The readarray Package

Routines for inputting formatted array data and recalling it on an
element-by-element basis.
Currently supports 2-D and 3-D array structures

Steven B. Segletes
steven.b.segletes.civ@mail.mil

May 9, 2013
vl.2

1 Description and Commands

The readarray package allows for the inputting of data arrays (numeric, string,
or even formatted) in either file form or \def form, such that the elements of
multiple arrays can be specified and later recalled in an orderly fashion, on a
cell-by-cell basis. Routines have been developed to support the storage and
recall of both 2-D and 3-D arrays.

The commands included in this package help the user input data, define it in
terms of array elements and recall those elements at will. Those commands are:
\readdef{filename}{token}
\showrecord [error] {record number}
\copyrecords{identifier}
\readArrayij{token}{identifier}{ columns}
\readArrayijk{token}t{identifiert{rows{ columns}
\Arrayij [error] {identifier}{row}{ column}
\Arrayijk [error] {identifier}{plane}{ row}{ column}
\arrayij{identifier}{row}{column}
\arrayijk{identifier}{plane}{rowlr{column}

Several strings of fixed name are defined through the use of this package which
are accessible to the user:

\nrows

\ncols

\nrecords

\recordindex

In addition to the strings of fixed name, there are various strings created whose
name is a function of the user-specified data, such as

\identifierCELLS

\identifierPLANES

\identifierROWS

\identifierCOLS
where identifier is the alphabetic-character string by which you have designated
a particular array. They will be discussed in relation to the commands that
create these strings.

Support routines which are generally not required directly by the user for the
specification and recall of data arrays, but which are useful to this package and
in a variety of other circumstances include the following:

\getargsC{token or string}t

\arginder

\narg

\showargs [number]

\def\converttilde{T or F}

[THIS SPACE INTENTIONALLY LEFT BLANK]

\readdef

2 Data Structure

The first requirement is to lay out a format for the data interface to this package.
The readarray package is set up to digest space-separated data. The format for
the data organization is as follows, for 2-D arrays:

An Aqo A13 s Al(columns)
A21 A22
A(rows)l A(rows)Q A(rows)?) i A(rows)(columns)

and for 3-D arrays:

A1 Aq12 Aq13 <+ Al1(columns)

A121 A122 ‘e

Al(rows)l Al(rows)2 Al(rows)B v Al(rows)(columns)

Aoiy Az A213 cee A21(Columns)

A221 A222

A2(r0ws)1 A2(rows)2 AQ(rows)B cee A2(r0ws)(columns)
A(planes)ll A(planes)lQ A(planes)13 cee A(planes)l(columns)
A(planes)21 A(planes)QQ

A(planes)(rows)l A(planes)(rows)2 A(planes)(rows)?) cee A(planes)(rows)(columns)

3 Getting Data into Array Structures

One can provide data to be digested by this package in one of two ways: either
through an external file, or by way of “cut and paste” into a \def. If one chooses
the external file approach, the command \readdef is the command which can
achieve this result. The command takes two arguments. The first is the file in
which the data is stored, while the second is the token into which the data will
be placed, for example

\readdef{data.txt}{\dataA}

\ncols
\nrows
\nrecords

In this case, the contents of the file data.txt will be placed into the token
\dataA. At this point, the data is still not digested into a data “array,” but
merely stuffed into a \def (a \protected@edef actually). Thus, there is no
requirement that carriage returns be part of the input file after each row of
data, nor that blank lines exist between planes of data (if the data is 3-D).
However, there is a reason to do so, nonetheless. In particular, for datafiles that
are organized in the preferred fashion, for example:

A111 A112 A113 A114
A121 A122 A123 A124
A131 A132 A133 A134
A211 A212 A213 A214
A221 A222 A223 A224
A231 A232 A233 A234

a \readdef will cause the following strings to be set: \ncols and \nrows, in this
case to values of 4 and 3, respectively. Such data could prove useful if the array
size is not known in advance. When \readdef is invoked, a string \nrecords
will also be set to the number of file records processed by the \readdef com-
mand.

