

Cover code

% \usepackage{incgraph}
7% \usetikzlibrary{backgrounds}
\begin{inctext}/
\gtrSymbolsSetCreateSelected{blue}{Male}\gtrSymbolsSetCreateSelected{red}{Female}/
\gtrSymbolsSetCreateSelected{black}{Neuterl}/
\begin{tikzpicture}
\genealogytree [template=symbol nodes,level size=8mm,level distance=6.5mm,
box={title={\gtrnodenumber},height=bmm,attach boxed title to bottom center,
fonttitle=\fontsize{3mm}{3mm}\sffamily,
boxed title style={size=tight,height=3mm,valign=center,left=0.2mm,right=0.2mm}},
tcbset={mytext/.style={notitle,interior style={top color=gtr_Yellow_Frame!50!gtr_Yellow_Back,
bottom color=gtr_Yellow_Frame!50!gtr_Yellow_Back,middle color=gtr_Yellow_Back}}},
add parent=a to fam_a,add parent=b to fam_b,add parent=c to fam_c]
{ child{ gm pf
child{ pm gf cm child{ gm pf cf child{ gm pf cf cm cm child{ gm pf
child{ gm pf cf child{ gm pf cf child{ gm pf child{ gm pf cf cm cm } cf cm c[id=alm } cm
}em}Pecmem } } em } cf cf cf
child{ gm pf cf cm cm child{ gm pf cf cm cm child{ gm pf child{ gm pf cf
child{ gl[box={width=6.5cm,notitle},phantom*]m
child{g[box={width=6.5cm,height=23mm,enlarge top initially by=-15mm,mytext},
no content interpreter]{\Huge\bfseries genealogytree}
child[id=fam_a] {gf cm cf cm
child{ gm pf cf cm child{ gm pf cf child{ gm pf cf cm
child[id=fam_b]{ gm cf cf child{ gm pf cf
child{ gm pf cm cf cf cm cm
child{ gm pf cm child{ gm pf cm cf child{ gm pf child{ gm pf cm cf cm cf }
cm cf cm cf } cm cf } cf cm cf }
child{ gm pf cm cf cm cf }
child[id=fam_c,pivot shift=2cm]{ gldistance=lcm]lm cm child { gm pf cm
child{ gm pf cm cm cf cf cf cm cm cf } cm
child{ gm pf cf cm child{ gm pf cm cm cf cf cf cm cm cf } cm cf }
cf + }}
cmcm }cmem } }emem }ocm } ocm cf cm
} cm cf cf cm cm cm cf }
}em} cf cmem } }
}
} cm cm
child{ gm pf cm cf cm cm cf }
child{ gm pf child{ pm gf child{ gm pf cm cf cm } } cf cm cf cm }
union{ pf cm cm cf
child{ gm pf child{ gm pf cf cm child{ gm pf child{ gm pf
child{ gm pf cf child{ gm pf cf child{ gm pf child{ gm pf
child{ gm pf cf child{ gm pf child{ gm pf cl[id=blf cm cm } cf cm cm
child{ gl[box={width=4cm,notitle},phantom*]m
child{g[box={width=4cm,height=23mm,enlarge top initially by=-15mm,
mytext,capture=minipage,halign=center},no content interpreter]
{\large\bfseries Manual for\\ version\\ \version\\(\datum)}
cm cf cm cm child{ gm cf cm cf cm
child{ glbox={width=4cm,mytext},no content interpreter]{Thomas F.~Sturm} }
clid=clf cm } cf cm }
}remem}cf cmem } cf cmem } cm cm }
cm child{ gm pf ¢f cmcm } cm cm cm } cf cm cm } cf cm cm } cm
} cf cm cm
}
}
}}
\begin{scope} [on background layer]
\node (bg) [fill tile image*={width=4cm}{crinklepaper.png},minimum width=21cm,
minimum height=29.7cm,inner sep=0pt,outer sep=Opt] at (current bounding box) {};
\path[top color=white,bottom color=red,fill opacity=0.25]
(bg.south west) rectangle (bg.north east);
\end{scope}
\end{tikzpicture}
\end{inctext}

The genealogytree package
Manual for version 0.90 (2015/05/22)

Thomas F. Sturm'

http://www.ctan.org/pkg/genealogytree
https://github.com/T-F-S/genealogytree

Abstract

Pedigree and genealogy tree diagrams are proven tools to visualize genetic and rela-
tional connections between individuals. The naming for mathematical tree structures
with parent nodes and child nodes is traded from historical family diagrams. How-
ever, even the smallest family entity consisting of two parents and several children is
no mathematical tree but a more general graph.

The genealogytree package provides a set of tools to typeset such genealogy trees
or, more precisely, to typeset a set of special graphs for the description of family-like
structures. The package uses an auto-layout algorithm which can be customized to
e.g. prioritize certain paths.

1 Introduction 7
1.1 Genealogy Trees 7
1.2 Package Design Principles and Philosophy 8
1.3 Comparison with Other Packages 9
1.4 Installation oL Lo 10
1.5 Loading the Package. 10
1.6 Libraries 11
1.7 How to Get Started 11

2 Tutorials 13
2.1 Tutorial: First Steps (Ancestor Tree) 13

2.1.1 Document Setup 13
2.1.2 Creation of a Basic Ancestor Diagram 14
2.1.3 Applying options 16
2.1.4 Growing the Tree 17
2.1.5 Prioritize and Colorize a Path 20
2.1.6 Changing the Timeflow 22
2.2 Tutorial: Diagram Manipulation by ID values (Descendant Tree) 23
2.2.1 Creation of a Basic Descendant Diagram 23
2.2.2 Growing the Tree 24
2.2.3 Separating Diagram Data and Diagram Drawing 27
2.2.4 Emphasizing a Relationship Path 28
2.2.5 Coloring Subtrees oo 30
2.3 Tutorial: A Database Family Diagram (Sand Clock) 32

Prof. Dr. Dr. Thomas F. Sturm, Institut fir Mathematik und Informatik, Universitit der Bundeswehr
Miinchen, D-85577 Neubiberg, Germany; email: thomas.sturm@unibw.de

http://www.ctan.org/pkg/genealogytree
https://github.com/T-F-S/genealogytree
mailto:thomas.sturm@unibw.de

2.4

2.3.1 Creation of a Basic Sand Clock Diagram
2.3.2 Node Content in Database Format
2.3.3 Formatting the Node Content
234 Adding Images L
2.3.5 Full Example with Frame
Tutorial: Descendants of the Grandparents (Connecting Trees)
2.4.1 Descendants of the Two Grandparents
2.4.2 Connected Diagram

Genealogy Tree Macros

Creating a Genealogy Tree
Using Tree Options o o oot
Accessing Information inside Nodes

3.1
3.2
3.3

Graph Grammar

4.1 Graph Structure
4.2 Subgraph 'parent’ L
4.3 Subgraph ’child’
4.4 Subgraph 'union’ L
4.5 Subgraph ’sandclock’o
4.6 Node’c’
4.7 Node'p’ e
4.8 Node’g
4.9 Data’input’
4.10 Control Sequence ’insert’ Lo

Option Setting
Option Priorities

5.1

0.2
5.3
0.4
9.5
5.6
5.7
0.8
5.9
5.10
0.11
5.12
5.13
5.14

5.1.1
5.1.2

Option Priorities for Nodes
Option Priorities for Families

Graph Growth Setting (Time Flow)
Graph Geometry
Identifiers L
Node Options o it e
Family Options
Subtree Options L L
Level Options
Tree Positioning Options
TikZ and Tcolorbox Options
Ignoring Input
Inserting Inputo
Phantom Nodes and Subtrees.
Special and Auxiliary Options

Node Data (Content) Processing
Setting a Node Data Processing and Processor
Predefined Non-Interpreting Processings

6.1
6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

tehox . . .
tecbox™® . Lo

45
45
47
48

51
ol
53
95
o7
99
61
61
61
62
63

6.3 Creating a Customized Non-Interpreting Processor 132

6.4 Content Interpreters 133

7 Database Processing 139
7.1 Database Concept L 140
7.2 Example Settings oL 141
7.3 DataKeys e 143
7.4 Input Format for Dates 147
7.5 Formatting the Node Data 149
7.6 Formatting Names 159
7.7 Formatting Dates 161
7.8 Formatting Places 164
7.9 Formatting Events 165
7.10 Formatting Lists of Events 0oL 167
7.11 Formatting Comments Lo 169
7.12 Formatting Sex 169
7.13 Formatting Images Lo 170

8 Edges 171
8.1 Edge Settings 172
8.2 Edge Types. e 176
8.3 Edge Parameters 181
8.4 Edge Labels 185
8.5 Edge Labels Database 187
8.6 Adding and Removing Nodes from Edge Drawing 189
8.7 Extra Edges e 194

9 Genealogy Symbols 199
9.1 Symbol Color Settings L 199
9.1.1 Global Color Settings 199

9.1.2 Local Color Settings 200

9.2 List of Symbols 201
9.3 Legend to Symbols. 204
9.3.1 Printinga Legend L. 204

9.3.2 Description Texts and Language Settings 205

10 Language and Text Settings 207
10.1 Preamble Settings Lo 207
10.2 Document Settings. Lo 208

11 Debugging: Library 209
11.1 Parser Debugging L L e 209
11.2 Processor Debugging oo 212
11.3 Graphical Debugging 221
11.4 Show Information 225

12 Templates: Library 229
12.1 Using Templates o 229
12.2 Template formal graph’ oo 229
12.3 Template ’signpost’o 230
12.4 Template ’symbol nodes’ 230
12.5 Template 'tiny boxes’ Lo 231

12.6 Template ’tiny circles’ oo
12.7 Template ’directory’o
12.8 Template ’database pole’ L oL
12.9 Template ’database portrait’ L.
12.10 Template ’database traditional’
12.11 Template ’ahnentafel 3°
12.12 Template ’ahnentafel 4>
12.13 Template ’ahnentafel 5°
12.14 Predefined Colors of the Library
12.15 Auxiliary Control Sequences

13 Auto-Layout Algorithm

13.1 Preliminaries

13.1.1 Aesthetic Properties
13.1.2 Genealogy Trees
13.1.3 Graph Grammar L

13.2 Requirements

13.2.1 Parent and Child Alignment
13.2.2 Patchwork Families
13.2.3 Graph Growing Direction
13.3 Algorithmic Steps
13.3.1 Recursive Family and Node Placement
13.3.2 Contours e
13.3.3 Combining Subtrees
13.4 Known Problems oo

14 Example Graph Files
14.1 example.option.graph Lo oL
14.2 example.database.graph L
14.3 example.formal.graph oL Lo

15 Stack Macros

15.1 Creating a Stack
15.2 Pushtoa Stack
15.3 Pop from a Stack
15.4 Peekintoa Stacko
15.5 Creating Stack Shortcuts

16 Version History
Bibliography

Index

247
247
247
248
248
249
249
250
251
252
252
252
253
254

257
257
258
259

261
261
261
262
262
263

265

267

268

Introduction

1.1 Genealogy Trees

The naming for mathematical tree structures with parent nodes and child nodes is traded from
historical family diagrams. But, creating a family diagram for medical and sociological studies
or family research can become surprisingly difficult with existing tools for tree visualization.
The simple reason is, that a mathematical tree has only one parent node for its direct children
nodes.

parent

[chﬂd] [child diilld

With reverse logic, this can be used to visualize ancestor diagrams starting from an individual
to its predecessors:

[grandfather] grandmother | | grandfather | | grandmother

father mother

rproband I

However, even the smallest family entity consisting of two parents and several children is no
mathematical tree but a more general graph:

[grandfather] grandmother | | grandfather | | grandmother

uncle || father || aunt mother || uncle

[child child [child

The genealogytree package aims to support such graphs which will be denoted genealogy trees
in the following. The graphs to be processed cannot become arbitrarily complex. A set of special
graphs for the description of family-like structures is supported by the package algorithms. From
at theoretical point of view, these graphs can be seen as a sort of annotated mathematical trees.

1.2 Package Design Principles and Philosophy

The emphasis of a genealogy tree is not the node or individual, but the family. A family is a
set of arbitrarily many parents and children. From an algorithmic point of view, there could be
more than two parents in a family.

father | | mother

,—|—|—|—| A single family

child || child || child

A node is either a parent or a child to a specific family. A node can also be child to one family
and parent to another (or many) families. Such a node is called a g-node (genealogy node) in
the following.

[grandfather] [grandmother]

uncle || father (g—node)] aunt | | mother

I I I I | Two families

child || child || child

The main restriction of the graph grammar is that there is exactly one g-node which connects
its enclosing family to another one. In the example above, the father node is the g-node in the
grandparents family. It is linked to the family with mother and children.

A strong driving force for elaborating and creating this package was to balance two contradictory
goals for diagram generation: automatism and customization. In the ideal case, a diagram
would be constructed automatically by data provided from an external data source and would
also be freely customizable in any thinkable way starting changing colors, lines, shapes, node
positioning, etc. In the real world, a trade-off between these goals has to be found.

