franeEnd();

int main(int argc, char *argv[])

{

MAV cl ass *Appoj ect d ass;
AppChj ect app_obj ect;
MAV_obj ect *obj ;

MAV_SMS *snis;

[* Initialise the Maverik system */
mav_initialise(&rge, argv);

/* Create a new Maverik class to represent the object */
AppQbj ect O ass= mav_cl assNew() ;

/* Set the draw call back for the new class */
mav_cal | backDrawSet (mav_win_all, AppChjectd ass, AppQhjectDraw);

/* Define an instance of the AppChject */
def AppQbj ect ( &app_obj ect);

/* Register the AppObject as a Maverik object */
obj = mav_obj ect New( AppCbj ect Cl ass, &app_obj ect);

[* Create an SM5 and add the object to it */
sne= mav_SMSQhj Li st New() ;
mav_SMBChj ect Add(sns, obhj);

/* Rendering loop */
while (1) drawFrame(sns);

73

Executing this example you should see the standard blue background with the message “Drawing
AppObject whose name is I’m an object” scrolling up the shell window. This example is intended to
show the general principles involved without getting bogged down in an actual implementation. We’ll
now move on to show how a real 3D object would be created.
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7.3 Example 10: the dodecahedron

To illustrate what’s involved in defining the kind of realistic new object class that applications might
wish to use, we present a worked example. We’ll define a “dodecahedron” object — the fourth of the
five platonic solids, comprising 12 faces, each of which is a pentagon.

We’ll take as our starting point the default MAVERIK object class “box”, whose data structure is as
follows:

typedef struct {

MAV vector size; [* size of box */
MAV_surfaceParans *sp; /* surface parameters */
MAV matrix matrix; [* transformation matrix */
voi d *userdef; /* user-defined data */

} MAV_box;

Our dodecahedron will be similar, but we’ll specify its size using a single radius parameter:

typedef struct {

float r; /* size of dodecahedron */

MAV_surfaceParans *sp; /* surface parameters */

MAV matrix matrix; /* transformation matrix */
} MAV_dodec;

Note that we have retained the sp and nat ri x fields and that the name of the data structure starts with
MAV_. We’ll briefly describe why these choices were made.

7.3.1 Data structure choices

We’ve said that applications are under no obligation to use MAVERIK’s data types, but in many cases
this is the most convenient approach.

Most objects an application wishes to manage in a virtual environment will have a position/orientation
and colour. Whatever is used to represent or calculate these, they ultimately have to be turned into
calls which change the state of the underlying graphics system, for example OpenGL.

MAVERIK provides an easy and transparent means of achieving this, but at the cost of using its data
types to represent these common object properties — MAV_mat ri X for coordinate transformations, and
MAV_sur f acePar ans to control the “colour” which is used for rendering.

If an application is free to choose any data structure for object classes, then using the MAVERIK data
types will make life a lot easier. If, on the other hand, it must represent objects using some fixed data
structure, then while this is possible, it involves the application writing certain operations for itself.

We will return to this subject in Section 7.4 to show how the dodecahedron could be re-written so as
not to use any MAVERIK data types.
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7.3.2 Naming conventions

Naming the dodecahedron data structure MAV_dodec makes it appear to be part of the MAVERIK
system and not an additional object created just for this application. In this section we explain the
significance of this.

The MAVERIK system comprises a kernel and a number of so-called “supporting modules”. At the
kernel level there is surprisingly little — no objects, no input devices, no navigation, not even the
concept of rendering an object. What the kernel does provide, however, is a framework in which these
can be defined.

The supporting modules use this framework to provide the support for building applications. For
example, one module provides mouse and keyboard input; another provides the ability to define a
rendering callback; another defines the default graphical primitive classes, and so on.

Therefore what we have until now called “default” MAVERIK objects are not part of the MAVERIK
kernel. They have been added afterwards in just the same manner as shown in eg9 for the generic
object and we are about to see for the dodecahedron.

Furthermore, the supporting modules are extensible. If the dodecahedron object turns out to be useful,
it can be encapsulated in a supporting module and added to the MAVERIK system (we will show how
this is achieved in Chapter 12). It would then appear to another user just as much a part of MAVERIK
as the MAV_box or MAV_sphere are. With this in mind it makes sense to use a consistent naming
scheme when defining new objects. Of course, this is not a requirement. If your object is so specific
to a particular application that its of no possible use to anyone else, call it what you want. It’s a fine
point.

Back to the dodecahedron.

The following example, eg10. ¢, adds the dodecahedron object in the same manner as shown for the
generic object in Example 9, but actually implements the rendering of this shape in the draw callback.

/* egl0.c */
#i ncl ude "nmaverik. h"
#i ncl ude <nmath. h>

/* The data structure and object class to represent the dodecahedron */
typedef struct {

float r;

MAV_sur f aceParanms *sp;

MAV matrix matrix;
} MAV_dodec;

MAV cl ass *mav_cl ass_dodec;

/* The vertices of a unit sized dodecahedron */
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#define V1 0.381966
#define V2 0.618034

MAV_vector vecs[]={{-V1,0,1},{VL,0, 1}, {-V2, -V2,-V2}, {-V2,-V2, V2}, {- V2, V2, - V2}, {- V2, V2, V2},
(V2,-V2,-V2}, {V2, - V2, V2, { V2, V2, - 2}, { V2, V2, 2}, {1, VL, O}, {1, - V1, O}, {- 1, V1, O}, {- 1, - V1, 0},
{-V1,0,-1},{VL,0,-1},{0,1,V1}, {0, 1,-V1},{0, -1, Vi}, {0, - 1, - V1} };

/* Routine to render a pentagon given the vertices and size r */
void pentagon(int a, int b, int ¢, int d, int e, float r)

{
MAV_vector v1, v2, norm

/* Calculate normal of pentagon from crossproduct of the 2 edges */
v1l= mav_vectorSub(vecs[a], vecs[b]);

v2= mav_vect or Sub(vecs[ b], vecs[c]);

norm= nmav_vect or Nor mal i ze(mav_vect or Cr ossProduct (v1, v2));

