SQLTEX
v1.b

Oscar van Eijk

November 21, 2007

Contents

1 Introduction
1.1 Known limitations

2 Installing SQLTEX
2.1 Configuration L L
2.2 Createreplace files

3 Write your SQLTEX file

3.1 SQLstatements
3.2 Opening the database
3.3 Reading asingle field. oo

3.3.1 Define variables
3.4 Readingrowsofdata.

3.4.1 Output rows on seperate lines
3.5 Output multiple documents
3.6 Update databaserecords

4 Process your SQLTEX file
4.1 Parameters e
4.2 Command line options

5 SQLTEX errors and warnings

6 Copyright and disclaimer

10
10
10

11

13

1 Introduction

SQLTEX is a preprocessor to enable the use of SQL statements in BTEX. It is
a perl script that reads an input file containing the SQL commands, and writes
a WTEX file that can be processed with your ITEX package.

The SQL commands will be replaced by their values. It’s possible to select a
single field for substitution substitution in your BTEX document, or to be used
as input in another SQL command.

When an SQL command returns multiple fields and or rows, the values can
only be used for substitution in the document.

1.1 Known limitations

SQLTEX reads only one input file; the WTEX \include directive is ignored.

Currently, only 9 command- line parameters (1-9), and 10 variables (0-9)
can be used in SQL statements.

Replace files can hold only 1,000 items.

e In multidocument mode, only one parameter can be retrieved.

2 Installing SQLTEX

Before installing SQLTEX, you need to have it. The latest version can always
be found at http://freeware.oveas.com/sqltex. The download consists of this
documentation, an installation script for Unix (install), and the Perl script
SQLTeX, and a replace- file (SQLTeX_r.dat) for manual installation on non- unix
platforms’.

On a Unix system, make sure the file install is executable by issueing the
command:
bash$ chmod +x install
then execute it with:
bash$./install

The script will ask in which directory SQLTEX should be installed. If you are
logged in as ‘root’, the default will be /usr/local/bin, otherwise the current
directory.
Make sure the directory where SQLTEX is installed is in your path.

For other operating systems, there is no install script, you will have to install
it manually.

On OPENVMS it would be something like:
$ SET FILE/PROTECTION=(W:RE) SQLTEX.Z2

Lon Unix, this file will be generated by the install script
2Note the dot (“.’) at the end of the file; on OPENVMS systems, all files must to have a
file extension, which can be empty, in which case the filename ends with a dot.

$ COPY SQLTEX. SYS$SYSTEM:

$ COPY SQLTEX_R.DAT SYS$SYSTEM:

However, on OPENVMS you also need to define the command SQLTEX by setting
a symbol, either in the LOGIN.COM for all users who need to execute this script,
or in some group— or system wide login procedure, with the command:

$ SQLTEX :== "PERL SYS$SYSTEM:SQLTEX."

2.1 Configuration

The program starts with a configuration section. The default values are dis-
played here:

#

Configurable part

#

$main: :dbdriver = ’mysql’; # Pg, Sybase, Oracle, Ingres, mSQL, ...

#

$main: :texex = ’tex’; # default tex- file extension

$main: :stx = ’_stx’; # file name extension to insert before the last ’.°

#

$main: :cmd_prefix
$main: :sql_open
$main::sql_field
$main: :sql_row
$main: :sql_params
$main: :sql_update
#

’sql’; # prefix for sql-commands (\sql<command>[]{})

’db’; # database declaration, e.g. \sqldb[user,passw]{database}

’field’; # select a single field from db, e.g. \sqlfield{select field from....
‘row’; # select rows from db, e.g. \sqlfield{select * from....}

’setparams’; # set the input paramaterlist in multidocument mode.

’update’; # update rows in db, e.g. \sqlupdate{update table set....}

$main::less_av =1; # Is the command ’less’ available on this system ?
$main: :more_av =1; # Is the command ’more’ available on this system 7
#

$main: :repl_step = "OSTX"; # Temporary value for replace

#

Do not make any modifications below this line

These values are default values; most values can be overwritten using com-
mand line options (see section 4.2). When the command line options are omit-
ted, the default values from the configuration section will be used.