In lieu of \readdef, a generally less preferred, but viable way to make the data
available is to cut and paste into a \def. However, because a blank line is not
permitted as part of the \def, a filler symbol (% or \relax) must be used in its
place, if it is desired to visually separate planes of data, as shown in the \def
example at the top of the following page. Note that the % is also required at the
end of the line containing \def, in order to guarantee that, in this case, A111 is
the first element of data (and not a linebreak). However, unlike \readdef, this
definition will set the values of neither \ncols nor \nrows.

\def{\dataA}{%

Al111 A112 A113 A114
A121 A122 A123 A124
A131 A132 A133 A134
%

A211 A212 A213 A214
A221 A222 A223 A224
A231 A232 A233 A234
}

Once the data to be placed into an array is available by way of either \readdef
or \def, the command to digest the data into an array is either \readArrayi j
(or \copyrecords), in the case of 2-D data, or \readArrayi jk, for 3-D data.

\readArrayi j

\copyrecords

\readArrayijk

3.1 Creating 2-D Arrays

In the case of \readArrayij, the command takes three arguments. The first
is the token into which the data had previously been stuffed. The second is an
alphabetic-string identifier for the array, which can be one or more characters
in length. Finally, the last argument is the number of columns in the array. If
the data had been read by way of \readdef, the string \ncols may be used to
signify this value.

3.2 Creating Pseudo-1-D Arrays

While the readarray package has no explicit provisions for 1-D arrays, one could
use the 2-D \readArrayij command, with the third argument set to a value
of unity {1}, instead of \ncols. In this way, each space-separated word of the
input file will be set to a new data row. While this approach is useful for sticking
each “word” of input data into its own single-column data row, the command
\copyrecords can be used to stick the individual “file records” from the most
recent \readdef into a 2-D array of single-column width. The \copyrecords
command takes as its argument an alphabetic string identifier to associate with
the array of data. Its use accomplishes two things: 1) it allows records (rather
than words) of a file to be accessed using the general \Arrayij nomenclature
to be discussed shortly; and 2) it saves the most recently read file data into its
own data structure, so that it is not overwritten by a subsequent invocation of
\readdef.

3.3 Creating 3-D Arrays

For the 3-D case, \readArrayijk takes an additional argument, in compari-
son to \readArrayij. The first two arguments are identical to \readArrayij;
namely, the token containing the data and an identifier for the array. The third
argument is the number of rows in the array, while the fourth argument is the
number of columns. Likewise, if \readdef had been used on a properly formed
input file, both \nrows and \ncols may be used to supply the third and fourth
arguments.

While it may be easily envisioned that the array data is numerical, this need not
be the case. The data may be text, and even formatted text. Furthermore, one
may introduce space characters into the data of individual cells through the use
of hardspaces (), since normal white space would otherwise be interpreted as
a data separator. Thus, given the following definitions and array initialization,

\identifierCELLS
\identifierPLANES
\identifierROWS
\identifierCOLS

\def\I#1{\textit{#1}}

\def\dataC{%

\I{am} \I{are} have~\I{been} have~\I{been}

\I{are} \I{are} have~\I{been} have~\I{been}

\I{is} \I{are} has~\I{been} have~\I{been}

%

\I{was} \I{were} had™\I{been} had~\I{been}

\I{were} \I{were} had~\I{been} had~\I{been}

\I{was} \I{were} had~\I{been} had~\I{been}

%

will~“\I{be} will~\I{be} will~have~\I{been} will~have~\I{been}
will™\I{be} will~\I{be} will~have~\I{been} will~“have~\I{been}
will™“\I{be} will~\I{be} will~have~\I{been} will~have~\I{been}
}

\readArrayijk{\dataC}{tobeConjugation}{3}{4}

multi-word sequences will be placed into the individual array elements of an
array identified as “tobeConjugation,” with the appropriate italic emphases ap-
plied to the words.

If, perchance, a row is only partially defined by \readArrayij or a plane is only
partially defined by \readArrayijk, the partial data is discarded.