/* Render the pentagon as a pol ygon. Vecs contain unit pentagon, so mult by r */
mav_gf xPol ygonBegi n() ;
mav_gf xNor mal (norm;

mav_gf xVert ex(mav_vect or Scal ar (vecs[ a],
mav_gf xVert ex(mav_vect or Scal ar (vecs[ b],
mav_gf xVert ex(mav_vect or Scal ar (vecs[ c],
mav_gf xVert ex(mav_vect or Scal ar (vecs[ d],
mav_gf xVert ex(mav_vect or Scal ar (vecs][ €],
mav_gf xPol ygonEnd() ;

- = = = =
~— — — ~— ~—
~— — — ~— ~—

}

/* Routine to render the dodecahedron */
int mav_dodecDraw( MAV_obj ect *o, MAV drawinfo *di)

{
MAV_dodec *dodec;

[* Convert from generic Maverik object to the dodecahedron object */
dodec= (MAV_dodec *) nmav_obj ect Dat aGet (0);

/* Set the correct colouring */
mav_sur f acePar ansUse( dodec- >sp) ;

[* Store the current transformation matrix then multiply it by the local transformation */
mav_gf xMat ri xPush();
mav_gf xMat ri xMul t (dodec->matrix);

/* Render the 12 pentagons that make up the dodecahedron */

pentagon(0, 1, 9, 16, 5, dodec->r);

pentagon(1, 0, 3, 18, 7, dodec->r);

pentagon(1, 7, 11, 10, 9, dodec->r

pentagon(11, 7, 18, 19, 6, dodec->

pentagon(8, 17, 16, 9, 10, dodec->

pentagon(2, 14, 15, 6, 19, dodec->

pentagon(2, 13, 12, 4, 14, dodec->
2, >

3,

)
'
i
i
r
r

pent agon 19, 18, 3, 13, dodec-
pent agon 0, 5 12, 13, dodec->r)

P

)
)
)
)
)
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pentagon(6, 15, 8, 10, 11, dodec->r);
pentagon(4, 17, 8, 15, 14, dodec->r);
pentagon(4, 12, 5, 16, 17, dodec->r);

/* Restore original transformation matrix */
mav_gf xMat ri xPop() ;

return MAV_TRUE,
}

[* Define a dodecahedron */
voi d def Dodec(MAV_dodec *d)

{
d->r=2.5;
d->sp= mav_sp_defaul t;
d->matri x= MAV_| D MATRI X;
}

/* Render a frane */
voi d dr awFrame( MAV_SMS *sns)

{
[* Check for and act on any events */
mav_event sCheck();
/* Request start of a new frame */
mav_franeBegin();
/* Display the SM5 in all w ndows */
mav_SMSDi spl ay(mav_win_all, sns);
/* Request end of the frane */
mav_frameEnd();

}

int main(int arge, char *argv[])

{

MAV_dodec dodec;
MAV_obj ect *obj ;
MAV_SMS *snis;
float r=0;

[* Initialise the Maverik system */
mav_initialise(&rgc, argv);

/* Create a new class to represent the dodecahedron */
mav_cl ass_dodec= mav_cl assNew() ;

/* Set the draw cal | back for this new class */
mav_cal | backDrawSet (mav_win_all, mav_class_dodec, mav_dodecDraw);

/* Define a dodecahedron */
def Dodec( &dodec) ;

77
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/* Register the dodecahedron as a Maverik object */
obj = mav_obj ect New( mav_cl ass_dodec, &dodec);

/* Create a SMS */
sme= mav_SMBOhj Li st New() ;

/* Add object to SM5 */
mav_SMBChj ect Add(sns, obhj);

/* Use default nouse navigation */
mav_navi gati onMouse(nmav_wi n_al |, mav_navi gati onMouseDefaul t);

/* Rendering |oop */
while (1) {
/* Spin the dodecahedron */
r+=1;
dodec. matrix= mav_matrixSet(r,r*2,r/2, 0,0,0);

/* Draw a frame */
dr awFr ame(sns) ;

Running this example should show a tumbling red dodecahedron. The tumbling effect is achieved
by setting the object’s transformation matrix at each frame with the function mav _mat ri xSet. This
function returns a transformation matrix defined by a roll, pitch, yaw orientation (the first 3 arguments
in degrees) and (X, y, z) position (the remaining 3 arguments). Note: roll, pitch and yaw are arbitrarily
chosen to be rotations about the Z, X and Y axis respectively.

We’ll now look at the draw callback function, mav _dodecDr aw, in more detail. The first action per-
formed with the dodecahedron data structure is to use the correct set of surface parameters, achieved
with:

/* Set the correct colouring */
mav_sur f acePar ansUse( dodec- >sp) ;

This sets the underlying graphics system to be in a correct state to render the object as desired, such
as enabling lighting, disabling texturing, and so on.

The next action is then to render the shape. In common with many graphics systems, MAVERIK uses
the notion of a modelview matrix which can be pushed, popped, set and multiplied to change between
coordinate frames. This idea should be familiar to anyone with a working knowledge of OpenGL (the
level of reader we are assuming).

[* Store the current transformation matrix -

then nultiply it by the local transformation */
mav_gf xMat ri xPush();
mav_gf xMat ri xMul t (dodec->matrix) ;
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/* Render the 12 pentagons that make up the dodecahedron */
[ code renoved]

/* Restore original transformation matrix */
mav_gf xMat ri xPop() ;

7.3.3 Abstracted graphics layer

Any function that starts with mav_gf x is part of MAVERIK’s abstracted graphics layer. In reality this
is little more than a wrapper to OpenGL. For the calls above:

mav_gf xMat ri xPush (MFS p 271) is equivalent to gl PushMat ri x
mav_gf xMat ri xMul t (MFS p 271) is equivalent to gl Mul t Mat ri xf
mav_gf xMat ri xPop (MFS p 271) is equivalent to gl PopMat ri x

MAVERIK uses this abstracted graphics layer to hide the specifics of the underlying graphics systems
thus allowing application source code to be simply re-linked, not re-written, to make use of different
graphics systems.