$main::dbdriver Database driver. The default is mysql. Other supported
databases are Pg, Sybase, Oracle, Ingres, mSQL and PostgreSQL, but
also others might work without modification.
If your database driver is not support, look for the function db_connect
to add support (and please notify me :)

$main::texex The default file extension for KTEX file. When SQLTEX is
called, the first parameter should be the name of the input file. If this file-
name has no extension, SQLTEX looks for one with the default extension.

$main::stx An output file can be given explicitly using the ‘-0’ option. When
omitted, SQLTEX composes an output file name using this string.
E.g, if your input file is called db-doc.tex, SQLTEX will produce an out-
putfile with the name db-doc_stx.tex.

$main::cmd_prefix SQLTEX looks for SQL commands in the input file. Com-
mands are specified in the same way all BTEX commands are specified: a
backslash (\) followed by the name of the command.
All SQLTEX commands start with the same string. By default, this is the
string sql. When user commands are defined that start with the same
string, this can be changed here to prevent conflicts.

$main::sql_open This string is appended to the $main::cmd_prefix to get the
complete SQLTEX command for opening a database.
With the default configuration this command is “\sqldb”.

$main::sql_field This string is appended to the $main::cmd_prefix to get the
complete SQLTEX command to read a single field from the database.
With the default configuration this command is “\sqlfield”.

$main::sql_row This string is appended to the $main::emd_prefix to get the
complete SQLTEX command to read one or more rows from the database.
With the default configuration this command is “\sqlrow”.

$main::sql_params This string is appended to the $main::cmd_prefix to get
the complete SQLTEX command to retrieve a list if fields that will be used
as parameters ($PAR1, see section 4.1) in the multidocument environment
(see section 3.5).
With the default configuration this command is “\sqlparams”.

$main::sql_update This string is appended to the $main::cmd_prefix to get
the complete SQLTEX command to update one or more rows in the database.
With the default configuration this command is “\sqlupdate”.

$main::less_av & $main::more_av These settings are used to determin how
the help output should be displayed. If the command ‘less’ is available on
the current system, the output will be parsed through this program. Oth-
erwise the output will be parsed through the program ‘more’ if availeble.
Both programs are usually available on Unix system (more is standard on
most Unix systems), but ports for other operating systems are available
as well.
Set the values to “0” for the program(s) that is (are) not available, or if
you don’t want to use it.
If none of these programs is available, the help output is plain echoed to
the display.

$main::repl_step Replacing strings (see section 2.2 below) is done two steps,
to prevent values from being replaced twice. This setting—followed by a
three-digit integer - “000” to “999”—is used in the first step and replaces
values from the first column. In the second step, values from the second
column replace the temporary value.
If the first column in the replace file contains a character sequence that
occurs in this temporary value, or if query results might contain the full

string followed by three digits, this value might need to be changed in
something unique.

2.2 Create replace files

Replace files can be used to substitute values in the output of your SQL com-
mands with a different value. This is especially usefull when the database con-
tains characters that are special characters in IATEX, like the percent sign (‘%’),
underscore (*.’) etc.

When SQLTEX is installed, it comes with a standard file—SQLTeX_r.dat—
which is located in the same directory where SQLTeX is installed, with the
following replacements:

$ \$

_ _

yA \%

\&
\texttt{<}
\texttt{>}
\{

\}

\#

\ {3
\ensuremath{\backslash}

tH Y AV AR

~

These are all single character replacements, but you can add your own re-
placements that consist of a single character or a character sequence. To do so,
enter a new line with the character(string) that should be replaced, followed by
a TAB- charater (not blanks!) and the character(string) it should be replaced
with.

If the first non-blank character is a semicolon (¢;’), the line is considered a
comment line. Blank lines are ignored.

The contents of the file are case sensitive, so of you add the line:
LaTeX \LaTeX\
the word “LaTeX” will be changed, but “latex” is untouched.

Different replace files can be created. To select a different replace file for a
certain SQLTEX source, use the commandline option ‘-r filename’. To disable
the use of replace files, use ‘-rn’.

3 Write your SQLTEX file

For SQLTEX, you write your I#TEX document just as you're used to. SQLTEX
provides you with some extra commands that you can include in your file.