3.4 Treatment of Hardspaces

For either the 2-D or 3-D \readArray commands, the interpretation of hardspaces
(7) as data is specifically designed to allow multi-word data entries. However,
one may choose to turn this feature off by setting the flag

\def\converttilde{T}

which will have the effect of converting hardspaces to regular space tokens.

4 Recalling Data from Array Structures

While one has specified the number of columns and/or rows associated with the
\readArray. .. initialization, those numbers may not yet be known to the user,
if the values employed came from the \readdef initializations of \ncols and
\nrows. Therefore, the \readArray. .. commands also set the following strings:
\identifierCELLS, \identifierPLANES\identifierROWS, and \identifierCOLS, where
identifier is the array identifier string that was supplied to the \readarray. ..
command. Note that it is the case, for 3-D arrays, that

\Arrayij
\Arrayijk

\recordindex

\showrecord

\identifierCELLS = \identifierPLANES x \identifierROWS x \identifierCOLS

For the “tobeConjugation” example of the prior section, 36=3x3x4. Likewise,
for 2-D arrays

\identifierCELLS = \identifierROWS X \identifierCOLS

To retrieve the data from the array, one need employ either the \Arrayij or
\Arrayijk commands, depending on whether the array is 2-D or 3-D. The first
mandatory argument to either of these commands is the array identifer. The
remaining arguments to these commands are simply the row and column, in the
case of the 2-D \Arrayij, or else the plane, row, and column, in the case of the
3-D \Arrayijk.

Thus, in the case of the earlier example involving conjugation of the verb to be,

the second-person future-perfect tense of the verb is given by
\Arrayijk{tobeConjugation}{3}{2}{4},

which yields “will have been.”

For pseudo-1-D arrays, either created with \copyrecords or else using the
\readarray command with the third argument set to unity, access to these
arrays is achieved by way of \Arrayij, setting the column argument to unity.

There are also strings defined, one for each record that was read from the file,
with the name \recordindezr, where index is the record number expressed in
roman numerals. Thus in the example from section 3, \recordii would contain
the string “A121 A122 A123 A124”. However, such syntax provides no bounds
checking.

An alternate (perhaps preferred) way to access one of the file records read
during the most recent \readdef, in a way which provides bounds checking, is
to use the \showrecord command. For the section 3 example, the alternative to
executing \recordii would be to use \showrecord{2}. The optional argument
to this command provides an alternative error message if the record requested
is out of bounds. The default error messages for negative or excessive record
numbers are, respectively:

Only positive showrecords permitted

RECORD=10 exceeds records read

Unlike the \Arrayij and \Arrayijk commands already discussed, the record
data from a given file read will only be available until the next invocation of
\readdef. For this reason, the command \copyrecords was introduced to
convert file-record data into an array data structure.

While the user is developing his application involving the readarray package,
there may accidentally arise the unintended circumstance where an array ele-

\arrayij
\arrayijk

\getargsC

\arginder
\narg

\showargs

ment is asked for which falls outside the array bounds. Like \showrecord, the
\Arrayij and \Arrayijk commands also employ bounds checking. These com-
mands check for four error conditions that, by default, produce the following
€rTor messages:

PLANE=9 exceeds limit for tobeConjugation
ROW=9 exceeds limit for tobeConjugation

COL=9 exceeds limit for tobeConjugation

which are written in lieu of a valid array element datum. While such messages
help in debugging, the user may desire an error tailored to the application. The
optional argument to both \Arrayij and \Arrayijk replaces the default error
messages and is to be printed if any error condition arises. It could be a blank
[1, a black box [\rule{lex}{1lex}], or anything else that makes sense for the
application.

5 Alternate Accessing Commands if \edef is Re-
quired

The\Arrayij and \Arrayijk commands may, of course, be placed as arguments
of \def commands. They, cannot, however, be placed into an \edef. If the user
has need to place the array-element content into an \edef (and assuming that
the actual array-element content is suitable for an \edef), the user should em-
ploy the \arrayij and \arrayijk commands, as alternatives. These commands
do not perform any bounds checking (thus eliminating the need for an optional
argument). Their advantage, however, is that they may be freely placed into an
\edef.