The default MAVERIK library resolves the abstracted graphics layer into their OpenGL equivalents.
However, MAVERIK can be configured to resolves this layer into DirectX calls or, although now
unsupported, IrisGL calls. It is even possible to configure MAVERIK to resolve the layer without
making any graphical calls at all! (which could be used in making an offline application such as a
raytracer which used MAVERIK’s object and spatial management algorithms).

It is hoped that this mechanism could be used to support other immediate mode rendering systems of
similar specification to OpenGL.

That said, there is nothing stopping the user from placing direct OpenGL calls in the rendering call-
back functions. Obviously, doing this would then rule out the possibility of using the other graphics
systems described above.

The 20 vertices which make up a unit-sized dodecahedron are stored as an array of vectors. Twelve
pentagons can be defined, using a combination of these vertices, to render the dodecahedron. Before
rendering each vertex is multiplied by the dodecahedron’s radius so that it has the correct size. (The
rendering of this shape was borrowed, with gratitude, from the GLUT source code.)

Note the use of MAVERIK’s abstracted graphics layer:

mav _gf xPol ygonBegi n (MFS p 272) is equivalent to gl Begi n( GL_POLYGON)
mav_gf xNor mal (MFS p 272) is equivalent to gl Nor mal 3f
mav_gf xVert ex (MFS p 272) is equivalent to gl Ver t ex3f
mav _gf xPol ygonEnd (MFS p 272) is equivalent to gl End

As with any other graphics system a surface normal must be defined for the pentagon so as it will
appear correctly lit. This is trivially calculated as the cross product of two edges.



80 CHAPTER 7. CREATING NEW CLASSES OF OBJECT

7.4  Application independence
In the dodecahedron example, we used MAVERIK types for some of the object data fields:

MAV_sur f aceParans *sp;
MAV matrix matrix;

As mentioned previously, an application is under no obligation whatsoever to use MAVERIK data
types (although life is lot simpler if it does).

For example, instead of using a MAV_mat ri x to define an object’s position and orientation we could
use x,y and z,androl I, pi tch and yawto define it.

In the rendering callback we would then need to replace the line:
mav_gf xMatri xMul t (dodec->matrix);
with

mav_gf xMatri xMil t (mav_mat ri xSet (dodec->rol |, dodec->pitch, dodec->yaw,
dodec->x, dodec->y, dodec->z));

where the function mav_nat ri xSet defines a transformation matrix with that orientation and position.
The principle here is that whatever form the position/orientation data takes it must be converted into,
but not necessarily stored in the data structure as, a MAV_mat ri x in order for it to be applied to the
underlying graphics system.

Since Euler angles are a popular means of defining orientation, MAVERIK provides support for con-
verting them into a MAV_mat ri x. However, if your orientation was in a more exotic form (the Euler
angles being represented by integers in the range 0-255, or by using quaternions, for example) then
you have to perform the mathematics of the conversion into a MAV_mat ri x yourself.

Similarly, an object’s colour could, for example, be defined using a single colour index rather than
a MAVERIK surface parameters datatype. Again, regardless of how the colour is stored it can be
converted into a MAVERIK surface parameters data type in the rendering callback function and applied
in the usual manner. For example:

MAV_sur f acePar ans sp;

sp. node= MAV_COLOUR;
sp. col our= dodec- >col | ndex;
mav_sur f acePar ansUse( &sp) ;
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where the appropriate RGB values for the colour are defined elsewhere. You do not necessarily have
to use the mav_sur f acePar ansUse (MFS p 291) function to define the colouring scheme of an object.
You can, if you wish, make direct calls to OpenGL to set the correct state. However, if you do this you
must call the function mav_sur f acePar ansUndef i ne (MFS p 290) so as to notify MAVERIK that its
internal notion of the state of the graphics system is no longer valid.

7.5 Example 11: the “bounding box” method

The bounding box (BB) method computes an axis-aligned bounding box for an object taking into
account the object’s transformation, but not any additional transformations that may have been applied
— only one level of transformation is taken into account in the calculation. Put another way, in the
examples so far the objects would return a world coordinate frame BB whereas if they were the sub-
object in a hierarchical structure then they would return a BB in the coordinate frame of the parent
object which would then transform this into the world coordinate frame.

The BB of an object is used by MAVERIK to determine two things. First, if the object is within the
view frustum and therefore should be displayed (that is, have its draw callback executed). Second, to
determine which object the mouse was pointing at when a keyboard or mouse event occurred. Note
that if the BB computation is a “bad fit” to the actual shape of the object, MAVERIK may incorrectly
report selections since the mouse may be pointing outside of the object but could still be within its
BB. We will show in the next section how to perform accurate object selection.

The BB method for an object, MAV_cal | backBBFn (MFS p 42), has the following prototype:
typedef int (*MAV_cal | backBBFn) (MAV object *, MAV BB *);

The callback function takes as its first argument the MAVERIK object to be processed and returns the
calculated BB in the second argument. The MAV_BB (MFS p 5) datatype comprises two MAV_vect or s,
m n and max, to define the BB’s extent. As with the draw callback, the return value indicates the
success or failure of the operation.