The basic format® of an SQLTEX command is:
\sqlcmd [options] {SQL statement}

All SQLTEX commands can be specified anywhere in a line, and can span
multiple lines. When SQLTEX executes, the commands are read, executed, and
their results—if they return any—are written to the output:

Input file: Output file:
\documentclass[article] \documentclass[article]
\pagestyle{empty} \pagestyle{empty}
\sqldb[oscar] {mydb}

\begin{document} \begin{document}

Above you see the SQLTEX command \sqldb was removed. Ounly the com-
mand was removed, not the newline character at the end of the line, so an empty
line will be printed instead. The example below shows the output is an SQLTEX
command was found on a line with other BTEX directives:

Input file: Output file:
\documentclass[article] \documentclass[article]
\pagestyle{empty}\sqldbloscar] {mydb} \pagestyle{empty}
\begin{document} \begin{document}

In these examples the SQLTEX commands did not return a value. When
commands actually read from the database, the returned value is written in-
stead:

Input file: Output file:

This invoice has \sqlfield{SELECT This invoice has 4 lines
COUNT(*) FROM INVOICE_LINE

WHERE INVOICE NR = 12345} lines.

3.1 SQL statements

This document assumes the reader is familiar with SQL commands. This section
only tells something about implementing them in SQLTEX files, especially with
the use of command parameters and variables. Details about the SQLTEX
commands will be described in the next sections.

Let’s look at a simple example. Suppose we want to retreive all header
information from the database for a specific invoice. The SQL statement could
look something like this:

SELECT * FROM INVOICE WHERE INVOICE_NR = 12345;

3in this document, in all examples will be asumed the default values in the configuration
section as described in section 2.1, have not been changed

To implement this statement in an SQLTEX file, the \sqlrow command should
be used (see section 3.4):

First, it is important to know that SQL statements should not contain
the ending semicolon (;) in any of the SQLTEX commands. The command
in SQLTEX would be:

\sqlrow{SELECT * FROM INVOICE WHERE INVOICE_NR = 12345}

Next, SQLTEX would be useless if you have to change your input file every

time you want to generate the same document for another invoice.

Therefore, you parameters or variables can be used in your SQL statement.
Parameters are given at the command line (see section 4.1), variables can be
defined using the \sqlfield command as described in section 3.3.1.

Given the example above, the invoice number can be passed as a parameter
by rewriting the command as:

\sqlrow{SELECT * FROM INVOICE WHERE INVOICE_NR = $PAR1}
or as as variable with the code line:
\sqlrow{SELECT * FROM INVOICE WHERE INVOICE_NR = $VARO}

Note you have to know what datatype is expected by your database. In the
example here the datatype is INTEGER. If the field “INVOICE_NR” contains a
VARCHAR type, the $PARamater or $VARiable should be enclosed by quotes:
\sqlrow{SELECT * FROM INVOICE WHERE INVOICENR = ’$PAR1’}

3.2 Opening the database

Before any information can be read from a database, this database should be
opened. This is done with the \sqldb command. \sqldb requires the name
of the dabatase. Optionally, a username and password can be given. When
omitted, SQLTEX assumes no username and password is required to connect to
the database (the user that executes SQLTEX should have access to the specified
database).
The format of the command is:
\sqldb [username,password] {database}

The command can be used anywhere in your input file, but should occur
before the first command that tries to read data from the database.

3.3 Reading a single field

When a single field of information is to be read from the database, the command
\sqlfield is used. By default, the command in the inputfile is replaced by its
result in the outputfile.
The SQL command is enclosed by curly braces. Square brackets can optionally
be used to enter some extra options. Currently, the only supported option is
setvar (see section 3.3.1).
The full syntax or the \sqlfield command is:
\sqlrowloptions]{SELECT fieldname FROM tablename WHERE your where-clause}

By default, the SQLTEX command is replaced with the value returned by the
SQL query. This behaviour can be changed with options.

3.3.1 Define variables

The \sqlfield can also be used to set a variable. The value returned by the
SQL query is not displayed in this case. Instead, a variable is created which can
be used in any other SQL query later in the document (see also section 3.1).

Therefore, the option [setvar=n] is used, where n is an integer between 0
and 9.

Suppose you have an invoice in ITEX. SQLTEX is executed to retrieve the
invoice header information from the database for a specific customer. Next, the
invoice lines are read from the database.