Automatism:

e For a set of genealogy trees described by a grammar, see Chapter 4 on page 51, an auto-
layout algorithms computes the node positioning.

e The graph grammar is family-centric and supports ancestors and descendants diagrams.
For the later, multiple marriages can be used to a certain degree.

e The graph data can be written manually, but the package design is adjusted to process
automatically generated data. There are many genealogy programs which manage family
related data. The general idea is that such programs export selected diagram data in a
text file using the provided grammar. Processing GEDCOM' files directly by the package
is not possible.

e While manipulations like coloring a single node can be done directly at node definition, the
package design makes a lot of efforts to allow manipulations aside from the actual place
of data definition, see Section 5.1.1 on page 66 and Section 5.1.2 on page 67. The idea
is that automatically generated data has not to be edited, but can be manipulated from
outside. Also, an automatically or manually generated data set can be used for several
distinct diagrams; e.g. the graph data in Section 14.1 on page 257 is used numerous times
inside this document for different diagrams.

!GEDCOM (GEnealogical Data COMmunication) is a widely used data exchange format.

The auto-layout algorithm is implemented in pure TEX /IATEX (without Lua). This imposes
all programming restrictions of this macro language on the implementation, but makes the
package independent of external tools and fosters A TEX customization.

Customization:

The auto-layout algorithm can be customized to e.g. prioritize certain paths or exclude
selected subtrees. Also, several node dimensions and distances can be changed globally or
locally.

The appearance of a node can be customized with all capabilities of TikZ [4] and
tcolorbox [3]. Also, the node text can be processed.

For the node content, a database concept can be used, see Chapter 7 on page 139. This
gives a high degree of customizing the data visualization inside the node.

The geometry of edges between nodes is not considered by the auto-layout algorithm, but
edges can also be customized in many ways, see Chapter 8 on page 171.

Several genealogy tree diagrams can be interconnected manually to form a more complex
total diagram.

On the technical side, the package is based on The TikZ and PGF Packages [4] and uses The
tcolorbox package [3] for the nodes. Since all processing is done in TEX/KTEX without Lua and
external tools, one should expect a lot of processing time for complex diagrams. Therefore, using
an externalization of the diagrams is recommended.

1.3

Comparison with Other Packages

This is not really a comparison, but more a hinting to other possibilities for graph drawing. I
am not aware of another package with focus on genealogy trees as defined here, but surely there
are excellent other graph drawing packages. The first to name is TikZ itself. There, one will
find a bunch of graph drawing tools with different algorithms, partly implemented in Lua. The
second one is the forest package which is also very powerful and does not need Lua.

1.4 Installation

Typically, genealogytree will be installed as part of a major IITEX distribution and there is
nothing special to do for a user.

If you intend to make a local installation manually, you have to install not only tcolorbox.sty,
but also all *.code.tex files in the local texmf tree.

- genealogytree.pdf
- genealogytree-example—*.pdf

- doc/ — latex/ — genealogytree/ -
- genealogytree.doc.sources.zip

- README
texmf/
- genealogytree.sty

- gtrcore.*.code.tex

L tex/ — latex/ — genealogytree/ -
- gtrlang.*.code.tex

- gtrlib.*.code.tex

1.5 Loading the Package

The base package genealogytree loads the package tcolorbox [3] with its skins and fitting
libraries. This also loads several other packages are loaded, especially tikz [4] with its
arrows.meta and fit libraries.

genealogytree itself is loaded in the usual manner in the preamble:
\usepackage{genealogytree}
The package takes option keys in the key-value syntax. Alternatively, you may use these keys

later in the preamble with \gtruselibrary ~!! (see there). For example, the key to use debug
code is:

\usepackage [debug] {genealogytree}

10

1.6 Libraries

The base package genealogytree is extendable by program libraries. This is done by using
option keys while loading the package or inside the preamble by applying the following macro
with the same set of keys.

\gtruselibrary{(key list)}
Loads the libraries given by the (key list).

\gtruselibrary{all}

The following keys are used inside \gtruselibrary respectively \usepackage without the key
tree path /gtr/library/.

/gtr/library/debug (E)

Loads additional code for debugging a genealogy tree. This is also useful for displaying
additional informations during editing a graph; see Chapter 11 on page 209.

/gtr/library/templates (El templates)

Loads additional code for templates. These are styles to set various options by one key; see
Chapter 12 on page 229.

/gtr/library/all (style, no value)
Loads all libraries.

For the curious readers: There are additional core libraries which are loaded automatically
and which are not mentioned here. Also, languages are special libraries which are loaded by
\gtrloadlanguage 208,

1.7 How to Get Started

You don’t have to read this long document to start creating your first genealogy trees. A good
starting point is to browse through the tutorials in Chapter 2 on page 13 and simply try some
of them on your computer. The package provides a lot of options and allows many adjustments
to node setting, but you do not need to know them in advance to create the first examples.

For using advanced features, it is not harmful to know at least the basics of TikZ [4] and
tcolorbox [3], since genealogytree is based on both.

11

12

Tutorials

2.1 Tutorial: First Steps (Ancestor Tree)

2.1.1 Document Setup

Most examples in this documentation will display some code snippets which one can use in a
document with proper set-up. This very basic tutorial will create a tiny full document. If this
does not work on your system, there is probably some installation problem. Typically, this can
be solved by just updating the TEX distribution.

The very first document just tests, if the package is installed:

\documentclass{article}
\usepackage [all]{genealogytree}
\begin{document}

\section{First Test}

Package loaded but not used yet.
\end{document}

1 First Test

Package loaded but not used yet

13

2.1.2 Creation of a Basic Ancestor Diagram

Now, we start with the very first genealogy tree. Such trees are family-centric. So, let us begin
with a family consisting of mother and father and three children. Chapter 4 on page 51 tells
us, that there are different kinds of families; the two main ones are parent and child. For
a single family, the choice is quite irrelevant. Here, we think about extending the example to
grandparents. Therefore, we take the parent construct.

Before the details are discussed, let us try a full example:

\documentclass{article}
\usepackage[all] {genealogytreel}
\begin{document}
\section{First Test}
\begin{tikzpicture}
\genealogytree{
parentq{
g{first child}
c{second child}
c{third child}
p{father}
p{mother}
}
}
\end{tikzpicture}
\end{document}

1 First Test

first, child H second child H third child |

The environment tikzpicture is the main picture environment from the TikZ [4] package.

\genealogytree I % can only be used inside such an environment.

When testing this example, be very sure about setting all braces properly. The internal parser
will react very sensitive on input errors. Of course, this is nothing new for a TEX user, but larger
trees will have a lot of hierarchical braces and error messages will likely not be very talkative
about where the error is.

The genealogytree package uses {} pairs for structuring and [] pairs for options like typical

KTEX does.

14

In the following, we will not see full documents but code snippets and their output. Note that
the full example used the all option to load all libraries of genealogytree, see Section 1.6 on
page 11. You should also add all libraries for testing the examples. Later, you may choose to
reduce the libraries.

Let us look at our example again with focus on the relevant part:

father mother

\begin{tikzpicture}
\genealogytree{
parentq{
g{first child}
c{second child}
c{third child} | ' | ' |
pLeRere first, child second child | (third child
p{mother}
}
}
\end{tikzpicture}

Our parent family has two parents denoted by p and three children, two of them denoted by
c as expected. But one child, not necessarily the first one, is denoted by g. This is the g-node
which connects a family uplink to another family. Here, we have a single family which is the
root family where no uplink exists. Nevertheless, a g-node has to be present.

15

2.1.3 Applying options

Certainly, the size and distance of the nodes can be changed. A quick way to adapt the graph
is to use preset values from a given /gtr/template 22, We put this to the option list of
\genealogytree "I 45

\begin{tikzpicture}
\genealogytree[template=signpost]{
parent{ father mother
g{first child}
c{second child} | |
c{third child}
p{father} | | |
p{mother}

} first child || second child fl| third child

}
\end{tikzpicture}

Options can also be set for families and nodes. We enhance our genealogy tree by giving
/gtr/male % and /gtr/female "% settings to the nodes:

\begin{tikzpicture}
\genealogytree [template=signpost]{
parent{ father mother
glfemale]{first child}
c[male]l{second child} | |
c[female]{third child}
plmale]{father} | | |
plfemale] {mother}

by first child [l second child ll third child

}
\end{tikzpicture}

16

2.1.4 Growing the Tree

As next step, the father node shall get a grandfather and a grandmother. For this, the father
node has to become a g-node which links the grandparents family to the root family:

\begin{tikzpicture}
\genealogytree[template=signpost]{
parentq{
glfemale]{first child}
c[male]{second child}
c[female]l{third child} | |
parentq{
glmale]{father} | | |
}
ip Lemetle) <Lzl first child || second child || third child

father mother

}
}
\end{tikzpicture}

Visually, nothing happened. But, the father node is now g-node of a new family. As in our root
family, we can add parents p and even other children c. Of course, these other children are the

siblings of the father node:

\begin{tikzpicture}
\genealogytree[template=signpost]{
parent{
glfemale]{first child}
c[male]{second child}
c[female]l{third child}
parentq{
c[female]{aunt}
glmale]{father}
c[male]{uncle}
plmale]{grandfather}
plfemale]{grandmother}
}
plfemale] {mother}
}
}
\end{tikzpicture}

grandfather grandmother

aunt father uncle mother

first child second child third child

One could replace all parents p by parent families with a single g-node. This would increase
the expense, but can be a good thing when editing and compiling a tree step by step.

17

We now prepare our tree for expansion and replace mother, grandfather, and grandmother with
appropriate parent families.

\begin{tikzpicture}
\genealogytree [template=signpost]{
parent{
glfemale]{first child}
c[male]{second child}
c[female]{third child}
parentq{
c[female] {aunt}
glmale]{father}
c[malel{uncle}
parent
{
/4 former ’p’ node
glmale]{grandfather}
}
parentq{
% former ’p’ node
glfemale] {grandmother}
}
}
parent
{
% former ’p’ mode
glfemale] {mother}
}
}
}
\end{tikzpicture}

grandfather grandmother

aunt father uncle mother

first child second child third child

18

Again, we populate the three added families with parents p and children c.

\begin{tikzpicture}
\genealogytree[template=signpost]{
parentq{
glfemale]{first child}
c[malel{second child}
c[female]l{third child}
parentq{
c[female]{aunt}
glmale]{father}
c[male]{uncle}
parent
{
glmale]{grandfather}
plmale]{great-grandfather}
plfemale]{great-grandmother}
}
parentq{
glfemale]{grandmother}
plmale]{great-grandfather 2}
plfemale]{great-grandmother 2}
c[male] {granduncle}
}
}
parent
{
c[male]l{uncle 2}
glfemale]{mother}
plmale]{grandfather 2}
plfemale] {grandmother 23}

19

}
}
}
\end{tikzpicture}
great- great- great- great-
grandfather grandmother grandeather grandIQnother
grand- grand-
grandfather grandmother granduncle father 2 mother 2
aunt father uncle uncle 2 mother
first child second child third child

2.1.5 Prioritize and Colorize a Path

After the tree has been grown to its final size, we want to influence the node positions. Let us
assume that the lineage from first child to great-grandmother 2 has to be especially emphasized.

To prioritize a node, the /gtr/pivot "I % option can be used. This will place a node centered
in relation to its ancestors and/or descendants. If this option is used for several connected nodes,
a straight lineage is generated. All other nodes are placed automatically to respect this lineage.