The dodecahedron BB is calculated as follows:

int mav_dodecBB (MAV object *o, MAV_BB *bb)
{

MAV_dodec *dodec;

MAV_BB | ocal ;

/* Convert from generic Maverik object to the dodecahedron object */
dodec= (MAV_dodec *) mav_obj ect DataGet (0);

/* Local coordinate frame axis-aligned bounding box */
| ocal . min.x= -dodec->r;
I ocal . nmin.y= -dodec->r;
I ocal . nmin.z= -dodec->r;
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| ocal . max. x= dodec->r;
I ocal . max. y= dodec->r;
| ocal . max. z= dodec->r;

[* Align local coordinate frame with the parent (in this case the world) frame */
mav_BBAlign (local, dodec->matrix, bb);

return MAV_TRUE,

The BB of the dodecahedron in its local coordinate frame is a box centered at the origin and of extent
twice the dodecahedron radius. The function mav _BBAI i gn (MFS p 243) calculates the axis-aligned
BB in one coordinate frame, bb, given the BB defined in a different coordinate frame, | ocal , and the
transformation matrix between the two (the second argument). If you didn’t store the dodecahedron’s
orientation and position as a MAVERIK matrix you would either have to convert it into one, or perform
the maths to convert between the two coordinate frames yourself.

Obviously, this is just one way in which an axis-aligned BB can be calculated. Another method would
be as follows:

int mav_dodecBB2 (MAV object *o, MAV_BB *bb)

{
MAV_dodec *dodec;

int i;

/* Convert from generic Maverik object to the dodecahedron object */
dodec= (MAV_dodec *) mav_obj ect DataGet (0);

/* Find BB enclosed by the points after size and position of */
/* dodec have been accounted for */
mav_BBConpl nit (bb);
for (i=0; i<20; i++) {
mav_BBConpPt (mav_vectorMilt (mav_vect or Scal ar (vecs[i], dodec->r), dodec->matrix),
bb);
}

return MAV_TRUE,

In this implementation the 20 vertices which make up the dodecahedron are first multiplied by the
scalar dodec- >r to give a dodecahedron of the correct size, and then by the MAVERIK matrix dodec- >mat ri x
to give their position in the world coordinate frame.

Allied to this calculation are the functions mav_BBConpl nit (MFS p 243) and nav _BBConpPt (MFS
p 243). These functions are used when calculating a bounding box which comprises a collection of
points. The second of these functions takes a vector and a pointer to a bounding box and modifies the
contents of the bounding box so that it encompasses the vector. The first function simply initialises
the contents of the BB.
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These two implementations both perform the same job but have different advantages and disadvan-
tages. The first method is quicker but overestimates the BB. Whereas the second method is slower but
more accurate than the first.

Initially the first method is used and set using mav _cal | backBBSet (MFS p 264) as follows:

/* Set the calculate BB callback for this new class */
mav_cal | backBBSet (mav_win_all, mav_class_dodec, nmav_dodecBB);

However, MAVERIK allows callback functions to be dynamically switched. In this example we define
a keyboard event callback to switch the bounding box functions:

MAV_cal | backBBFn fn;

if (ke->key=="b") { /* Toggle calc BB callback function */
fn= (MAV_cal | backBBFn) mav_cal | backQuery (mav_cal I back BB, mav_win_all, o0);
if (fn==mav_dodecBB)

mav_cal | backBBSet (mav_win_all, mav_class_dodec, nav_dodecBB2);

}

el se

{

mav_cal | backBBSet (mav_win_all, mav_class_dodec, mav_dodecBB);

}
}

The function mav _cal | backQuery (MFS p 296) has the prototype:

MAV cal | backFn mav_cal | backQuery (MAV cal | back *ch, MAV_w ndow *w, MAV_object *o);

and returns which callback function is set for callback cb in window wfor the object 0. This is returned
as a generic callback function (MAV_cal | backFn (MFS p 48)) and has to be cast to a BB callback
function (MAV_cal | backBBFn) in order for a comparison to be performed. The function returns NULL
if no callback function has been set. A list of the callback handles for the different operations can be
found in Section C.3 (the BB callback is identified with mav _cal | back _BB; the draw callback with
mav_cal | back_drawetc...).

To show the effects of view frustum culling, a pri nt f has been added to the draw callback in egl1 to
indicate when it’s being called. In addition, the BB callback for the dodecahedron is explicitly called
and the calculated BB displayed. This is achieved with the functions mav cal | backBBExec (MFS
p 263) and mav _BBDi spl ay (MFS p 123) whose prototypes are:

int mav_cal | backBBExec (MAV_wi ndow *w, MAV_object *o, MAV_BB *hb);
voi d mav_BBDi splay (MAV_wi ndow *w, MAV_BB bb);
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Execution of the BB callback is analogous to that described for the “get surface parameters” process-
based callback in eg7 (page 40). The second function simply renders, in black wireframe, the given
BB in the given window.

Although not an issue in this example, suppose we added the dodecahedron to the SMS as follows:

mav_SMBChj ect Add (sns, nmav_obj ect New (nmav_cl ass_dodec, &dodec));

i.e. not noting the relationship between the application dodecahedron object and MAVERIK object.
How then could we execute the BB callback on the dodecahedron since we don’t know its correspond-
ing MAVERIK object?

The reverse conversion (MAVERIK object to application object) is trivial, and performed by the func-
tion mav _obj ect Dat aGet . Conversion the other way (application object to MAVERIK object) is per-
formed with the function mav _obj ect Dat aW t h (MFS p 174) which takes as its only argument a voi d
pointer to the application object data structure and returns the MAVERIK object which corresponds
with that data, or NULL if the data has not been registered. The call to execute the BB callback in this
example is peformed as follows to demonstrate this:

mav_cal | backBBExec (mav_win_current, mav_objectDataWth (&dodec), &bb)

Running eg11 shows the tumbling dodecahedron surrounded by its BB. Pressing ‘b’ over the dodec-
ahedron toggles which implementation is used for calculating the BB, while ‘s’ increases its size, and
‘g’ quits. Note how the messages printed to the shell window stop when the navigation takes the
dodecahedron outside of the view frustum.

7.6 Example 12: the “intersection” method

Although a BB is enough for MAVERIK to perform rough-and-ready selection testing, a preferable
approach is to define a method which accurately computes the intersection (if any) of an instance of
the object class with a given vector.