You could pass the invoice number as a paramater to SQLTEX for use in
your queries, but that could change every month. It is easier to :

e pass the customer number as a parameter,

e retrieve the current date (asuming that is the invoice date as stored in the
database by another program), and store it in a variable:
\sqlfield[setvar=0]{SELECT DATE_FORMAT(NOW(), "%Y-%m-%d")}
This creates a variable that can be used as $VARO,

e retrieve the invoice number using the customer number (a command line
parameter, see also section 4.1) and the variable containing the invoice
date. Store this invoice number in $VAR1:
\sqlfield[setvar=1]{SELECT INVOICE_NR FROM INVOICES
WHERE CUST.NR = ’$PAR1’ AND INVOICE DATE = ’$VARO’}

e use $VAR1 to retrieve all invoice information.
The SQL queries used here do not display any output in your A TEXdocument.

3.4 Reading rows of data

When an SQL query returns more information than one single field, the SQLTEX
command \sqlrow should be used. As with the \sqlfield, command, SQLTEX
replaces the command with the values it returns, but \sqlrow accepts different
options for formating the output.

By default, fields are separated by a comma and a blank (¢, ’), and rows by
a newline character (‘\\’). To change this, the options “f1ldsep” and “rowsep”
can be used.

e.g. In a tabular enviroment the fields should be seperated by an amphe-
sand (&), perhaps a line should seperate the rows of information. (\\ \hline).
To do this, the options can be used with \sqlrow as shown here:

\sqlrow[fldsep=&,rowsep=\\ \hline] {SELECT I.LINE NR, A.ARTICLE_NR, A.PRICE,
I.AMOUNT, (A.PRICE * I.AMOUNT) FROM ARTICLE A, INVOICE_.LINE I WHERE
I.INVOICENR = $VAR1 AND I.ARTICLENR = A.ARTICLE.NR}

This will produce an output like:
9712 & 12 & 1 & 12 \\ \hline
4768 & 9.75 & 3 & 29.25 \\ \hline
4363 & 1.95 & 10 & 19.5 \\ \hline
8375 & 12.5 & 2 & 25 \\ \hline

3.4.1 Output rows on seperate lines

Some ETEX packages require input on a seperate line. If this output is to be
read from a database, this can be set with the rowsep option using the fixed
text “NEWLINE”.

3.5 Output multiple documents

A single input file can be created to generate more output files. This options
retrieves the first parameter (see section 4.1) from the database (ignoring any
parameters that where given on the command line!).

The input document must contain the command \sqlsetparams (in the de-
fault configuration) without any options. The query that follows can return an
unlimited number of rows all containing exactly 1 field:

\sqlsetparams{SELECT INVOICE NR FROM INVOICES WHERE PAY DATE = NULL}

By processing this command, SQLTEX builds a list with all values retrieved
and processes the input file again for each value.
In those runs, the queries are executed as described in the previous sections,
using the value as a parameter:
\sqlrow{SELECT * FROM INVOICES WHERE INVOICENR = $PAR1}

To enable the multidocument mode, the command line switch -m must be
given and no parameters are allowed.
Without the -m switch, a parameter can be given and a single output document
will be created, ignoring the \sqlsetparams command.

Output filenames will be numbered filename_1.tex to filename_n.tex.

3.6 Update database records

Since version 1.5, SQLTEX supports database updates as well:
\sqlupdate{UPDATE INVOICES SET REMINDERS = REMINDERS + 1, LAST_REMINDER
= NOW() INVOICE.NR = $VAR1}

This command accepts no options.

4 Process your SQLTEX file

To process you SQLTEX file and create a IMTEX file with all information read
from the database, call SQLTEX with the parameter(s) and (optional) command-
line options as described here:

4.1 Parameters

SQLTEX accepts more than one parameter. The first parameter is required;
this should be the input file, pointing to your BTEX document containing the
SQLTEX commands.

By default, SQLTEX looks for a file with extension ‘.tex’.

All other parameters are used by the queries, if required. If an SQL query
contains the string $PARn?, it is replaced by that parameter (see also sec-
tion 3.1).

4.2 Command line options
SQLTEX accepts the followint command- line options:

-E string replace input file extension in outputfile: input.tex will be input. string
For further notes, see option -e below

-IN NULL return values allowed. By default SQLTEX exits if a query returns an
empty set.

-P prompt for database password. This overwrites the password in the input
file.

-U wuser database username. This overwrites the username in the input file.
-V print version number and exit.