Booc
glpivot,female]{first child}
Bo oo

To emphasize this lineage further, the respective nodes should be colorized differently. With
standard settings, every node is drawn as a tcolorbox. Box options are given by /gtr/box "7 8.
The options inside /gtr/box "8 are tcolorbox options [3]. To add a yellowish background
color and glow, we use:

Booc
glpivot,box={colback=yellow!20,no0 shadow,fuzzy halo},female]{first child}
Bo oo

All option settings are pgfkeys options. So, it is easy to create a new option style highlight
which can be used for each node in the lineage. This can be done by \gtrset ~ 47 or inside the
option list of \genealogytree " %7,

\gtrset{highlight/.style={pivot,box={colback=yellow!20,no shadow,fuzzy halo}}}

Now, highlight can be used to apply /gtr/pivot "' # and /gtr/box ~I"® settings with one
key word:

Booc
glhighlight,female]{first child}
Ho o

20

\begin{tikzpicture}
\genealogytree [template=signpost,

highlight/.style={pivot,box={colback=yellow!20,n0 shadow,fuzzy halo}},

{
parentq{

glhighlight,female]{first child}

c[malel{second child}
c[female]l{third child}
parentq{
c[female] {aunt}
glhighlight ,male]{father}
c[male]{uncle}
parent
{
glmale]{grandfather}
plmale]{great-grandfather}

plfemale]{great-grandmother}

}
parentq{

glhighlight,female] {grandmother}

plmale]{great-grandfather 2}

plhighlight,female]{great-grandmother 2}

c[male] {granduncle}
}
}
parent
{
c[malel{uncle 2}
glfemale]{mother}
plmale]{grandfather 2}
plfemale] {grandmother 23}
}
}
}
\end{tikzpicture}
great- great- great- great-
grandfather grandmother grand2father grand12n0ther
grandfather grandmother granduncle éi‘ﬁgfé mgé?}?g«_ 9
aunt father uncle uncle 2 mother
first child second child third child

21

2.1.6 Changing the Timeflow

—P.68
»P. 229

A genealogy tree may be grown in four directions depending on the given /gtr/timeflow
Now, we will let the time flow to the left. Additionally, we replace the /gtr/template
setting by individual settings for /gtr/processing *" 16 /gtr/level size ", /gtr/node
size from 7 and /gtr/box 8,

\begin{tikzpicture}
\genealogytree[
timeflow=1left,
processing=tcolorbox,
level size=3.3cm,node size from=b5mm to 4cm,
box={size=small,halign=center,valign=center,fontupper=\small\sffamily},
highlight/.style={pivot,box={colback=yellow!20,n0 shadow,fuzzy halo}},

{
parentq{
glhighlight,female]{first child}
c[male]{second child}
c[female]l{third child}
parentq{
cl[female]{aunt}
glhighlight ,male]{father}
c[male]{uncle}
parent
{
glmale]{grandfather}
plmalel {great-grandfather}
plfemale]{great-grandmother}
}
parentq{
glhighlight,female] {grandmother}
plmale]{great-grandfather 2}
plhighlight,female]l{great-grandmother 2}
c[male] {granduncle}
}
}
parent
{
c[male]{uncle 2}
glfemale] {mother}
plmale]{grandfather 2}
plfemale] {grandmother 23}
}
}
}
\end{tikzpicture}
great-grandfather]
—[grandfather
great-grandmother]
great-
grandfather 2
[aunt]—
(first child (father J+- grandmother | grani:s:iher 5 ’
[second child [uncle]— [granduncle]—
[third child
[uncle 2 grandfather 2]
mother grandmother 2]

22

2.2 Tutorial: Diagram Manipulation by ID values (Descendant Tree)

This tutorial shows how set up and save a descendant diagram which is going to be manipulated
without changing the base data.

2.2.1 Creation of a Basic Descendant Diagram

For a genealogy tree displaying a descendant lineage, we take the child construct. As a first
step, we start with a single family. As always, this root family has to have a g-node which serves
no important role for a root family, but stands for a parent here. The resulting genealogy tree
will contain just small nodes without names to display some interconnection. For this, a preset
value from a given /gtr/template 2?9 is used for quick setup.

\begin{tikzpicture}
\genealogytree [template=formal graph]{
child{
glmalel{a_1}
plfemale]l{a_2}
c[femalel{a_3}
c[malel{a_4}
c[femalel{a_5} as aq as

ai || a2

}
}
\end{tikzpicture}

The nodes of the diagram already have some options settings. To select and manipulate some
or many nodes later without editing the data, the nodes and families can be given unique
/gtr/id " 80 values.

\begin{tikzpicture}
\genealogytree[template=formal graph]{
child[id=fam_A]{
glid=nal,malel{a_1}
plid=na2,female]{a_2}
c[id=na3,female]{a_3}
c[id=na4,male]l{a_4}
c[id=na5,female]{a_5} as aq as

aq a

}
}
\end{tikzpicture}

23

2.2.2 Growing the Tree

The nodes a3 and a4 shall become parent of their own families. To proceed in small steps, we
make them g-nodes of single-member child families which does not change the diagram. Both
new families get their own /gtr/id " values for later reference.

\begin{tikzpicture}
\genealogytree[template=formal graph]{
child[id=fam_A]{
glid=nal,male]{a_1}
plid=na2,female]{a_2}
child[id=fam_B]{
glid=na3,femalel{a_3}

ai || a2

}
child[id=fam_C]{
glid=nad,malel{a_4} as a4 as

}
c[id=na5,female]{a_5}
}
¥
\end{tikzpicture}

Now, the new families are populated by a second parent and children.

\begin{tikzpicture}
\genealogytree [template=formal graph]{
child[id=fam_A]{
glid=nal,male]{a_1}
plid=na2,femalel{a_2}
child[id=fam_B]{
plid=nbl,male]{b_1}
glid=na3,femalel{a_3}
c[id=nb2,male]{b_2}

c[id=nb3, female]l{b_3}
} oo
hild[id=f C
child[id=fam_C]{ =
b3

ai || az

C1 as

all

glid=na4,male]{a_4}
plid=nc1,femalel{c_1} bo
c[id=nc2,male]{c_2}

}

c[id=na5,female]{a_5}

}
}
\end{tikzpicture}

C2

As a specialty, a union construct can be used inside a child family. This represents a second
husband or wife including children for the g-node of the current child family. A union does
not get its own g-node but shares the g-node of the child family.

24

In our example, node a4 gets a union which has to be placed inside the family with id value
fam_C:

\begin{tikzpicture}
\genealogytree[template=formal graph]{
child[id=fam_A]{
glid=nal,male]{a_1}
plid=na2,female]{a_2}
child[id=fam_B]{
plid=nbl,malel{b_1}
glid=na3,female]{a_33}
c[id=nb2,male]{b_2}
c[id=nb3,female]{b_3}
}
child[id=fam_C]{
glid=na4,male]{a_4} b
plid=nci,femalel{c_1} e
c[id=nc2,male]{c_2}
union[id=fam_D]{
plid=nd1,female]l{d_1} b b3
c[id=nd2,female]l{d_2}
c[id=nd3,male]{d_3}
c[id=nd4,malel{d_4}
}
}
c[id=nab,female]{a_5}
}
}
\end{tikzpicture}

As the reader may note, for union constructs, the edges between the nodes are likely to
overlap. Therefore, to attenuate the effect, the vertical positions of the edges for fam_C
and fam_D are shifted automatically. Also, note the small visual separation at the cross-
point of both family edges. This is generated by using /gtr/edge/foreground ™ '®! and
/gtr/edge/background "7 1% (here, as preset values).

In some context, fam_C and fam_D will be seen as a single aggregated family and will be called
patchwork family.

The tree is now grown further following the previous construction pattern.

25

\begin{tikzpicture}
\genealogytree [template=formal graph]{
child[id=fam_Al{
glid=nal,malel{a_1}
plid=na2,female]l{a_2}
child[id=fam_B]{
plid=nbl,male]l{b_1}
glid=na3,female]l{a_3}
c[id=nb2,male]l{b_2}
child[id=fam_E]{
plid=nel,male]{e_1}
glid=nb3,female] {b_33}
c[id=ne2,male]{e_2}
c[id=ne3,female]{e_3}
}
}
child[id=fam_C]{
glid=na4,male]{a_4}
plid=nc1,female]l{c_1}
child[id=fam_F]{
glid=nc2,malel{c_2}
plid=nf1,female]l{f_1}
c[id=nf2,male]{f_2}
c[id=nf3,female] {f_3}
c[id=nf4,male]{f_4}
}
union[id=fam_D]{
plid=ndl,femalel{d_1}
child[id=fam_G]{
plid=ngl,malel{g_1}
glid=nd2,female]{d_2}
c[id=ng2,malel{g_2}
c[id=ng3,femalel{g_3%}
union[id=fam_H]{
plid=nhl,male]{h_1}
c[id=nh2,male]{h_2}
}
}
c[id=nd3,male]l{d_3}
child[id=fam_I]{
glid=nd4,male]{d_4}
plid=nil,femalel{i_1}
c[id=ni2,female]{i_2}
c[id=ni3,female]{i_3}
c[id=ni4,female]l{i_4}
}
}
}
c[id=na5,female]{a_5}
}
}
\end{tikzpicture}

26

2.2.3 Separating Diagram Data and Diagram Drawing

For the second part of this tutorial, the final diagram data is now saved into a
file example.formal.graph, see Section 14.3 on page 259. That is everything inside
\genealogytree "I *° without the options of \genealogytree *"*°. Using the input construct,
graph drawing is done simply by the following:

\begin{tikzpicture}
\genealogytree [template=formal graph]
{input{example.formal.graph}}

\end{tikzpicture}
al as
I
1
T T
1 T g g
e || f1 g1 || de || h1]]ds

fellfallfal lo2]]93]|]he

In our example, the given /gtr/id % values are easy to remember since we choose them

nearly identical to the node content. For a not-so-formal example, this will be different. To
avoid digging into the data source for finding some /gtr/id "8 value, the /gtr/show id "1 2%
setting from the |5 library is useful:

\begin{tikzpicture}
\genealogytree [template=formal graph,show id]
{input{example.formal.graph}}
\end{tikzpicture}

‘o Youmn
nal na2
-
fam A

—/ = —
nb1 na3 na4 ncl ndil na5
fam C|:|J—k_I fam D

fam B
N N e
nb2 nel nb3 nc2 nf1 ng nd2 nh1 nd3 nd4 @
f E £ F f I
am_ am_ fam H s
AN A ('I::

ne2 ne3 nf2 nf3 nf4 ng2 ng3 nh2 ni?2 n13 ni4
L L L L [§ L J U J L J

27

2.2.4 Emphasizing a Relationship Path

For the given example data, we will emphasize the relationship between node eg and node iy in
our graph. The diagram above exposes the id values along the relationship path as ne3, nb3,
na3, nal and na2, na4, nd4, ni2. For emphasizing, we dim the colors of all other nodes and
brighten the colors for the nodes along this path.

All these manipulations are done inside the option list of \genealogytree

' P45 without changing

the diagram data directly.

1.
2.

. /gtr/extra edges for families

/gtr/box "8 sets options to wash out all nodes.

»P.172

/gtr/edges sets options to wash out all edges.

- P.82

/gtr/options for node sets box options to all nodes along the selected path to

display them emphasized.

P9 gets extra edge options to all emphasized the

connection line along the selected path.

\begin{tikzpicture}

\genealogytree[template=formal graph,
box={colback=white,colupper=black!50,opacityframe=0.25},
edges={foreground=black!25,background=black!5},
options for node={ne3,nb3,na3,nal,na2,na4,nd4,ni2}/

{box={colback=blue!50!red!20,colupper=black,opacityframe=1,fuzzy halol}},
extra edges for families={
x={fam_E}{nb3}{ne3},x={fam_B}{na3}{nb3},
x={fam_A}{nal,na2}{na3,nad},
x={fam_D}{na4}{nd4},x={fam_I}{nd4}{ni2}
Hforeground=blue!50!red,no background},

]
{input{example.formal.graph}}
\end{tikzpicture}

ai a2
= e

- —I_

bl as a4 C1 dl as
—L
I
bQ €1 b3 (6] (f] g1 d2 h] d3 d4 j]
ex | les| | fo| | fal|fa) |92 93|]he 2 | | i3 || 4

28

Also, the parameters for the auto-layout algorithm can be changed using the known id values.
Our selected relationship path is emphasized further by straightening the lineages. This is done
by inserting /gtr/pivot ~ 5! values through /gtr/options for node " 52,

\begin{tikzpicture}

\genealogytree[template=formal graph,
box={colback=white,colupper=black!50,opacityframe=0.25},
edges={foreground=black!25,background=black!5},
options for node={ne3,nb3,na3,nal,na2,na4,nd4,ni2}/

{box={colback=blue!50!red!20,colupper=black,opacityframe=1,fuzzy halol}},
extra edges for families={
x={fam_E}{nb3}{ne3},x={fam_B}{na3}{nb3},
x={fam_A}{nal,na2}{na3,na4},
x={fam_D}{na4}{nd4},x={fam_I}{nd4}{ni2}
Hforeground=blue!50!red,no background},
options for node={ne3,nb3,nd4,ni2}{pivot},
options for node={na3,nad4}{pivot=parent},

{input{example.formal.graph}}
\node [below] at (ne3.south) {Start of path};
\node [below] at (ni2.south) {End of path};

\path (nal) -- node[above=5mm]{Common ancestors} (na2);

\end{tikzpicture}

Common ancestors

aq a9
I

- - 1
bl as a4 C1 dl ag
bQ €1 bg (&) ,fl g1 d2 hl d3 d4 71
ex | fes| | fo| | fal| fa]| |g2] 93 |he ig | | i3 || da
Start of path End of path

All given /gtr/id "8 values are also TikZ nodes. Therefore, a genealogy tree can easily be
annotated and extended by TikZ instructions.

29

2.2.5 Coloring Subtrees

For the given example data, the descendants of the root family should now by colored with three
different colors. All in-law nodes should be visually separated from descendants of a; and as.

As a first step, the subtree denoted by fam_B is colored in red by /gtr/options for
subtree " 93, Analogously, fam_C is colored in blue. Node as is a leaf node without own family
and, therefore, is colored using /gtr/options for node "' ®2. Also, the preset /gtr/male "8
and /gtr/female "8 styles are made ineffective for this drawing.