The intersection method for an object, MAV_cal | backl nt er sect Fn (MFS p 53), has the following
prototype:

typedef int (*MAV_cal | backl ntersect Fn) (MAV_object *, MAV line *,
MAV_obj ect I ntersection *);

The callback function takes as it arguments the MAVERIK object to process, the line with which to
calculate the intersection with and a data structure in which to return the details of the intersection.

A MAV_| i ne (MFS p 18) data structure consists of a two MAV_vect or s: the origin of the line, pt, and
normalized direction vector, di r, which are defined in the world coordinate frame. The MAV_obj ect | nt er secti on
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data structure contains a number of fields but only one is currently used, namely pt 1 — the distance
from the line’s origin to the first point of intersection with the object.

If the line does not intersect the object then pt 1 should be set to a negative value and the callback
function returns MAV_FALSE. Conversely, it should return MAV_TRUE if the line does intersect the object.
If the point originates inside the object, then the distance to closest intersection should be set to zero.

We define the intersection method for the dodecahedron as follows:

/* Function to calculate the object-line intersection of a pentagon */
voi d pentagonlntersect (MAV line In, MAV objectlntersection *oi,

{

}

int a int b, int c, int d, int e, float r)

MAV_pol ygon apol y;
MAV_vector v1, v2, norm

/* Calculate normal of pentagon from crossproduct of the 2 edges */
vl= mav_vectorSub (vecs[a], vecs[bh]);

v2= mav_vectorSub (vecs[b], vecs[c]);

norm= mav_vect or Normal i ze (mav_vect or CrossProduct (v1, v2));

/* NMake up a MAV_pol ygon to represent the pentagon */
apol y. np= 5;

apol y. norm= norm

apoly.vert= mav_nal | oc (apoly.np*sizeof (MAV_vector));
apoly.vert[0] = mav_vector Scal ar (vecs[a], r);
apoly.vert[1] = mav_vectorScal ar (vecs[b], r)
apoly.vert[2] = mav_vectorScal ar (vecs[c], r)
apoly.vert[3] = mav_vectorScal ar (vecs[d], r)
apoly.vert[4] = mav_vectorScal ar (vecs[e], r)
apoly. matrix= MAV_I D_MATRI X;

/* Calculate |ine-polygon intersection */
mav_| i nePol ygonl ntersection (&poly, In, 0i);

/* Free up polygon vertex memory */
mav_free (apoly.vert);

/* Function to calculate the object-line intersection of the dodecahedron */
int mav_dodecl ntersect (MAV_object *o, MAV_Iine *In, MAV objectlntersection *oi)

{

MAV_dodec *dodec;
MAV_obj ect I ntersection pentint[12];
MAV _|ine |n2;

/* Convert from generic Maverik object to the dodecahedron object */
dodec= (MAV_dodec *) mav_obj ect DataGet (0);

/* Initialise object intersection data structure */
oi - >pt 1=-100. 0;
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/* Rotate and translate line so that the dodecahedron
is centered and axis-aligned */
I n2= mav_lineTransFrame (*In, dodec->matrix);

/* Intersect the 12 pentagons that make up the dodecahedron */
pent agonl ntersect (In2, &pentint[0], O, 1, 9, 16, 5, dodec->r);
pentagonl ntersect (In2, &pentint[1], 1, 0, 3, 18, 7, dodec->r);
pentagonl ntersect (In2, &pentint[2], 1, 7, 11, 10, 9, dodec->r
pentagonl ntersect (In2, &pentint[3], 11, 7, 18, 19, 6, dodec->
pentagonl ntersect (In2, &pentint[4], 8, 17, 16, 9, 10, dodec->
pentagoni ntersect (In2, &pentint[5], 2, 14, 15, 6, 19, dodec->
pent agonl ntersect (ln2, &pentint[6], 13, 12, 4, 14, dodec->
( >
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pentagonl ntersect (In2, &pentint[7], 2, 19, 18, 3, 13, dodec-

pentagonl ntersect (In2, &pentint[8], 3, 0, 5 12, 13, dodec->r)
pentagonl ntersect (In2, &pentint[9], 6, 15, 8, 10, 11, dodec->r);
pentagonl ntersect (In2, &pentint[10], 4, 17, 8, 15, 14, dodec->r);
pentagoni ntersect (ln2, &pentint[11], 4, 12, 5, 16, 17, dodec->r)

/* Sort intersection and return appropriate value */
return (mav_objectlntersectionsSort (12, pentlnt,
mav_mat ri xScal eGet (dodec->matrix), 0i));

As with the draw and BB methods, the intersect method is registered and executed respectively using
mav_cal | backl nt ersect Set (MFS p 264) and mav_cal | backl nt er sect Exec (MFS p 263).

We’ll now look at the implementation of the dodecahedron intersection function. The first action
taken is to initialise the pt 1 field of the object intersection data structure, oi , to some negative value.
The next step is to transform the line, which is defined in the world coordinate frame, into the local
coordinate frame of the dodecahedron. The mathematics of intersecting almost any object with a line
is far easier if you can consider that object in its local coordinate frame, that is, centered at the origin
and axis-aligned. This is achieved with the function mav_l i neTr ansFrane (MFS p 277) which returns
a MAV_l i ne in the local coordinate frame given the world coordinate frame line and the transformation
matrix between the local and world frames.

Like the rendering function, the intersection function considers the dodecahedron as 12 separate pen-
tagons. It calculates the intersection with each of these and then sorts these to discover the closest
point of intersection if any. Since this type of process is relatively common, MAVERIK provides a
function, mav_obj ect | nt er secti onsSort (MFS p 281), which performs this sort. Its prototype is:

int mav_objectlntersectionsSort (int nhits, MAV objectintersection *hits,
float scale, MAV objectlntersection *res);

where nhi t s is the number of possible intersections, hi t s is the array of intersections, scal e we will
address in a moment and r es is where to place the closest, if any, intersection. The return value of
this function is MAV_TRUE if an intersection exists, or MAV_FALSE otherwise.