6 Support Routines

The engine for the readarray package is the \getargsC command, based on
the \getargs command found in the stringstrings package. This command has
been herein rewritten for speed. The \getargsC command takes a string or
token as its argument and separates each of the space-separated words of it
into individual strings, named with roman numerals as \argi, \argii, etc. The
total number of arguments that are separated is given by the string \narg. This
command can be useful for a variety of applications outside of readarray. While
generally used only for diagnostic purposes, the command \showargs is used
print out all the arguments recently digested by an invocation of \getargsC,
separated by small black blocks. The optional argument to \showargs is the
number of individual arguments to place on a single line of output, before issuing

\converttilde

a linefeed. Thus, the command
\showargs [4]
yields the following result:

narg=37: Blamlarchhave beenllhave beenll
Narelarelhave beenlhave beenll

Nisharehhas beenlhave beenll

Hwaslwerelhad beenlhad beenll
Qwerelwerelhad beenllhad beenll
Qwaslwerelhad beenlhad beenll

Iwill bellwill bellwill have beenBwill have beenll
Rwill bellwill belwill have beenlwill have beenll
Rwill bellwill belwill have beenlwill have beenll
|

Note that the 37" argument is non-printing and represents the residual linefeed
left over fromt he \def of \dataC. A similar residual argument is also left by
the \readdef command. It can be eliminated if the last record of the \readdef
input file (or the last record of the \def command) ends with a % symbol, so as
to discard the final linefeed prior to the end-of-file (or }).

As mentioned earlier, the flag converttilde, by default “false,” can be set to
\def\converttilde{T} so as to tell \getargsC to treat hardspaces as ordinary
spaces.

7 Acknowledgements

The author would like to thank Dr. David Carlisle for his assistance in helping
the author rewrite the \getargs command, originally found in the stringstrings
package. To distinguish the two versions, and in deference to him, it is herein
named \getargsC.

8 Code Listing

\ProvidesPackage{readarray}

[2013/05/09 v1.2

Routines for inputting array data and recalling it on an
element-by-element basis. Currently supports 2-D and 3-D array]

% This work may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.

% The latest version of this license is in

% http://www.latex-project.org/lppl.txt

% and version 1.3c or later is part of all distributions of LaTeX

% version 2005/12/01 or later.

% This work has the LPPL maintenance status ‘maintained’.

% The Current Maintainer of this work is Steven B. Segletes.
% Revisions:

% v1.01 Documentation revision

% vi.1 Added \csname record\roman{@row}\endcsname to \readdef
% v1.2 -Corrected the [truncated] LPPL license info

% -Added \arrayij and \arrayijk, which can be put into \edef

% -Used \romannumeral in preference to \roman{}, when possible,
% to avoid unnecessary use of counters.

\usepackage{ifthen}

\usepackage{ifnextok}

h

\newcounter{@index}
\newcounter{@plane}
\newcounter{Q@row}
\newcounter{@col}
\newcounter{use@args}
\newcounter{@record}
\def\the@rule{\rule{.8ex}{1.6ex}}%
)
\newcommand\readArrayijk[4]{%
\getargsC{#1}%
\setcounter{@plane}{\numexpr (\narg/#4/#3) }/,
\setcounter{use@args}{\numexpr\arabic{@planel}*#3*#4},
\ifthenelse{\arabic{use@args} > \narg}t{’
\addtocounter{@plane}{-11}/
\setcounter{use@args}{\numexpr\arabic{@plane}*#3*#4}%
H3%