This gives a colored genealogy tree, but not only the direct descendents are colored, but all
members of descendant families:

\begin{tikzpicture}
\genealogytree [template=formal graph,
male/.style={},female/.style={box={circular arcl}},
options for subtree={fam_B}{box={colback=red!20!white}},
options for subtree={fam_C,fam_D}{box={colback=blue!20!whitel}},
options for node={na5}{box={colback=green!20!whitel}},
]

{input{example.formal.graph}}
\end{tikzpicture}

ale}
2 1000

B -

J_ L

ba || e @ 2 e g1 hi|lds|]|da e
L.

62f2f4 g2h2 @@@

As can be inspected using /gtr/show type ' ??7 from the library, the nodes to be
excluded are all p-nodes:

\begin{tikzpicture}
\genealogytree [template=formal graph,show type,
male/.style={},female/.style={box={circular arc}},
options for subtree={fam_B}{box={colback=red!20!white}},
options for subtree={fam_C,fam_D}{box={colback=blue!20!whitel}},
options for node={na5}{box={colback=green!20!whitel}},
]

{input{example.formal.graph}}
\end{tikzpicture}

30

*PA8 or \gtrifpnode " *8. We use this to set up

P48 expands

This node type is accessible by \gtrnodetype
a tcolorbox style bleach p which wash out the in-law nodes, when \gtrifpnode
to (true). This style is formulated locally by /gtr/tcbset " 101

Ao..
tcbset={bleach p/.code={/
\gtrifpnode{\tcbset{enhanced jigsaw,opacityback=0.2}}{}/
11,
Bo o o

This gives:

\begin{tikzpicture}
\genealogytree[template=formal graph,
male/.style={},female/.style={box={circular arcl}},
tcbset={bleach p/.code={/
\gtrifpnode{\tcbset{enhanced jigsaw,opacityback=0.2}}{}/
11,
options for subtree={fam_B}{box={colback=red!20!white,bleach p}},
options for subtree={fam_C,fam_D}{box={colback=blue!20!white,bleach p}},
options for node={na5}{box={colback=green!20!whitel}},
]
{input{example.formal.graph}}

\draw [decorate,decoration={brace,amplitude=4mm,mirror,raise=2mm},
line width=1pt,yshift=0pt] (nb2.south west|-ne3.south) -- (ne3.south east)
node [align=center,below=9mm,midway,fill=red!20!white] {Descendants of a_3};
\draw [decorate,decoration={brace,amplitude=4mm,mirror,raise=2mm},

line width=1pt,yshift=0pt] (nf2.south west) -- (ni4.south east)
node [align=center,below=9mm,midway,fill=blue!20!white] {Descendants of a_4};
\end{tikzpicture}

@) (e)

(@)

I}
b
|©

>
=
IS ¥
w
IS
Ny

bg el @ C2 e g1
1EHONBOE ®O
~ N _
~~ ~
Descendants of as Descendants of as

31

2.3 Tutorial: A Database Family Diagram (Sand Clock)

This tutorial shows the application of a database concept for representing the node content.
Also, the sand clock diagram is shown which units ancestor and descendant graphs.

2.3.1 Creation of a Basic Sand Clock Diagram

The sandclock construct is the starting point for a sand glass type genealogy tree. The proband
is the constriction for the sand glass where the ancestors and descendants of the proband meet.
Therefore, a sandclock can and should contain child and parent constructs. There has to be
exactly one child, because a sandclock has no own g-node but inherits it from the child.

For the following examples, we use genealogypicture " 40 to create genealogy trees. This is a
handy combination of tikzpicture and \genealogytree "4,

7 minimal sandclock diagram
\begin{genealogypicture} [template=formal graph]
sandclock

{

child{ proband
g{\text{ proband }}
}
}
\end{genealogypicture}

Now, we can add parent and child constructs. Here, we use single-member families since the
tree will be grown later on.

7 basic sandclock diagram (ready to be extended)
\begin{genealogypicture} [template=formal graph]
sandclock
{
child{
g{\text{ proband }}
plal}
child{/ grows in child direction A B
g{b}
}
child{/ grows in child direction
gic}
}
}
parent{/ grows in parent direction b C
g{A}
¥
parent{/ grows in parent direction
g{B}
}
}
\end{genealogypicture}

proband || a

32

2.3.2 Node Content in Database Format

In the following, we will construct a family diagram for Carl Friedrich Gaufl (1777-1855).

We step back a little bit and consider the minimal sand clock diagram as starting point. The
node content, of course, may be any formatted WX text.

\begin{genealogypicture}

sandclock Carl
{ Friedrich
child{ Gauf3; born
g{Carl Friedrich \textbf{Gau\ss{}}, 1777, died
born 1777, died 1855 1855
}
}
}
\end{genealogypicture} —

In this context, the database approach means that the node content should not contain a format-
ted text but just the data core which is going to be formatted later. This is the same principle
as for creating a bibliography with biblatex or bibtex.

So, we tell genealogytree that we want to use such a database concept by setting
/gtr/processing " 1110 to database. Now, the content can be given as a key-value list. See
Chapter 7 on page 139 for all feasible keys.

Further, we tell genealogytree how to format this given data by setting /gtr/database
format "1 to some predefined value. Everything can be customized later.

The basic information for a person is /gtr/database/name " 143,

/gtr/database/male " 1% or /gtr/database/female ~ 143
/gtr/database/birth " 145 and /gtr/database/death - 146,
& g

\begin{genealogypicture}[
processing=database,
database format=medium marriage below,
]

sandclock

e
{ Johann Carl
Friedrich GAUSS
child{ * 30.IV.1777 in
s q= Braunschweig
gl[id=GauxCarl1777]{ (Niedersachsen)
male, t 23.11.1855
name={Johann \pref{Carl Friedrich} \surn{Gau\ss{}}}, in Géttingen
birth={1777-04-30}{Braunschweig (Niedersachsen)}, S\?ﬁgszfzggffs)
death={1855-02-23}{G\"ottingen (Niedersachsen)}, Astronom, Geodit
comment={Mathematiker, Astronom, Geod\"at und Physiker}, und Physiker
image={Carl_Friedrich_Gauss.jpgl}, ———t
}
}
}

\end{genealogypicture}

In the example above, we also added a /gtr/database/comment " 43 which appears in the out-
put, and an /gtr/database/image " ' which is not used. Note the markup with \pref ~ 159
and \surn "7 1% inside the /gtr/database/name " %3 which marks preferred name parts and
the surname. There is no name parsing as known from bib(la)tex.

As /gtr/id " for Carl Friedrich Gau$, «GauxCar11777» was chosen. Such id values could
be chosen to your liking. As a common guideline, they should be human readable/under-
standable, because they may be needed to manipulate the graph afterwards and something like

33

«gdOh-xhag-Ough-opod-89sq-sdqj-8pah» may not be easily associated with Gauf. Also, they
should be automatically producible for the comfortable case, that a genealogy program exports
data in this format.

In this tutorial, this common guideline is sharpened to follow these rules:

e A person id is build as XxxxYyyyZzzz, where Xxxx are four letters of the surname, Yyyy are
four letters of the (preferred) first name, and Zzzz is the year of birth (maybe, estimated).

e A family id is build as AaaaBbbbZzzz, where Aaaa are four letters of the husbands surname,
Bbbb are four letters of the wifes surname, and Zzzz is the year of marriage (maybe,
estimated).

e Onlya,...,z, A ..., Zletters are used. Accented letters like umlauts are replaced by letters
from the masks above. If a name part is shorter than four letters, letters from the masks
are used for complement.

e If two identical id values are produced for two or more persons or families following these
rules, they are distinguished by adding -(counter).

2.3.3 Formatting the Node Content

First, we adapt some graph geometry settings to our liking. /gtr/node size "3 /gtr/level
size "7 and /gtr/level distance ' 7! set size and distance values.

With /gtr/box "1 we set tcolorbox options for the appearance of the node box. Note that
\gtrDBsex is set to male by the database values inside the node content. There are predefined
/tcb/male 7 ® and /tcb/female "8 styles, but with /gtr/tcbset " 101 we change them to
colorize also the interior of the box.

\begin{genealogypicture}[

processing=database,

database format=medium marriage below,

node size=2.4cm,

level size=3.b5cm,

level distance=6mm,

tcbset={male/.style={colframe=blue, colback=blue!5},
female/.style={colframe=red,colback=red!5}},

box={fit basedim=7pt,boxsep=2pt,segmentation style=solid,

halign=left,before upper=\parskipipt, -
\gtrDBsex,drop fuzzy shadow, Friedrich GAuss
* 30.IV.1777 in
b Braunschweig
] (Niedersachsen)
1 23.11.1855
sandclock in Gottingen
{ (Niedersachsen)
. Mathematiker,
child{ Astronom,
gl[id=GauxCarl1777]{ Geodit und
medle Physiker
2

name={Johann \pref{Carl Friedrich} \surn{Gau\ss{}}},
birth={1777-04-30}{Braunschweig (Niedersachsen)},
death={1855-02-23}{G\"ottingen (Niedersachsen)},
comment={Mathematiker, Astronom, Geod\"at und Physiker},
image={Carl_Friedrich_Gauss.jpgl},
}
}
}
\end{genealogypicture}

34

As second step, we adapt the format of the given data inside the node output.

With /gtr/list separators hang 1% the event list is formatted with hanging indent.
are used to format the name of the per-
son. /gtr/place text I !6% inserts a \newline before the place of an event is printed in our

/gtr/name font

Ao..

list separators hang,

name font=\bfseries,

surn code={\textcolor{red!50!black}{#1}},
place text={\newline}{},

date format=d/mon/yyyy,

Ao

~P160 and /gtr/surn code 159

example. Finally, /gtr/date format " '6! is used to change the way dates are printed.

\begin{genealogypicture}[

P
]
sandclock
{
child{
g[id=GauxCarl1777]{
male,
name={Johann \pref{Carl Friedrich} \surn{Gau\ss{}}},
birth={1777-04-30}{Braunschweig (Niedersachsen)},
death={1855-02-23}{G\"ottingen (Niedersachsen)},
comment={Mathematiker, Astronom, Geod\"at und Physiker},
image={Carl_Friedrich_Gauss.jpg},
}
¥
}

processing=database,

database format=medium marriage below,

node size=2.4cm,

level size=3.b5cm,

level distance=6mm,

list separators hang,

name font=\bfseries,

surn code={\textcolor{red!50!black}{#1}},

place text={\newline}{},

date format=d/mon/yyyy,

tcbset={male/.style={colframe=blue, colback=blue!5},

female/.style={colframe=red,colback=red!5}},

box={fit basedim=7pt,boxsep=2pt,segmentation style=solid,
halign=left,before upper=\parskipipt,
\gtrDBsex,drop fuzzy shadow,

\end{genealogypicture}

35

Johann Carl
Friedrich Gaufl
* 30/Apr/1777
Braunschweig
(Niedersachsen)
t 23/Feb/1855
Gottingen
(Niedersachsen)
Mathematiker,
Astronom,
Geoddt und
Physiker

_

2.3.4 Adding Images

The predefined /gtr/database format 'Y options do not consider images. But we can add
image code easily to be /gtr/box " ¥ definition which accepts tcolorbox settings.

/tcb/if image defined "' decides, if an image is present,
The file name of this image is \gtrDBimage which is set to

options accordingly.

Carl_Friedrich_Gauss.jpg' by the database values inside the node content.