Since we are only interested in the distance to intersection, transforming the line between the two
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coordinate frames makes no difference to the result, providing that the transformation only involves
rigid body transformations such as translation and rotation.

If the transformation involves a scaling operation, then the distance to intersection has to be scaled
appropriately. This is the purpose of the scal e field in the mav _obj ect | nt er secti onsSort function.
It is simply multiplied to the pt 1 value of the closest intersection to give the final value.

The scaling factor of a transformation matrix is returned by the function nav _mat ri xScal eGet (MFS
p 278). Since MAVERIK only allows uniform scaling about the three axes, the single return value is
sufficient to define this.

The intersection of a line with a pentagon is performed by creating a MAV_pol ygon (MFS p 21) to rep-
resent it. The MAVERIK polygon is fully described in Appendix B and comprises a number of points
np, a normal nor m and an array containing the vertices, vert. Once in this form, we can calculate
the line-polygon intersection with the function mav | i nePol ygonl nt er secti on (MFS p 276). Note
the use of mav_mal | oc (MFS p 145) and mav_free (MFS p 145) to allocate and release an area of
memory. These are little more than wrappers to the standard mal | oc and f r ee system calls, but the
MAVERIK versions automatically check for mal | oc failing (stopping execution if it does) and keeps
track of the amount of memory allocated and released to help with debugging memory leaks.

On execution, this example will appear to be very similar to the previous one. However, with careful
positioning of the mouse is should be apparent that the keyboard event callback is only be executed
when the mouse is truly, and not approximately, over the dodecahedron. Note that the printf has
been removed from the rendering callback.

7.7 Example 13: other object callbacks

So far we have defined draw, calculate BB and calculate object-line intersection callbacks. The first
two of these can viewed as the sensible minimum callbacks which need to be provided for a new object
class. The third, while recommended, improves selection accuracy but does not add any intrinsically
new functionality.

There are 6 other callbacks an object can define (by “object” we mean “a specified instance of the
object class™):

e delete: called when an object is deleted giving you the opportunity to free any memory it used
for example. Callback function prototype, MAV_cal | backDel et eFn (MFS p 44):

typedef int (*MAV_cal | backDel et eFn) (MAV_object *);

o identify: return an identifier string for the object. Callback function prototype, MAV cal | backl DFn (MFS
p 52):

typedef int (*MAV_cal |l backl DFn) (MAV object *, char **);
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e dump: print a summary of the object’s data structure to st dout . Callback function prototype,
MAV_cal | backDunmpFn (MFS p 46):

typedef int (*MAV_cal | backDunpFn) (MAV_object *);

e getUserdef: return a pointer to the user-defined data field of the object. Callback function
prototype, MAV_cal | backGet User def Fn (MFS p 51):

typedef int (*MAV_cal | backGet Userdef Fn) (MAV_object *, void ***);

e getMatrix: return a pointer to the transformation matrix field of the object. Callback function
prototype, MAV_cal | backGet Mat ri xFn (MFS p 49):

typedef int (*MAV_cal | backGet Matri xFn) (MAV_object *, MAV_matrix **);

e getSurfaceParams: return a pointer to the surface parameters field of the object. Callback
function prototype, MAV_cal | backGet Sur f acePar ansFn (MFS p 50):

typedef int (*MAV_cal | backGet SurfaceParamsFn) (MAV_object *, MAV_surfaceParans ***):

With the exception of delete, these callbacks are never executed by MAVERIK but rather by the appli-
cation itself. The identify and dump callbacks are basically for debugging purposes while the “get”
family of callbacks are used to obtain the data fields common to most objects. An example the “get
matrix” and “get surface parameters” callbacks was shown in eg7 to make the various objects “jump”
and change colour.

Example 13 extends Example 7 (page 40) to include the dodecahedron in the scene. The “get matrix”
and “get surface parameters” are implemented as follows so that the dodecahedron responds to the “j’,
‘c’ and ‘p’ keys to make it jump, change colour and be positioned by the mouse.

/* Function to return a pointer to the matrix field of the dodecahedron */
int mav_dodecCet Matri x( MAV_obj ect *o, MAV_matrix **m

{
MAV _dodec *dodec= (MAV_dodec *) nmav_object DataGet (0);

*me &dodec- >matri x;

return NMAV_TRUE
}

/* Function to return a pointer to the surfaceParans field of the dodecahedron */
int mav_dodecGet SurfaceParans (MAV_object *o, MAV_surfaceParams ***sp)

{
MAV_dodec *dodec= (MAV_dodec *) mav_obj ect DataGet (0);
*sp= &dodec- >sp;

return NMAV_TRUE
}
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Note that the rendering function for a pentagon has been modified to give a texture coordinate to each
verteX. MAVERIK’s texture coordinate data type, MAV_t exCoor d (MFS p 89), comprises two floats, s
and t . They are applied using the function mav_gf xTexCoor d (MFS p 272) which is analogous to the
OpenGL function gl TexCoor d2f . Using a set of textured surface parameters on an object which does
not define texture coordinates leads to undefined results.

The texture coordinates of a pentagon are arbitrarily chosen to be (sin(ang), cos(ang)) where ang
starts at 0 and increments by 72 degrees each vertex (72 = 360/5).

7.8 Example 14: redefining object callbacks

Of course there is nothing stopping you redefining the callbacks of the default MAVERIK objects to
be your own functions. Example 14 demonstrates this by taking Example 5 (page 35) and redefining
the draw callback for the box to be:

/* New box draw cal | back */
int myBoxDraw ( MAV_object *o, MAV drawinfo *di)
{

[* Print a message to the shell window */
printf ("I'n new box draw cal | back\n");

[* Call the original draw callback function to render the box */
mav_boxDraw (o, di);

return NMAV_TRUE

and this is set in the main function with:

/* Redefine draw cal | back for boxes */
mav_cal | backDrawSet (mav_win_all, mav_class_box, myBoxDraw);

Obviously, we could have chosen to actually render the object in the new draw callback maybe using
triangles instead of quads for the surfaces since this may be quicker on some particular hardware
configuration.