-e string add string to the output filename: input.tex will be inputstring.tex.
This overwrites the configuration setting $main: :stx
In string, the values between curly braces {} will be substituted:
Pn parameter n
M current monthname (Mon)
W current weekday (Wdy)
D current date (yyyymmdd)
DT current date and time (yyyymmddhhmmss)

T current time (hhmmss)

4where n is a number between 1 and 9. Note parameter ‘0’ cannot be used, since that
contains the filename!

10

e.g., the command ‘SQLTeX -e _{P1}_{W} my_file code’ willread ‘my_file.tex’
and write ‘myfile_code_Tue.tex’ The same command, but with option

-E would create the outputfile myfile._code _Tuesday By default (with-

out —e or -E) the outputfile myfile stx.tex would have been written.

The options -E and -e cannot be used together or with -o.

-f force overwrite of existing files. By default, SQLTEX exists with a warning

message it the outputfile already exists.

-h print this help message and exit.

-m Multidocument mode; create one document for each parameter that is re-

trieved from the database in the input document (see section 3.5). This
option cannot be used with -o.

-0 file specify an output file. Cannot be used with -e or -E.

-p prefix prefix used in the SQLTEX file. Default is sql (see also section 2.1

on page 4. This overwrites the configurarion setting $main: :cms_prefix.

-q run in quiet mode.

-r replace Specify a file that contains the replace characters (see section 2.2).

This is a list with two TAB- seperated fields per lione. The first field holds
a string that will be replaced in the SQL output

-rn Do not use a replace file. -rn and -r file are handled on the same order

in which they appear on the commandline and overwrite each other.

-s server SQL server to connect to. Default is localhost.

5 SQLTEX errors and warnings

no input file specified

SQLTEX was called without any parameters.
Action: Specify at least one parameter at the commandline. This parameter
should be the name of your input file.

File input filemame does not exist

The input file does not exist.
Action: Make sure the first parameter points to the input file.

outputfile output filename already exists

The outputfile cannot be created because it already exists.
Action: Specify another output filename with command line option -e, -E or
-0, or force an overwrite with option -f (see also section4.2).

no database opened at line line nr

11

A query starts at line line nr, but at that point no database was opened yet.
Action: Add an \sqldb command prior to the first query statement.

insufficient parameters to substitute variable on line line nr

The query starting at line line nr uses a parameter in a WHERE- clause with
$PARn, where n is a number bigger than the number of parameters passed to

SQLTEX

Action: Specify all required parameters at the command line.

trying to substitute with non existing on line line nr

The query starting at line line nr requires a variable $VARn in its WHERE- clause,
where n points to a variable that has not (yet) been set.
Action: Change the number or set the variable prior to this statement.

trying to overwrite an existing variable on line line nr

At line line nr, a \sqlfield query tries to set a variable n using the option
[setvar=n], but $VARn already exists at that point.
Action: Change the number.

no result set found on line line nr

The query starting at line line nr returned a NULL value. If the option -N
was specified at the commandline, this is just a warning message. Otherwise,

SQLTEX exits.

Action: None.

result set too big on line line nr

The query starting at line line nr, called with \sqlfield returned more than
one field.
Action: Change your query or use \sqlrow instead.

no parameters for multidocument found on line line nr

SQLTEX is executed in multidocument mode, but the statement on line line nr
did not provide any parameters for the documents.
Action: Check your query.

too many fields returned in multidocument mode on line nr

In multidocument mode, the lis of parameters retrieved on line line nr returned
more than one fiels per row.
Action: Check your query.

unrecognized command on line line nr

At line line nr, a command was found that starts with “\sql”, but this command
was not recognized by SQLTEX"

Action: Check for typos. If the command is a user- defined command, it will
conflict with default SQLTEX commands. Change the SQLTEX command prefix
(see section 2.1).

12

no sql statements found in input filename

SQLTEX did not find any valid SQLTEX commands.
Action: Check your input file.

6 Copyright and disclaimer

The latest release is always available at http://freeware.oveas.com/sqltex For
bugs, questions and comments, please use the forum available at
http://freeware.oveas.com/sqltex/forum.html.

Copyright(©) 2001-2007 - Oscar van Eijk, Oveas Functionality Provider

This software is subject to the terms of the LaTeX Project Public License; see
http://www.ctan.org/tex-archive /help/Catalogue/licenses.lppl.html.

13