Options from The tcolorbox package [3] are used to enlarge the box width by 25mm and fill the

space with this image:

and sets tcolorbox

\begin{genealogypicture}[

processing=database,

database format=medium marriage below,

node size=2.4cm,

level size=3.b5cm,

level distance=6mm,

list separators hang,

name font=\bfseries,

surn code={\textcolor{red!50!black}{#1}},

place text={\newline}{},

date format=d/mon/yyyy,

tcbset={male/.style={colframe=blue,colback=blue!5},

female/.style={colframe=red,colback=red!5}},

box={fit basedim=7pt,boxsep=2pt,segmentation style=solid,
halign=left,before upper=\parskipipt,
\gtrDBsex,drop fuzzy shadow,
if image defined={add to width=25mm,right=25mm,

underlay={\begin{tcbclipinterior}\path[fill overzoom image=\gtrDBimage]
([xshift=-24mm] interior.south east) rectangle (interior.north east);
\end{tcbclipinterior}},

H3,
To
]
sandclock
{
child{
g[id=GauxCarl1777]{
male,
name={Johann \pref{Carl Friedrich} \surn{Gau\ss{}}},
birth={1777-04-30}{Braunschweig (Niedersachsen)},
death={1855-02-23}{G\"ottingen (Niedersachsen)},
comment={Mathematiker, Astronom, Geod\"at und Physiker},
image={Carl_Friedrich_Gauss.jpg},
}
}
}

\end{genealogypicture}

Johann Carl
Friedrich Gaufl
% 30/Apr/1777
Braunschweig
(Niedersachsen)
t 23/Feb/1855
Gottingen
(Niedersachsen)
Mathematiker,
Astronom,
Geoddt und
Physiker

Thttp:/ /commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss.jpg

36

http://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss.jpg

2.3.5 Full Example with Frame

The sandclock example is now extended with family and ancestors and descendants of
Gaufl as shown at the beginning of this tutorial. The full sandclock example is saved as
«example.gauss.graphy:

File «example.gauss.graphn

sandclock{
child[id=GauaOsth1805]{
plid=0sthJoha1780]{
female,
name={\pref{Johanna} Elisabeth Rosina \surn{Osthoffl}},
birth={1780-05-08}{Braunschweig (Niedersachsen)},
marriage={1805-10-09}{Braunschweig (Niedersachsen)},
death={1809-10-11}{G\"ottingen (Niedersachsen)l},
comment={Wei\ss{}gerberstochter},
}
glid=GauxCarl17771{
male,
name={Johann \pref{Carl Friedrich} \surn{Gau\ss{}}},
birth={1777-04-30}{Braunschweig (Niedersachsen)},
death={1855-02-23}{G\"ottingen (Niedersachsen)},
comment={Mathematiker, Astronom, Geod\"at und Physiker},
image={Carl_Friedrich_Gauss. jpg},
}
c[id=GauxCar11806]{
male,
name={\pref{Carl} Joseph \surn{Gau\ss{}}},
birth={1806-08-21}{Braunschweig (Niedersachsen)},
death={1873-07-04}{Hannover (Niedersachsen)},
}
c[1d=GauxWilh1808]{
female,
name={\pref{Wilhelmina} \surn{Gau\ss{}}},
birth={1808-02-29}{G\"ottingen (Niedersachsen)},
death={1840-08-12}{T\"ubingen (Baden-W\"urttemberg)l},
}
c[1d=GauxLudw1809] {
male,
name={\pref{Ludwig} \surn{Gau\ss{}}},
birth={1809-09-10}{G\"ottingen (Niedersachsen)},
death={1810-03-01}{G\"ottingen (Niedersachsen)},
}
union[id=GauaWald1810]{
plid=WaldFrie1788]{
female,
name={\pref{Friederica} Wilhelmine \surn{Waldeck}},
birth={1788-04-15}{G\"ottingen (Niedersachsen)},
marriage={1810-08-14}{G\"ottingen (Niedersachsen)},
death={1831-09-12}{G\"ottingen (Niedersachsen)},
comment={Rechtswissenschaftlerstochter},
}
c[id=GauxEuge1811]{
male,
name={\pref{Eugen} Peter Samuel Marius \surn{Gau\ss{}}},
birth={1811-07-29}{G\"ottingen (Niedersachsen)},
death={1896-07-04}{Columbia (Missouri)},
comment={Rechtswissenschaftler, Kaufmann},
}
c[id=GauxWilh1813]{
male,
name={\pref{Wilhelm} August Carl Matthias \surn{Gau\ss{}}},

37

birth={1813-10-23}{G\"ottingen (Niedersachsen)},
death={1879-08-23}{St. Louis (Missouri)},
}
c[id=GauxTher1816]{
female,
name={Henriette Wilhelmine Karoline \pref{Therese} \surn{Gau\ss{}}},
birth={1816-06-09}{G\"ottingen (Niedersachsen)},
death={1864-02-11}{Dresden (Sachsen)},
}
}
}
parent [id=GoosEgge1735]{
g[id=GauxGebh1743]{
male,
name={\pref{Gebhard} Dietrich \surn{Gau\ss{}}},
birth={1743-02-13}{Braunschweig (Niedersachsen)},
death={1808-04-14}{Braunschweig (Niedersachsen)},
comment={G\"artner, Wasserkunstmeister, Rechnungsf\"uhrer},
}
parent [id=GoosLbtk1705]{
glid=GoosJyrg1715]{
male,
name={\pref{J\"urgen} \surn{Goossl}},
birth={1715}{V\"olkenrode (Niedersachen)},
death={1774-07-05}{Braunschweig (Niedersachsen)},
comment={Lehmmaurer},
}
plid=GoosHinr1655]{
male,
name={\pref{Hinrich} \surn{Gooss}},
birth={(caAD)1655}{},
death={1726-10-25}{V\"olkenrode (Niedersachen)},
}
plid=LxtkKath1674]{
female,
name={\pref{Katharina} \surn{L\"utken}},
birth={1674-08-19}{V\"olkenrode (Niedersachen)},
marriage={1705-11-24}{V\"olkenrode (Niedersachen)},
death={1749-04-15}{V\"olkenrode (Niedersachen)},
}
}
plid=EggeKath1710]1{
female,
name={\pref{Katharina} Magdalena \surn{Eggenlings}},
birth={(caAD)1710}{Rethen},
marriage={(caAD)1735}{V\"olkenrode (Niedersachen)},
death={1774-04-03}{Braunschweig (Niedersachsen)},
}
}
parent [id=BentKron1740]{
g[id=BenzDoro1743]{
female,
name={\pref{Dorothea} \surn{Benzel}},
birth={1743-06-18}{Velpke (Niedersachsen)},
marriage={1776-04-25}{Velpke (Niedersachsen)},
death={1839-04-18}{G\"ottingen (Niedersachsen)},
comment={Steinhauerstochter},
}
parent [id=BentBbbb1740]{
glid=BentChri1717]{
male,
name={\pref{Christoph} \surn{Bentze}},
birth={1717}{Velpke (Niedersachsen)},
death={1748-09-01}{Velpke (Niedersachsen)},

38

comment={Steinhauer},
}
plid=BentAndr1687]{
male,
name={\pref{Andreas} \surn{Bentzel}},
birth={1687-02}{},
death={(caAD)1750}{Velpke (Niedersachsen)},
}
}
plid=KronKath1710]{
female,
name={\pref{Katharina} \surn{Krone}},
birth={(caAD)1710}{},
death={1743/}{Velpke (Niedersachsen)},

172 are set to be rounded and the used symbols are recorded
t 7 P204 and displayed by \gtrSymbolsLegend * 1205 inside

As final polish, /gtr/edges
by /gtr/symbols record rese
/gtr/after tree 101,

Finally, the whole diagram is put into a titled tcolorbox to exhibit the example:

\begin{tcolorbox}[enhanced,sharp corners,boxrule=0.6pt,left=0pt,right=0pt,
colback=blue!50!black,interior style image=goldshade.png,
halign=center,center title,fonttitle=\bfseries,
title={The Family of Carl Friedrich Gau\ss{} (1777--1855)} 1]

\begin{genealogypicture}[
processing=database,
database format=medium marriage below,
node size=2.4cm,
level size=3.b5cm,
level distance=6mm,
list separators hang,
name font=\bfseries,
surn code={\textcolor{red!50!black}{#1}},
place text={\newline}{},
date format=d/mon/yyyy,
tcbset={male/.style={colframe=blue,colback=blue!5},

female/.style={colframe=red,colback=red!5}},
box={fit basedim=7pt,boxsep=2pt,segmentation style=solid,
halign=flush left,before upper=\parskiplpt,
\gtrDBsex,drop fuzzy shadow,
if image defined={add to width=25mm,right=25mm,
underlay={\begin{tcbclipinterior}\path[fill overzoom image=\gtrDBimage]
([xshift=-24mm] interior.south east) rectangle (interior.north east);
\end{tcbclipinterior}},
H3,
g
edges=rounded,
symbols record reset,
after tree={\node[font=\scriptsize\itshape,text width=1.8cm,below left,
fill=white,fill opacity=0.4,text opacity=1]
at (current bounding box.north east) {\gtrSymbolsLegend};},

input{example.gauss.graph}

\end{genealogypicture}
\end{tcolorbox}

39

The Family of Carl Friedrich Gauf3 (1777—-1855)

o N
Hinrich Gooss Katharina Andreas Bentze *=born,
* ca. 1655 Liitken * Feb/1687 @ =married,
t 25/0ct/1726 * 19/Aug/1674 t ca. 1750 +=died.
Volkenrode Vélkenrode Velpke
(Nieder- (Niedersachen) (Niedersach-
sachen) t 15/Apr/1749 sen)
Volkenrode
(Niedersachen)
@® 24/Nov/1705
Voélkenrode
(Niedersachen)
Jiirgen Gooss Katharina Christoph Katharina
* 1715 Magdalena Bentze Krone
Vélkenrode Eggenlings * 1717 * ca. 1710
(Nieder- * ca. ﬁ710 Velpke 1 after 1743
sachen) 1‘ ?/e‘/: 91/11774 (Niedersach- Velpke
12X sen i < -
t 5/Ju1/}774) Braunschweig) <N1eder§ach
Braunschweig ‘ t 1/Sep/1748 sen)
(Niedersach- (Nsilormeisem) Velpke
sen) ® ca. 1735 (Nl;edersach—
Lehmmaurer Vailenmede eI
(Niedersachen) Steinhauer
Gebhard Dorothea Benze
Dietrich Gauf} % 18/Jun/1743
* 13/Feb/1743 Velpke
Braunschweig (Niedersachsen)
(Niedersachsen) 1 %}8"/A<pr/1839
t 14/Apr/1808 ottingen
Br/aunséhweig (Nlcdcrsachscn)
(Niedersachsen) tStemhauerstoch-
Gartner, er
Wasserkunst- ® 25/Apr/1776
meister, Vel kp
. pke
Rechnungsfiihrer (Niedersachsen)
-
Johanna Johann Carl Friederica
glifzbt?fth Rosina || Priedrich Gauf3 Wilbelmine
% 8/May /1780 * 30/Apr/1777 * 15/Apr/1788
Braun);chweig Braunschweig Géttingen
(Niedersachsen) (Niedersachsen) (Velorrsm)
t11/Oct/1809 t 23/Feb /1855 fer oo
Gottingen Géttingen (Niedergsachsen)
(Niedersachsen) (Niedersachsen) Rechtswis-
Weifigerberstochter Mathematiker, senschaftlerstochter
Ast ,
© &0/ e Geodit und ® 14/Aug/1810
Braunschweig Phusiker Goéttingen
(Niedersachsen) SLEE (Niedersachsen)
\
([i
L A A
Carl Joseph Wilhelmina Ludwig Gaufl Fugen Peter Wilhelm Henriette
Gauf Gaufl * 10/Sep/1809 Samuel Marius August Carl Wilhelmine
* 21/Aug/1806 * 29/Feb/1808 Gottingen Gaufy Matthias Karoline
Braunschweig Gottingen (Niedersach- * 29/Jul/1811 Gaufl Therese Gauf3
(Niedersach- (Niedersach- sen) Go,ttmg‘?n] % 23/Oct/1813 % 9/Jun/1816
sen) sen) t 1/Mar/1810 iNjc?Cisgagcehscn) Gé_ttingen Gé_ttingen
t4/Jul/1873 t 12/Aug/1840 Gottingen t C/ u / 18 (Niedersach- (Niedersach-
Hannover Tibingen (Niedersach- (I\C/)Iigéguﬁ) sen) sen)
(Niedersach- (Baden- sen) . 1 23/Aug/1879 t 11/Feb/1864
sen) Wiirttemberg) oy St. Louis Dresden
g senschaftler, ra 5
o (Missouri) (Sachsen)

40

2.4 Tutorial: Descendants of the Grandparents (Connecting Trees)

This tutorial will show how to create a «descendants of the grandparents» type of diagram. For
this, two genealogy trees have to be connected.

2.4.1 Descendants of the Two Grandparents

Since «descendants of the grandparents» cannot be formulated by the grammar of this package,
see Chapter 4 on page 51, a descendants tree for each pair of grandparents is considered.

In this example, the proband is c4. First, we take a look at the descendants of the father’s
parents a1 and as. Note that we arranged the red colored father’s family at the right hand side
and that the father node ¢; has an /gtr/id "7 of cla.

\begin{tikzpicture}
\genealogytree[template=formal graph,
tcbset={male/.style={sharp corners},female/.style={circular arcl}},
edges={anchoring=center},box={colback=green!25}]

{
child{
glmalel{a_1} plfemalel{a_2} cl[female]{a_3}
child{
plmalel{a_4} glfemalel{a_6} cl[femalel{a_6}
child{
plmale]l{a_7} glfemale]{a_8} cl[malel{a_9}
}
}
child[family box={colback=red!25}]{
glmale,id=clal{c_1} plfemalel{c_2}
c[female]l{c_3} clfemale,box={fuzzy halo,colback=yellow}]{c_4} cl[male]{c_5}
}
}
T
\end{tikzpicture}

al
I]

ag

The other settings in this example are less important, but one may observe that the
/tcb/male P ® and /tcb/female ™ ® styles were redefined to show not different colors but
different shapes.