The names of the functions which act as the callbacks to the MAVERIK objects are given in Section B.
A novel feature of MAVERIK is that the source code to these is available to the application program-
mer to inspect, copy and modify. The source code to the 19 MAVERIK objects can be found in the
src/ obj ect s sub-directory of the MAVERIK distribution. As mentioned previously, the MAVERIK
objects should be seen as “defaults”: hopefully useful as is and a good starting point for customization
when they don’t fit the application’s exact requirements.
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7.9 Example 15: using “drawing information”

Example 15 modifies Example 10 (page 74) to use the drawing information in the draw callback to
apply level of detail (LOD) in rendering the dodecahedron.

The MAVERIK drawing information data structure, MAV_dr awl nf o, contains three fields: the view
frustum clip planes, cp (of data type MAV_cl i pPl anes (MFS p 61)), the view parameters, vp, and a
user definable field, user def .

The first of these fields could be used to determine which parts of an individual object are visible when
the object’s BB is only partially inside the view frustum. This, and the third field, would only be used
by advanced users.

It is the second field, the view parameters, which we shall use to apply LOD based on the distance of
the object from the eye position. Unfortunately, unlike a cylinder where you can change the faceting
accuracy, there is not a lot you can do to simplify a dodecahedron. Our approach, which is rather
contrived but shows the principles, is to define a new dodecahedron rendering callback as follows:

/* Function to render the dodecahedron with [evel of detail */
int mav_dodecDrawlOD (MAV object *o, MAV drawinfo *di)
{

MAV_dodec *dodec;

float dist;

/* Convert from generic Maverik object to the dodecahedron object */
dodec= (MAV_dodec *) mav_objectDataCGet (0);

[* Calcul ate distance from eyepoint */
dist= sqrt (mav_vectorDotProduct (di->vp.eye, di->vp.eye));

if (dist<50)

{
[* Full detail */
mav_dodecDraw (o, di);

printf ("Full detail\n");
}
else if (dist<100)
{
/* Draw as sphere */
MAV sphere s;
MAV_obj ect so;

. radi us= dodec- >r;
.nhverts= 4;

.nchi ps= 4;

. sp= dodec->sp;

.matri x= dodec->matrix;

w n unu unu n

so.the _class= mav_cl ass_sphere;
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so.the data= &s;
mav_sphereDraw (&so, di);
printf ("Sphere\n");

}
else if (dist<150)
{

[* Wre frame draw */
mav_wi ndowPol ygonMbdeSet (mav_win_all, MAV_POLYGON LI NE);
mav_dodecDraw (o, di);
mav_wi ndowPol ygonMbdeSet (mav_win_all, MAV_POLYGON FILL);

printf ("Wre frame\n");
}
el se

{
}

return NMAV_TRUE

printf ("Not drawing\n");

The distance from the eye point to the center of the dodecahedron is calculated. This calculation is

only valid since the dodecahedron is centered at the origin. If it were not, then the draw information

could be translated into the local coordinate frame using the function mav _dr awl nf oTr ansFr ame (MFS
p 269):

MAV_drawl nfo mav_draw nf oTransFrane (MAV_ drawinfo in, MAV_matrix mat);

This is completely analogous to nav_l i neTr ansFrane and translates a MAV_dr awl nf o data type be-
tween coordinate frames.

The LOD metric we apply is to render the dodecahedron in full detail if it is less than 50 units away; as
a sphere if the distance is greater than 50 but less than 100; a wireframe dodecahedron if the distance is
greater than 100 but less than 150; and not to draw it at all it if the distance is greater than 150. These
values are chosen to show, not hide, the changes. (And yes, we know, that the sphere is probably more
costly to render than the dodecahedron in full detail — but that isn’t the point!)

Note how a sphere is created to represent the dodecahedron. The function to render a sphere must be
called with a MAV_obj ect rather than directly with a MAV_sphere (MFS p 28). We could of course
register the sphere as a MAVERIK object, render it, and then delete it, but this is wasteful. A better
solution is to implicitly create a temporary MAVERIK object filling in the required fields of this data
structure ourselves. MAV_obj ect s consist of two fields: a MAV_cl ass pointer, t he _cl ass, to define the
methods which operate on the data portion, a void pointer t he dat a (the “the_" is included to avoid
a clash with the cl ass reserved keyword in C++). This type of MAVERIK object creation should be
used sparingly and strictly limited to the type of operation performed here, that is, where a temporary
object is required and used to perform a specific known task. You should never use MAVERIK objects
created in this manner to execute callbacks or add them to an SMS.
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The wireframe dodecahedron is drawn by toggling the state of the polygon mode using the function
mav_w ndowPol ygonMbdeSet (MFS p 237). (This is the same function called when pressing Shift-F8
to toggle between wireframe and filled mode).



Chapter 8

Customising navigation

In this chapter we illustrate how to write new navigator functions and detail exactly how navigation
events are detected and handled.

8.1 Navigator functions

Recall from Example 8 (page 48) that customization of the default mouse navigation behaviour is via
the function:

voi d mav_navi gati onMouseDef aul t Par ans( MAV_wi ndow *w, int but,
MAV navigatorFn x, float xls, float xas,
MAV navigatorFn y, float yls, float yas);

A MAV_navi gat or Fn (MFS p 76) has the following prototype:

typedef void (*MAV_navigat or Fn) (MAV_vi ewParans *vp, float am float |s, float as);

It modifies the contents of the view parameters, vp, by an amount, am amis scaled by | s to convert it
in to application units in order to apply linear transformations; and by as to convert it in to radians in
order to apply rotational transformations.

The controlling code for the default mouse navigation, which we will describe in Section 8.4, executes
the appropriate horizontal and vertical navigator functions with an amequal to the distance in pixels
that the mouse has travelled in that direction.