10

\expandafter\edef\csname#2PLANES\endcsname{\arabic{@plane}}’
\expandafter\edef\csname#2R0OWS\endcsname{#3}/
\expandafter\edef\csname#2COLS\endcsname{#4}/
\expandafter\edef\csname#2CELLS\endcsname{\arabic{use@args}1}/,
\setcounter{@index}{0}%
\setcounter{@plane}{1}/,
\setcounter{@row}{1}%
\setcounter{@col}{0}%
\whiledo{\value{@index} < \value{use@args}}{’
\addtocounter{@index}{1}%
\addtocounter{@col}{1}%
\ifthenelse{\value{@col} > #4}},
{\addtocounter{@row}{1}},
\addtocounter{@col}{-#4}1}%
{3%
\ifthenelse{\value{@row} > #31}J
{\addtocounter{@plane}{1}%
\addtocounter{@row}{-#3}1}/
%
\expandafter\protected@edef’,
\csname#2X\roman{@plane}X\roman{@row}X\roman{@col}\endcsname,
{\expandafter\csname arg\roman{@index}\endcsnamel}
T
}
b
\newcommand\readArrayij[3]{%
\getargsC{#1}%
\setcounter{@row}{\numexpr (\narg/#3) 1}/,
\setcounter{use@args}{\numexpr\arabic{@row}*#3}J
\ifthenelse{\arabic{use®@args} > \narg}{/
\addtocounter{@row}{-1}%
\setcounter{use@args}{\numexpr\arabic{@row}*#3}%
H3Y%
\expandafter\edef\csname#2PLANES\endcsname{1},
\expandafter\edef\csname#2R0WS\endcsname{\arabic{@row}1}/,
\expandafter\edef\csname#2COLS\endcsname{#3}%
\expandafter\edef\csname#2CELLS\endcsname{\arabic{use@args}1}’
\setcounter{@index}{0}%
\setcounter{@row}{1}%
\setcounter{@col}{0}%
\whiledo{\value{@index} < \value{use@args}}{’
\addtocounter{@index}{1}%
\addtocounter{@col}{1}%
\ifthenelse{\value{@col} > #3}}
{\addtocounter{@row}{1}/,
\addtocounter{@col}{-#3}}%

11

{}%
\expandafter\protected@edef’,
\csname#2X\roman{@row}X\roman{@col}\endcsname,
{\expandafter\csname arg\roman{@index}\endcsnamel}
%
}
h
\def\nonposrecordmessage{{\tiny Only positive showrecords permitted}}
\def\recordmessage#1{{\tiny RECORD=#1 exceeds records read}}
h
\def\nonposmessage{{\tiny Only positive array indices permittedl}}
\def\planemessage#1#2{{\tiny PLANE=#2 exceeds limit for #1}}
\def\rowmessage#1#2{{\tiny ROW=#2 exceeds limit for #1}}
\def\colmessage#1#2{{\tiny COL=#2 exceeds limit for #1}}
b
\newcommand\arrayijk[4]{%
\csname#1X\romannumeral#2X\romannumeral#3X\romannumeral#4\endcsname},
}
h
\newcommand\Arrayijk[5] [$]1{%
\ifthenelse{\value{@plane}<1 \OR \value{@row}<1l \OR \value{@col}<1}{%
\if$#1\nonposmessage\else#1\fi}{%
\ifthenelse{#3 > \csname#2PLANES\endcsname}{}
\if$#1\planemessage{#2}{#3}\else#1\fi}{)
\ifthenelse{#4 > \csname#2R0WS\endcsname}{%

\if$#1\rowmessage{#2}{#4}\else#1\fi}{}%

\ifthenelse{#5 > \csname#2COLS\endcsnamel}{’
\if$#1\colmessage{#2}{#5}\else#1\fi}{%
\csname#2X\romannumeral#3X\romannumeral#4X\romannumeral#5\endcsnamel}y

Yh

}%

\newcommand\arrayij[3]{%
\csname#1X\romannumeral#2X\romannumeral#3\endcsname},
}
%
\newcommand\Arrayij [4] [$]1{%
\ifthenelse{\value{@row}<1 \OR \value{@col}<1}{%
\if$#1\nonposmessage\else#1\fi}{Y
\ifthenelse{#3 > \csname#2R0OWS\endcsname}{’
\if$#1\rowmessage{#2}{#3}\else#t1\fi}{%
\ifthenelse{#4 > \csname#2COLS\endcsnamel}{’
\if$#1\colmessage{#2}{#4}\else#1\fi}{%
\csname#2X\romannumeral#3X\romannumeral#4\endcsname}/,