41

Secondly, we take a look at the descendants of the mother’s parents b; and bs. Note that this
time we arranged the red colored mother’s family at the left hand side and that the father node
c1 has a different /gtr/id "8 of c1b.

\begin{tikzpicture}
\genealogytree[template=formal graph,
tcbset={male/.style={sharp corners},female/.style={circular arcl}},
edges={anchoring=center},box={colback=blue!25}]

{
child{

glmalel{b_1} plfemalel{b_2}

child[family box={colback=red!25}]{
plmale,id=cibl{c_1} glfemale]l{c_2}
c[femalel{c_3} cl[female,box={fuzzy halo,colback=yellow}]{c_4} clmalel{c_53}

}

child{
plmalel{b_3} glfemalel{b_4}
c[female]{b_5} c[male]{b_6} c[male]l{b_7}
union{

plmale]l{b_8} clfemalel{b_9}

}

}

child{
glmalel{b_{10}} plfemalel{b_{11}}
c[female]l{b_{12}} clmalel{b_{13}}

}

}
¥
\end{tikzpicture}

2.4.2 Connected Diagram

After the preparations, the \genealogytree " *° diagrams can easily be put together.

Using /gtr/set position 7 with value c1b at cla for the second \genealogytree

puts node ¢; from the diagram directly on node c; of the first \genealogytree "I *°. Note that
in a more complicated situation more manual intervention may be necessary to avoid unwanted
overlapping of other nodes.

»P. 45

> P. 45 »P. 112

In the first \genealogytree , one sees a /gtr/phantom* option which makes the first

family ¢y, ..., cs invisible but still space reserving.

42

\begin{tikzpicture}
\gtrset{template=formal graph,
tcbset={male/.style={sharp corners},female/.style={circular arcl}},
edges={anchoring=center},

¥
\genealogytree [box={colback=green!25}]
{
child{
glmalel{a_1} plfemalel{a_2} cl[female]{a_3}
child{
plmalel{a_4} glfemalel{a_5} cl[femalel{a_6}
child{
plmalel{a_7} glfemalel{a_8} c[malel{a_9}
¥
}
child [phantomx]{
glmale,id=clal{c_1} plfemalel{c_2}
c[female]{c_3} clfemalel{c_4} cl[male]l{c_5}
}
}
¥

\genealogytree [box={colback=blue!25}, set position=clb at cla]

child{

glmalel{b_1} plfemale]l{b_2}

child[family box={colback=red!25}]{
plmale,id=cibl{c_1} glfemale]l{c_2}
c[female]l{c_3} clfemale,box={fuzzy halo,colback=yellow}]{c_4} c[malel{c_5}

}

child{
plmalel{b_3} glfemalel{b_4}
c[female]{b_5} c[male]l{b_6} cl[male]l{b_7}
union{

plmale]l{b_8} cl[femalel{b_9}

}

}

child{
glmale]{b_{10}} plfemalel{b_{11}}
c[female]{b_{12}} clmalel{b_{13}}

}

}
}
\end{tikzpicture}

@E® [
OHEG OO

ag

43

44

Genealogy Tree Macros

3.1 Creating a Genealogy Tree

\genealogytree [(options)]{(tree content)}
This is the main genealogy tree drawing macro of the package. The (tree content) has to
obey to the tree grammar rules documented in Chapter 4 on page 51.
The (options) control how the drawing is done. These (options) are pgf keys with the key
tree path /gtr/ and they are described in the following.
The actual drawing is done with help of the TikZ package. Therefore, every
\genealogytree has to be placed into a tikzpicture environment. It is possible to put
several \genealogytree macros into the same tikzpicture and interconnect them.

\begin{tikzpicture}
\genealogytree[template=signpost]
{
parent{
glmale]{proband}
c[female] {sister} | |
c[male]{brother} | | |
plmale]{father}

plfemale] {mother}
3 proband sister brother

father mother

}
\end{tikzpicture}

Detailed information about the genealogy tree grammar is found in Chapter 4 on page 51.
The short version is that a genealogy tree can have three types of nodes:
e c nodes are child nodes to a family,
e p nodes are parent nodes to a family,
e g nodes are usually child nodes to one family and parent nodes another family or even
several families. Here, g can be memorized as genealogy node.
A family is a set of parent and child nodes which has to contain exactly one genealogy node
(g node). All nodes of a family are interconnected with an edge set. In contrast to ordinary
tree structures where an edge connects one node to another node, here, an edge connects a
node to a family.
A genealogy tree can have following types of families:
e parent: A parent family may contain other parent families. Trees with this construc-
tion grow into ancestor direction.
e child: A child family may contain other child families or union families. Trees with
this construction grow into descendant direction.
e union: A union ties a second child-type family to a g node as parent of this family.
e sandclock: A sandclock connects ancestors and descendants starting from a single
proband.

45

\begin{tikzpicture}

\genealogytree[template=signpost]

{
parent{
g[male] {proband}
c[female]{sister}
c[male]{brother}
parent{
glmale]{father}
p[male]{grandfather}
plfemale] {grandmother}
}
plfemale] {mother}
}
}
\end{tikzpicture}

\genealogytreeinput [(options)]{(file name)}
Uses the content of the file denoted by (file name) to create a \genealogytree ' % with
the given (options). See Section 14.1 on page 257 for the file of the following example.

grandfathe

T grandmother

—

father mother

proband

sister brother

\genealogytreeinput [template=signpost] {example.option.graph}

\begin{tikzpicture}
\end{tikzpicture}
Grandpa
Smith
* 1949

Grandma
Smith
* 1952

Grandpa
Doe
%* 1955

Grandma
Doe
* 1956

o

——

John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
Arthur Berta Charles
* 2008 *2010 *2014
\begin{genealogypicture} [{options)]
(tree content)
\end{genealogypicture}
»P. 45

This is a shortcut combination of one \genealogytree
(options) and (tree content) see \genealogytree

—P.45

inside a tikzpicture. For
This environment allows more

compact source code, but one cannot combine several trees and adding additional TikZ

—P. 100

commands has to be done by /gtr/tikzpicture or

\begin{genealogypicture}
[template=signpost]
parent{
glmale]{proband}
c[female]{sister}
c[male]{brother}
plmale]{father}
plfemale] {mother}
}
\end{genealogypicture}

46

/gtr/after tree F 101,

father mother

proband

sister brother

3.2 Using Tree Options

\gtrset{(options)}
Sets (options) for every following \genealogytree inside the current TEX group.
These (options) are pgf keys with the key tree path /gtr/ and they are described in
the following.

»P.45

7 Setting options for the following
\gtrset{template=signpost}

\begin{tikzpicture}

\genealogytree father mother

parent{ | |
glmale]{proband}
c[female] {sister} | | |
c[male] {brother}
plmale]{father} proband sister brother
plfemale] {mother}
}
}
\end{tikzpicture}

Another important field of application for \gtrset is to create own styles for later usage.

/% Setting options for the following
\gtrset{mytree/.style={
template=signpost,
box={colback=yellow!20},
edges={swing,no background,
foreground=yellow!50!black},

1r father mother

\begin{tikzpicture}

\genealogytree [mytreel / own style //____i:::::T:::::i____\\

{

parent{

g[male] {proband}
c[female]{sister}
c[male]{brother}
plmale]{father}

plfemale] {mother}

proband sister brother

}
}
\end{tikzpicture}

\gtrkeysappto{(hook)}{{key list)}
Auxiliary macro which appends a (key list) (options) to a (hook) macro which may already
contain a key list.

\gtrkeysgappto{(hook)}{(key list)}
Auxiliary macro which globally appends a (key list) (options) to a (hook) macro which may
already contain a key list.

47

3.3 Accessing Information inside Nodes

Inside the node content, there are several processing informations available which can be used
for debugging or steering the output. Also see Section 11.4 on page 225 for displaying these
values.

\gtrnodetype
Holds the node type g, p, or c.

\gtrnodeid
Holds the /gtr/id "% value of the node.

\gtrnodenumber
Holds the internal node number.

\gtrnodefamily
Holds the internal family number this node belongs to.

\gtrnodelevel
Holds the tree level number this node belongs to.

\begin{tikzpicture}
\genealogytree[
template=signpost,
level size=2cm, type: p type: p
content interpreter content={ id: Jim id: 777
\begin{tabular}{e{}re{: }1e{}} am e 5 e 6
family: 2 family: 2
type & \gtrnodetype\\ level: 2 level: 2
id & \gtrnodeid\\
number & \gtrnodenumber\\
family & \gtrnodefamily\\
level & \gtrnodelevell\
\end{tabular}} type: g type: p
o id: Bob id: 77?7
number: 4 number: 7
Parent{ family: 2 family: 1
glmale,id=Abc]{} level: 1 level: 1
c[female]l{}
c[malel{} | |
parentq{ | | |
glmale,id=Bob]{}

q s 7 t 2 type: ¢ type: ¢
p(uale,id=Jin] {} YR Abe T 7 R 77
plfemale]{} number: 1 number: 2 number: 3

} family: 1 family: 1 family: 1
plfemalel{} level: 0 level: 0 level: 0
}
}
\end{tikzpicture}

\gtrifnodeid{(true)}{(false)}
Expands to (true), if /gtr/id "1 80 was set, and to (false) otherwise.

\gtrifgnode{(true)}{(false)}
Expands to (true), if the node type is g, and to (false) otherwise.

\gtrifcnode{(true)}{(false)}
Expands to (true), if the node type is c, and to (false) otherwise.

\gtrifpnode{(true)}{(false)}
Expands to (true), if the node type is p, and to (false) otherwise.

48

\gtrifroot{{true)}{(false)}
Expands to (true), if the node is the root node of a parent tree or of a child tree, and to
(false) otherwise. For a sandclock tree, it expands always to (false).

\gtrifleaf{(true)}{(false)}
Expands to (true), if the node type is ¢ or p or if the node is the root node of a parent tree
or of a child tree, and to (false) otherwise. Note that (false) is set for all g nodes with the
root node as an exception, even if the node does not have a parent or a child. Also note
that a root node is intentionally considered to be a leaf also.

\gtrifchild{(true)}{(false)}
Expands to (true), if the node type is ¢ or is g in a parent family or is g but not root in a
child family, and to (false) otherwise.

\gtrifparent{(true)}{(false)}
Expands to (true), if the node type is p or is g in a child family or is g but not root in a
parent family, and to (false) otherwise.

\gtrifleafchild{(true)}{(false)}
Expands to (true), if \gtrifleaf and \gtrifchild are both true, and to (false) otherwise.

\gtrifleafparent{(true)}{(false)}
Expands to (true), if \gtrifleaf and \gtrifparent are both true, and to (false) otherwise.

\begin{tikzpicture}

\genealogytree[

template=tiny boxes,

box={code={/

\gtrifroot{\tcbset{colback=red!50}}{/
\gtrifleafparent{\tcbset{colback=blue!50}}{/
\gtrifleafchild{\tcbset{colback=green!50}}{}/

Y

= e
i Q.

child{
g-p-c-
child{g-p-c-c-
union{p-c-c-
child{g-p-c-c-}
child{p-g-p-c-c-}
}
}
child{g-p-c-c-c-}
}
}
\end{tikzpicture}

49

20

Graph Grammar

4.1 Graph Structure

In graph theory, a graph is defined by a set of
vertices (or nodes) and a set of edges connect-
ing these vertices. A general graph structure
would certainly allow to depict genealogy data,
but building and displaying such a general graph
is not supported by this KTEX package.

An ordinary tree structure is a specialized (di-
rected) graph which has a root node as starting
point. Every node may have one or more descen-
dant nodes. In this relationship, the first node is
called parent and the second is called child. Such
tree structures are heavily used for many appli-
cations. Also, there exist excellent IWTEX pack-
ages to display such structures. Such tree struc-
tures can also be used for several kinds of ge-
nealogy type diagrams, but, by definition, they
miss the core element of genealogy: the family
consisting of two parents and several childs.

The graph structure used by the genealogytree
package is intended to put the family as a set of
parent and child nodes in the foreground. Every
family is allowed to have more than one parent
and more than one child. The interconnection
between the parent and child nodes of a family
is not considered to be bilateral between pairs of
nodes, but to be multilateral between all nodes
of the family. From the idea, a node is connected
not to another node, but to one or more fami-
lies. Still, there apply strong restrictions on the
set of possible graphs, because graphs have to
be reasonable processable and presentable. The
restrictions are realized by the following graph
grammar. In the following, the resulting graphs
are called genealogy trees.

51

A family is a set of parent and child nodes which has to contain exactly one gemealogy node
(g node). Therefore, a family can have three types of nodes:

e c nodes are child nodes to a family, see Section 4.6 on page 61,
e p nodes are parent nodes to a family, see Section 4.7 on page 61,

e g nodes are usually child nodes to one family and parent nodes another family or even
several families, see Section 4.8 on page 61.

A genealogy tree can have following types of families:

e parent: A parent family may contain other parent families. Trees with this construction
grow into ancestor direction, see Section 4.2 on page 53,

e child: A child family may contain other child families or union families. Trees with this
construction grow into descendant direction, see Section 4.3 on page 55,

e union: A wunion ties a second child-type family to a g node as parent of this family, see
Section 4.4 on page 57,

e sandclock: A sandclock connects ancestors and descendants starting from a single
proband, see Section 4.5 on page 59.