It is easiest to illustrate navigator functions by looking at how some of the default navigator func-
tions are implemented. The source code for these can be found in the mav_navi gators. ¢ in the
src/ navi gat i on sub-directory of the MAVERIK distribution.

mav_navi gat eTransX (MFS p 161) simply modifies the X coordinate of the eye point:

93
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voi d mav_navi gat eTransX( MAV_vi ewParans *vp, float amount, float I|s, float as)

{
[* x axis shift */
vp->eye. x += (anount*|s);

}

The two related navigator functions, mav_navi gat eTransY (MFS p 161) and mav _navi gat eTr ansZ (MFS
p 161), are similarly defined.

mav_navi gat eForwar ds (MFS p 161) applies each of mav _navi gat eTr ansX, nav _navi gat eTransY
and mav_navi gat eTr ansZ to move the eye point along the view direction vector:

voi d mav_navi gat eForwar ds( MAV_vi ewParans *vp, float amount, float Is, float as)

{

[* view direction shift */

mav_navi gateTransX(vp, vp->view. x * amount, |s, as);
mav_navi gateTransY(vp, vp->view.y * amount, |s, as);
mav_navi gateTransZ(vp, vp->view.z * amount, |s, as);

mav_navi gat eYaw (MFS p 161) illustrates how the view direction can be modified:

voi d mav_navi gat eYaw( MAV_vi ewParams *vp, float amount, float Is, float as)

{
[* yaw */
vp->vi ew= mav_vect or Rot at e(vp- >vi ew, vp->up, anount*as);
vp->right= mav_vectorRotat e(vp->right, vp->up, amount*as);

}

mav_vect or Rot at e (MFS p 213) rotates the first parameter about the second by an amount given by
the third parameter in radians.

8.2 Example 16: simple collision detection

Example 16 (eg16. c) modifies Example 13 (page 87) to include the following navigator function
which performs simple collision detection:

/* Navigator function with collision detection */
voi d myNavi gat or (MAV_vi ewParanms *vp, float am float Is, float as)
{

MAV_vi ewPar ams ori g;

MAV line In;

MAV_obj ect *o;

MAV_obj ect I ntersection oi;
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float dist;

/* Copy the original view parameters */
orig= *vp;

/* Navigate forwards */
mav_navi gat eForwards(vp, am |s, as);

/* Calculate the direction and distance of travel */
In.pt= orig.eye;

I'n.dir= mav_vector Sub(vp->eye, orig.eye);

dist= sqrt(mav_vectorDot Product(In.dir, In.dir));
In.dir= mav_vectorNormalize(ln.dir);

[* Check if any objects intersect this line */
if (mav_SMSIntersectLineAl (mav_win_current, In, &oi, &0)) {
I* Is the intersection closer than the distance travelled? */
if (oi.ptl < (dist+3.0)) {
/* Collision occurred, so use original view parameters */
*vp= orig;
printf("Collision occurred\in");
}
}
}

The default mouse navigation is made to use this navigator function by calling:

/* Use custom zed navigation */

mav_navi gat i onMouseDef aul t Parans(mav_win_al |, MAV_LEFT_BUTTON,
mav_navi gat eYawri xedUp, 0.001, -0.00005,
myNavi gat or, 0.001, 0.00005);

The collision detection works by intersecting all SMS’s (in other words, all objects) with the line
which joins the eyepoint before and after the navigation has been applied. If any object intersects this
line, and the distance to the intersection point is less than the distance travelled, then a collision has
occurred and the navigator does not modify the view parameters. Note that an arbitrary constant is
used to prevent the eyepoint from getting too close to an object which would otherwise fill the field of
view and disorientate the user.

This is a very simplistic implementation of collision detection. Collision only occurs if the movement
in the eyepoint intersects an object. A more realistic test would be to check that a particular volume
of space, representing the users body, does not intersect an object.

Furthermore, collision detection is only performed on one navigator function, and it would be imprac-
tical to implement collisions detection in this manner for all the others.

We will address these two issues in the remainder of this chapter.
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8.3 Events

In this section we describe how mouse events trigger navigation.

MAVERIK has two separate mouse event callback functions. The one described so far, introduced
in Example 5 (page 35), is used by the application to define an object’s response to mouse events.
The other is reserved specifically for implementing mouse navigation. It is defined by the second
argument of mav_navi gat i onMouse and is triggered when any mouse button events occurs anywhere
in the specified window.

When a mouse button event occurs, the function set with nav _navi gat i onMouse is executed. If no
such function was set or its return value was MAV_FALSE, then the mouse event callback function set
with mav _cal | backMbuseSet is also executed if its applicable.

A mouse event callback to implement navigation could be defined as follows:

int nyXOrig, nyYOig;

voi d nyMove(void *ignored)

{
float xdiff, ydiff;

[* Calcul ate anmount nouse has noved from navigation origin */
xdi ff= mav_mouse_x-nyXOri g;
ydi ff= -(mav_nouse_y-nyYOrig);

/* Apply navigator functions */
mav_navi gateYaw(mav_wi n_current->vp, xdiff, 0.01, -0.0005);
mav_navi gat eForwar ds(mav_wi n_current->vp, ydiff, 0.01, 0.0005);

}
int myNav(MAV_object *o, MAV_nouseEvent *ne)
{
if (me->novenent ==MAV_PRESSED)
{
/* Note origin of navigation */
myXOrig= ne->x;
myYOrig= ne->y;
[* Start executing myMve function at begi nning of frame */
mav_franeFnOAdd( myMoveFn, NULL);
}
el se
{

[* Stop executing myMve function */
mav_franeFnORnv(myMove, NULL);

}

/* Al'so pass event onto application defined nouse event callback fn */
return MAV_FALSE;
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The mouse event callback is set using:
mav_navi gati onMouse(nmav_wi n_all, nyNav);

The principle here is that when a mouse event occurs, the mouse position is noted and a function
is set to be executed at the beginning of every frame. This function calculates the horizontal and
vertical displacements between the current mouse position and its noted position. These then act as
the amounts by which the navigator func