12

\newcommand\copyrecords [1]1{%

\setcounter{@record}{03}%

\whiledo{\value{@record} < \nrecords}{’%
\addtocounter{@record}{1}%
\expandafter\protected@edef\csname#1X\roman{@record}Xi\endcsname{’,

\csname record\roman{@record}\endcsnamel}y

%

\expandafter\edef\csname#1PLANES\endcsname{1},

\expandafter\edef\csname#1ROWS\endcsname{\nrecords}y,

\expandafter\edef\csname#1COLS\endcsname{1}%

\expandafter\edef\csname#1CELLS\endcsname{\nrecords}/,

}
h
\newcommand\showrecord [2] [$]{%

\ifthenelse{#2<1}{%
\if$#1\nonposrecordmessage\else#1\fi}{%
\ifthenelse{#2 > \nrecords}{)

\if$#1\recordmessage{#2}\else#1\fi}{/
\csname record\romannumeral#2\endcsnamel},

\newcommand\readdef [2]{%
\def\first@row{T}%
\def\first@plane{T}%
\catcode\endlinechar=10\relax}
\def#2{}%
\setcounter{@record}{0}/
\newread\file%
\openin\file=#17
\loop\unless\ifeof\file},
\read\file to\fileline % Reads a line of the file into \fileline}
\addtocounter{@record}{1}/,
\protected@edef#2{#2\filelinel}’
\if T\first@row\getargsC{#2}\setcounter{@col}{\numexpr (\narg-1)1}J
\edef\ncols{\arabic{@col}}\def\first@row{F}\setcounter{@row}{1}/
\else,

\if T\first@plane\getargsC{\fileline}\ifthenelse{\equal{\narg}{1}}{%
\edef\nrows{\arabic{@row}}\def\first@plane{F}}{%
\addtocounter{@row}{1}}7%

\fi%

\fi%

13

\expandafter\protected@edef\csname record\roman{@record}\endcsname{,
\filelinel}%

\repeat,
\edef\nrecords{\arabic{@record}}%
\closein\file%
\catcode\endlinechar=5\relax¥

}
h

\newcommand\showargs [1] [0]{%

}

narg=\narg: %
\the@ruley,
\setcounter{arg@index}{0}/
\setcounter{break@count}{0}%
\whiledo{\value{arg@index} < \narg}{/
\addtocounter{arg@index}{1}%
\addtocounter{break@count}{1}%
\csname arg\roman{arg@index}\endcsname’,
\the@rule}
\ifthenelse{\equal{#1}{\value{break@count}}}{’
\ifthenelse{\equal{\value{arg@index}}{\narg}}{}{/
\newline\the@rule\addtocounter{break@count}{-#1}}%
Yh
{3%
Y
\setcounter{arg@index}{0}%

Tl ToToto oo oo ToToToo o o oo ToToTo o o o o o o ToFo o fo o o o o Fo o

h

The \getargsC macro mimics the behavior of the \getargs macro

of the stringstrings package, but runs faster, and can handle

arbitrary tokens. For the development of \getargsC, significant

assistance was provided by David Carlisle, for which the author is

most appreciative.

http://tex.stackexchange.com/questions/101604/
parsing-strings-containing-diacritical-marks-macros

\def\string@end{$\SaveHardspace}
\def\converttilde{F}
\newcounter{arg@index}
\newcounter{break@count}
\let\SaveHardspace” %%%

%

\def\getargsC#1{%

\if T\converttilde\def~™{ }\else\catcode‘"=12\fi
\protected@edef\the@string{#1}/

\setcounter{arg@index}{03}/
\lowercase{\expandafter\parse@Block\the@string} \string@end

14

\let~\SaveHardspace’
\catcode‘~=13
}
b
\def\parse@Block#1 {%
\stepcounter{arg@index}/,
\@namedef{arg\roman{arg@index}}{#1}/
\futurelet\tmp\parse@Block@}
b
\def\parse@Block®@{%
\ifx\tmp\string@end\edef\narg{\thearg@index}\expandafter\Qgobble
\else\expandafter\parse@Block\fi}
h
Tt ToTototo o oo T ToTo o 1o o o To ToTo o o oo o To To o o o o o o To Fo
\endinput

15