As will be documented on the following pages, the graph input data is strongly hierarchically
organized. Each element is allowed to have specific sub-elements. The starting point is the root
element which is the top element inside \genealogytree ' *°. The root of a parsable graph is
one of the following:

e a parent (for ancestor graphs), see Section 4.2 on the facing page,
e a child (for descendant graphs), see Section 4.3 on page 55,

e a sandclock (for mixed ancestor/descendant graphs), see Section 4.5 on page 59.

92

4.2 Subgraph ’'parent’

A parent subgraph is a family where the g node acts as a child. This family may have arbitrary
child and parent leaves. Also, this family may have arbitrary parent subgraphs.

Syntax for a ’parent’ subgraph

parent [(parent options)]{

g (node options)1{{node content)} mandatory; exactly once

c[(node options)]1{(node content)} optional; zero or many times
pL{node options)]1{{node content)?} optional; zero or many times
parent [(parent options)]{(subtree content)} optional; zero or many times
input{(file name)} optional; zero or many times
insert{(csname)} optional; zero or many times

3

D580 98

g’ 'c’, 'p’, ‘parent’, “input’ may appear in arbitrary order.

\.

The optional (parent options) can be settings for the current family or the whole subgraph. See
Chapter 5 on page 65 and especially Section 5.6 on page 90 and Section 5.7 on page 93 for
feasible options.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={pA}{box={colback=red!20!whitel}}]

{
parentq{
c[id=pB]{B\\(child)}
glid=pA] {A\\ (proband)?}
c[id=pC]{C\\(child)}
c[1d=pD]{D\\(child)}
plid=pE]1{E\\(parent)}
plid=pF1{F\\ (parent)}
}
}
\end{tikzpicture}
E F
(parent) (parent)
| |
| | | |
B A C D
(child) (proband) (child) (child)

93

»P.210

\gtrparserdebug can help to detect structural errors. Here, we get:

\gtrparserdebug{
parent{

c[id=pBl{B\\(child)}
g[id=pA]{A\\ (proband) }
c[id=pC]1{C\\(child)}
c[id=pD]{D\\(child)}
plid=pE]{E\\ (parent)}
plid=pF]1{F\\ (parent)}

Genealogytree Parser Debugger

Start: Parent Family 1, Level 1

Child: Individual 1, Family 1, Level 0
Options: id=pB
Content: B\\(child)

Child: Individual 2, Family 1, Level 0
Options: id=pA
Content: A\\ (proband)

Child: Individual 3, Family 1, Level 0
Options: id=pC
Content: C\\(child)

Child: Individual 4, Family 1, Level 0
Options: id=pD
Content: D\\ (child)

Parent: Individual 5, Family 1, Level 1
Options: id=pE
Content: E\\(parent)

Parent: Individual 6, Family 1, Level 1
Options: id=pF
Content: F\\ (parent)

End: Parent Family 1, Level 1

End of Genealogytree Parser Debugger

. Y W V. v .

54

4.3 Subgraph ’child’

A child subgraph is a family where the g node acts as a parent. This family may have arbitrary
child and parent leaves. Also, this family may have arbitrary child and union subgraphs.

Syntax for a ’child’ subgraph

child[(child options)]{
g (node options)1{{node content)} mandatory; exactly once
c[(node options)]1{(node content)} optional; zero or many times
pL{node options)]1{{node content)?} optional; zero or many times
child[(child options)]{(subtree content)} optional; zero or many times
union [(union options)]{(subtree content)} optional; zero or many times
input{(file name)> optional; zero or many times
insert{(csname)} optional; zero or many times

}

g’y ¢’ Up’, Cchild’, union’, “input’ may appear in arbitrary order.

The optional (child options) can be settings for the current family or the whole subgraph. See
Chapter 5 on page 65 and especially Section 5.6 on page 90 and Section 5.7 on page 93 for
feasible options.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={pA}{box={colback=red!20!white}}]
{
child{
glid=pA]l{A\\ (proband)}
plid=pBl{B\\ (parent)}
c[id=pCl{C\\(child)}
c[id=pD]1{D\\(child)}
c[id=pE]{E\\(child)}
}
}
\end{tikzpicture}

A B
(proband) (parent)

(child) (child) (child)

95

»P.210

\gtrparserdebug can help to detect structural errors. Here, we get:

\gtrparserdebug{
child{
glid=pA]l{A\\ (proband)?}
plid=pBl1{B\\ (parent)}
c[id=pCI1{C\\(child)}
c[id=pD]{D\\(child)}
c[id=pE]{E\\(child)}

Genealogytree Parser Debugger

Start: Child Family 1, Level 0

Parent: Individual 1, Family 1, Level 0
Options: id=pA
Content: A\\ (proband)

Parent: Individual 2, Family 1, Level 0
Options: id=pB
Content: B\\ (parent)

Child: Individual 3, Family 1, Level -1
Options: id=pC
Content: C\\(child)

Child: Individual 4, Family 1, Level -1
Options: id=pD
Content: D\\ (child)

Child: Individual 5, Family 1, Level -1
Options: id=pE
Content: E\\ (child)

End: Child Family 1, Level 0

End of Genealogytree Parser Debugger

L N A AN A A

o6

4.4 Subgraph ’union’

A union subgraph is a family without a g node. The g node (parent) is inherited from an
embedding child family. A union family may have arbitrary child and parent leaves. Also, this
family may have arbitrary child subgraphs.

Syntax for a ’union’ subgraph

union [(union options)]{
c[(node options)1{(node content)} optional; zero or many times
p[(node options)1{{node content)} optional; zero or many times
child[(child options)]{(subtree content)} optional; zero or many times
input{(file name)> optional; zero or many times
insert{(csname)} optional; zero or many times

+

¢’y p’, child’, input’ may appear in arbitrary order.

The optional (child options) can be settings for the current family or the whole subgraph. See
Chapter 5 on page 65 and especially Section 5.6 on page 90 and Section 5.7 on page 93 for
feasible options. As a special case for unions, note that the g node of the embedding child
family will not be affected by these options.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={pA}{box={colback=red!20!white}}]
{
child{
plid=pBl1{B\\ (parent)?}
g[id=pA]{A\\ (proband) }
c[id=pCIl{C\\(child)}
union{
p[id=pD]{D\\ (parent)}
c[id=pE]{E\\(child)}
}
}
}
\end{tikzpicture}

B A D
(parent) (proband) (parent)

L |

(child) (child)

o7

\gtrparserdebug

*P-210 can help to detect structural errors. Here, we get:

\gtrparserdebug{
child{

plid=pBl{B\\(parent)?}
g[id=pA]{A\\ (proband) }
c[id=pCI1{C\\(child)}
union{
p[id=pD]1{D\\ (parent)}
c[id=pE]{E\\(child)}
}

Genealogytree Parser Debugger

Start: Child Family 1, Level 0

Parent: Individual 1, Family 1, Level 0
Options: id=pB
Content: B\\ (parent)

Parent: Individual 2, Family 1, Level 0
Options: id=pA
Content: A\\ (proband)

Child: Individual 3, Family 1, Level -1
Options: id=pC
Content: C\\(child)

N A A 4

[sJ =] HEH(L“L

Start: Union Family 2, Level 0

Parent: Individual 4, Family 2, Level 0
Options: id=pD

Content: D\\ (parent)

Child: Individual 5, Family 2, Level -1
Options: id=pE

Content: E\\(child)

End: Union Family 2, Level 0

End: Child Family 1, Level 0

End of Genealogytree Parser Debugger

o8

4.5 Subgraph 'sandclock’

A sandclock subgraph is a family without a g node. The g node (child) is inherited from an
embedded child family. A sandclock family may have arbitrary child and parent leaves. Also,
this family must have at least one child subgraph and may have arbitrary parent subgraphs.

Syntax for a ’sandclock’ subgraph

sandclock [(sandclock options)]{
c [(node options)]{{node content)}
p[(node options)1{{node content)}
child [(child options)]{(subtree content)}
parent [(parent options)]1{({subtree content)} optional; zero or many times
input{(file name)} optional; zero or many times
insert{(csname)} optional; zero or many times

3

7

optional; zero or many times
optional; zero or many times
mandatory; one or many times

) 2

c’, 'p’, child’, ‘parent’, ’input’ may appear in arbitrary order.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={pA}{box={colback=red!20!whitel}}]

{
sandclock{
c[id=pB]l{B\\(child)}
child
{
glid=pA]l{A\\(proband)?} c[id=pal{a\\(child)}
c[id=pb]{b\\(child)} plid=pX1{X\\(partner)}
}
pl[id=pCl{C\\ (parent)}
parentq{
g[id=pD] {D\\ (parent)} c[id=pE]{E\\ (child)} plid=pF]{F\\ (parent)}
}
}
}
\end{tikzpicture}
F
(parent)
C D E
(parent) (parent) (child)
B A X
(child) (proband) (partner)

—

a
(child)

b
(child)

99

\gtrparserdebug{

pl[id=pF]1{F\\ (parent)}

sandclockd{
c[id=pB]l{B\\(child)}
child
{
g[id=pA] {A\\ (proband) } cl[id=pal{a\\(child)}
c[id=pb]{b\\ (child)} plid=pX]1{X\\ (partner)}
}
pl[id=pCl{C\\ (parent)}
parentq{
g[id=pD] {D\\ (parent)} c[id=pE]{E\\ (child)}
}
}
}
Genealogytree Parser Debugger
Start: Sandclock Family 1, Level 1
Child: Individual 1, Family 1, Level 0
Options: id=pB

Content: B\\(child)

[~ I |

[~]

Start: Child Family 2, Level 0

Parent: Individual 2, Family 2, Level 0
Options: id=pA

Content: A\\ (proband)

Child: Individual 3, Family 2, Level -1
Options: id=pa

Content: a\\ (child)

Child: Individual 4, Family 2, Level -1
Options: id=pb
Content: b\\ (child)

Parent: Individual 5, Family 2, Level 0
Options: id=pX
Content: X\\ (partner)

End: Child Family 2, Level 0

Parent: Individual 6, Family 1, Level 1
Options: id=pC
Content: C\\(parent)

B B B EE

<]

Start: Parent Family 3, Level 2
Child: Individual 7, Family 3, Level 1
Options: id=pD

Content: D\\ (parent)

Child: Individual 8, Family 3, Level 1
Options: id=pE

Content: E\\(child)

Parent: Individual 9, Family 3, Level 2
Options: id=pF

Content: F\\ (parent)

End: Parent Family 3, Level 2

End: Sandclock Family 1, Level 1

End of Genealogytree Parser Debugger

60

4.6 Node 'c’

The c (child) node is a leaf node which is child to a family.

Syntax for a ’c’ node

c[(node options)1{(node content)}

For the optional (node options), see Chapter 5 on page 65 and especially Section 5.5 on page 82.

The (node content) can be any text to be displayed inside the node. This (node content) can also
be processed before displaying, see Chapter 6 on page 115 and especially Chapter 7 on page 139
for database processing. Also, the (node content) can be completely ignored for processing. In
this case, one can use c{} or even shorter c(token) for the node.

\begin{genealogypicture}[
template=formal graph, ni no
content interpreter content= T

1
] {n_{\gtrnodenumber}}, ,_L I R
ns3 4 ns || e | |14 | M5

child{ g-p-c-c-

child{ p-g-
child{ p-g-c-c-c- }
}
c—Cc—
} ng | [nio| |nn

\end{genealogypicture}

4.7 Node 'p’

The p (parent) node is a leaf node which is parent to a family.

Syntax for a ’p’ node

p [(node options)1{(node content)}

For the optional (node options), see Chapter 5 on page 65 and especially Section 5.5 on page 82.
For (node content), see Section 4.6 on page 61.

4.8 Node'g’

The g (genealogy) node is an interconnecting individual which is member of at least two families.
For one family it is a child, for another one it is a parent.

Syntax for a ’g’ node

gl(node options)]{{node content)}

For the optional (node options), see Chapter 5 on page 65 and especially Section 5.5 on page 82.
For (node content), see Section 4.6 on page 61.

61

4.9 Data ’input’

Feasible subgraphs may be read from external files using the input command at places where
such subgraphs are expected.

Syntax for data ’input’

input{(file name)?}

The following example reads a parent subgraph from a file. See Section 14.1 on page 257 for
the file contents.

\begin{tikzpicture}
\genealogytree[template=signpost]
{
parent{
g{Puppy}
input{example.option.graph}
parent
{
glfemale] {Nanny}
plmale]{Pa}
plfemale]{Ma}
}
}
}
\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry Pa Ma.
* 1980 * 1982 * 1987
| |
| |
ol | | I

Puppy

62

4.10 Control Sequence ’insert’

Feasible subgraphs may be inserted from control sequences using the insert command at places
where such subgraphs are expected.

Syntax for data ’insert’

insert{(csname)}

(csname) is the name of a control sequence without the leading backslash ’\’. This control
sequence has to be a parameterless macro whose replacement text is a feasible subgraph.

The following example creates such a macro \mytest:

\newcommand{\mytest}{
parent{ g{x_1}
parent{ g{x_2} p{x_3} p{x_4} }
parent{ g{x_5} p{x_6} p{x_7} }
}r

\begin{tikzpicture}
\genealogytree[template=formal graph]
{
parent{
g{a_1%}
parentq{
g{a_3}
insert{mytest}
insert{mytest}
}
insert{mytest}
}
}
\end{tikzpicture}

z3 | | x4 lassll:w lazg |:v4 lmﬁ !:v7
Ts

i i
xTo Is5 I3 T4 Te X7

€2
I I e

a

63

64

Option Setting

For the (options) in \genealogytree "' 4, genealogypicture "0 and \gtrset "©*7 keys

with pgf syntax can be applied as documented in the following. The key tree path /gtr/ is not
to be used inside these macros. It is easy to add your own style keys using the syntax for pgf
keys, see [4].

Some of the following examples use a standard graph file which is documented in Section 14.1
on page 257.

5.1 Option Priorities

This section can be skipped on first reading. Option priorities are more or less natural. This
section can be consulted later in case of doubt.

Options for the graph drawing can be set at several spots inside the code using the pgf key-value
syntax:

e as parameter of \gtrset "I 47 for setting (global) options,

—P.45 P. 46

e as optional parameter of \genealogytree or genealogypicture "' *°,

e as optional parameter of a family identifier like parent or child,
e as optional parameter of a node identifier like g, p, or c.

Depending on where the options are given, they are treated with different priority. If an option
is given several times with the same priority, the last one wins.

e For options like /gtr/pivot " ® an option setting with higher priority overwrites an
option setting with lower priority.

*P-85 "an option setting with higher appends to an option setting

P85 options which are not overwritten, stay active.

e For options like /gtr/box
with lower priority. Thus, /gtr/box

65

5.1.1 Option Priorities for Nodes

Example: Priorities for setting box options to a node with id=A

\gtrsetq{
. /4 priorities identical to options for \genealogytree
}
\genealogytree[
options for node={A}{box={...}}, /% priority (1) highest
options for family={fam_a}{box={...}}, % priority (5)
options for subtree={fam_al}{box={...}}, 7% priority (9)
level 2/.style={
node={box={...}}, % priority (3)
family={box={...}}, 7% priority (7)
subtree={box={...}}}, 7% priority (11)
level/.code={\ifnum#1=2\relax\gtrset{
node={box={...}}, 7% priority (4)
family={box={...}}, 7% priority (8)
subtree={box={...}}}\fi}, % priority (12)
box={...}, 7% priority (13) lowest
17
{

parent[id=fam_a, % family with id ’fam_a’

U N

© oo

10.

11.
12.
13.

family={box={...}}, 7% priority (6)
subtree={box={...}}, 7 priority (10)
]
plid=A, /4 node with id °A°
box={...}]{A} 7% priority (2)

The priorities for options regarding nodes

/gtr/options for node ™ ® has the highest priority. The node has to be identi-
fied by a given /gtr/id 8. /gtr/options for node %2 should be given using
\gtrset "4 or as option of \genealogytree I °.

Optional parameter of a node identifier like g, p, or c.

Option /gtr/node " inside /gtr/level n 79,

Option /gtr/node " # inside /gtr/level "9,

/gtr/options for family ' ?; the family has to be identified by a given
/gtr/id P80,
/gtr/family ’
Option /gtr/family
Option /gtr/family
/gtr/options for subtree
/gtr/id” P80,
/gtr/subtree
child.
Option /gtr/subtree
Option /gtr/subtree
Setting as parameter of \genealogytree
ority.

P91 as optional parameter of a family identifier like parent or child.

P90 inside /gtr/level n "9,
P 9% inside /gtr/level "F99,

P93, the subtree has to be identified by a given

P91 as optional parameter of a family identifier like parent or

»P.94
—-P.94

inside /gtr/level n 9%,
inside /gtr/level "9,

"P45 or \gtrset "7 has the lowest pri-

66

5.1.2 Option Priorities for Families

Example: Priorities for setting edges options to a family with id=fam_a

\gtrsetq{
. /4 priorities identical to options for \genealogytree
}
\genealogytree[
options for family={fam_al}{edges={...}}, % priority (1) highest
options for subtree={fam_al}{edges={...}}, % priority (5)
level 2/.style={family={edges={...}} % priority (3)
subtree={edges={...}}}, 7% priority (7)
level/.code={\ifnum#1=2\relax/
\gtrset{family={edges={...}}, 7% priority (4)
subtree={edges={...}}} 7% priority (8)
\fi},
edges={...}, % priority (9) lowest
17

{

parent[id=fam_a, % family with <d ’fam_a’

Cus N

© o N o

family={edges={...}}, % priority (2)
subtree={edges={...}}, 7% priority (6)

The priorities for options regarding families

. /gtr/options for family "% has the highest priority. The family has to be

P80 /otr/options for family ' should be

»P. 45

identified by a given /gtr/id
given using \gtrset " *7 or as option of \genealogytree
Optional /gtr/family "™ 9! parameter of a family identifier like parent or child.
Option /gtr/family " inside /gtr/level n "%,

Option /gtr/family " inside /gtr/level "9,

/gtr/options for subtree 9% the subtree has to be identified by a given
/gtr/id P80,

Optional /gtr/subtree "I
Option /gtr/subtree "4
Option /gtr/subtree 94
Setting as parameter of \genealogytree
ority.

parameter of a family identifier like parent or child.
inside /gtr/level n 9%,
inside /gtr/level "%,

P45 or \gtrset " *7 has the lowest pri-

67

5.2 Graph Growth Setting (Time Flow)

A genealogy tree may grow in one of four directions. This /gtr/timeflow setting is valid for
the whole graph, but two graphs with different growth setting may be joined together.

/gtr/timeflow=(direction) (no default, initially down)
The /gtr/timeflow key controls the growing direction of a given graph. It is always used
to place the generations according to this value. If the (direction) is set to down, a child
graph will grow down, but a parent graph will grow up. Feasible values are:

e down

[} up

e left

e right

timeflow=down

\begin{tikzpicture}

\genealogytree [template=signpost,timeflow=down]
{input{example.option.graph}}

\node at ([xshift=4cm]GmDo1956) (past) {Past};

\draw[very thick,->] (past) -- +(0,-2) node[below] {Future};

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma

Smith Smith Doe Doe Past

* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry Future

* 1980 * 1982 * 1987

Arthur Berta Charles
* 2008 * 2010 *2014

See Section 14.1 on page 257 for the included example graph file.

68

timeflow=up

\begin{tikzpicture}

\genealogytree [template=signpost,timeflow=up]
{input{example.option.graph}}

\node at ([xshift=4cm]GmDo1956) (past) {Past};

\draw[very thick,->] (past) -- +(0,2) node[above] {Future};

\end{tikzpicture}
Arthur Berta Charles
* 2008 * 2010 * 2014
John Smith Jane Doe Uncle Harry
% 1980 * 1982 * 1987 Future
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe Past
* 1949 * 1952 * 1955 * 1956
timeflow=left
\begin{tikzpicture}

\genealogytree[template=signpost,timeflow=1left,node size=1.2cm,level size=3cm]
{input{example.option.graph}}

\node at ([yshift=-1.5cm]GmDo1956) (past) {Pastl};

\draw [very thick,->] (past) -- +(-2,0) node[left] {Future};

\end{tikzpicture}
a '
Grandpa Smith
. * 1949
s — | John Smith
* 1980
r Grandma Smith
Berta %* 1952
* 2010 | \
\
Charles — D 12 Grai(iggg)Doe
| — % 1982
*2014 L
Uncle Harry Grandma Doe
* 1987 * 1956

Future €$——— Past

69

timeflow=right

\begin{tikzpicture}

\genealogytree[template=signpost,timeflow=right,node size=1.2cm,level size=3cm]
{input{example.option.graph}}

\node at ([yshift=-1.5cm]GmDo1956) (past) {Pastl};

\draw[very thick,->] (past) -- +(2,0) nodel[right] {Future};

\end{tikzpicture}
Grandpa Smith
%* 1949 Py
John Smith |_— s
p * 1980 L
Grandma Smith r \
el || Berta
\ * 2010
Grandpa Doe Jane Doe Charl
* 1955 — arles
* 1982 *2014
\ J |
Grandma Doe Uncle Harry
* 1956 * 1987
~ v

Past —— Future

70

5.3 Graph Geometry

The following geometry settings are usually set for the whole graph, but they can be set for
every /gtr/level "1 99 separately. Inside a level, they are fixed.

/gtr/level distance=(length)

(no default, initially 5mm)

The given (length) defines the distance between two following generations. This distance

can be set in dependency of the /gtr/level

Py

P

Ci]]C

C3

—-P.95

} distance 5mm

The /gtr/level distance can be specified for individual level numbers, e.g.

\gtrsetq{

level 0/.style={level distance=5mm},

level -1/.style={level distance=10mm}

}

r P
N I
fJ_~ I
o[x[cs
S
ERAIEAN

71

} distance 5mm (level 0)

distance 10mm (level —1)

/gtr/level size=(length) (no default, initially 3.5cm)
The given (length) defines one dimension of a node.
o If /gtr/timeflow "7 is up or down, then /gtr/level size sets the height of a node.
o If /gtr/timeflow "% is left or right, then /gtr/level size sets the width of a
node.

The /gtr/level size be set in dependency of the /gtr/level "%,

Py || P2 } level size
Ci||C2]]|Cs
\gtrsetq{
level 0/.style={level size=15mm},
}
Py || P2 level size
Ci||C2]]|Cs

Some actual node implementations may not respect the given /gtr/level size. Note that the
placement algorithm ignores deviations and assumes that the restrictions hold.

72

/gtr/node size=(length) (no default, initially 2.5cm)
The given (length) defines one dimension of a node.
o If /gtr/timeflow %% is up or down, then /gtr/level size 7 sets the width of
a node.
o If /gtr/timeflow "7 % is left or right, then /gtr/level size "7 sets the height
of a node.
The /gtr/node size can be set in dependency of the /gtr/level "9, Note that the
/gtr/node size may be ignored by nodes boxes which set the width individually or de-
pending from the content width.

P || P

Ci|]|Ca||Cs

[E—;

node size

\gtrset{

level 0/.style={level size=15mm},
}

P || P I
1

| | |
1 (s Cs

node size

If the size should be changed for an individual node, use /gtr/box " ® instead of
/gtr/node size:

c[id=A,box={width=15mm}]{C_3}

P || P

allell o]

width

Some actual node implementations may not respect the given /gtr/node size. The placement
algorithm accepts deviations and calculates positions accordingly.

73

/gtr/node size from=(minlength) to (mazlength) (no default, initially 2.5cm to 2.5cm)
Sets the /gtr/node size '3 in a flexible way ranging from (minlength) to (mazlength).
The actual size of a node is determined by the node content. A node will be enlarged up
to (mazlength) before the content font size is allowed to shrink. Note that the /gtr/node

size from may be ignored by nodes boxes which set the width individually or depending
from the content width.

/gtr/child distance in parent graph=(length) (no default, initially 1mm)
The given (length) defines the minimum distance of two children of a family in a parent
graph. The /gtr/child distance in parent graph can be set in dependency of the

/gtr/level "9 For an individual node, this distance can be overruled by setting
/gtr/distance 183,

\genealogytree[

child distance in parent graph=5mm]
{
parent{
p{P_1}
p{P_2}
g{C_1}
cl[id=A1{A}
c[id=B]{B}

PP
I I
1
lC’ll A l B

child distance

74

/gtr/child distance in child graph=(length) (no default, initially 2mm)
The given (length) defines the minimum distance of two children of a family in a child
graph. The /gtr/child distance in child graph can be set in dependency of the

/gtr/level "% For an individual node, this distance can be overruled by setting
/gtr/distance " P83

\genealogytree[

child distance in child graph=5mm]

{
child{
g{P_1}
p{P_2}
c{C_1}
cl[id=A]{A}
c[id=B]1{B}
}
}
Pl P
I I
1
l Ci I A l B
child distance
/gtr/child distance=(length) (no default, style)

This is an abbreviation for setting /gtr/child distance in parent graph "7 and
/gtr/child distance in child graph to the same (length).

75

/gtr/parent distance in parent graph=(length) (no default, initially 2mm)
The given (length) defines the minimum distance of two parents of a family in a parent
graph. The /gtr/parent distance in parent graph can be set in dependency of the

/gtr/level "P% For an individual node, this distance can be overruled by setting
/gtr/distance " P83,

\genealogytree[

parent distance in parent graph=bmm]
{
parent{
plia=A1{A}
pl[id=B]{B}
g{C_1}
c{c_2}
c{C_3}

parent distance

——

A B

76

/gtr/parent distance in child graph=(length) (no default, initially 1mm)
The given (length) defines the minimum distance of two parents of a family in a child
graph. The /gtr/parent distance in parent graph 7% can be set in dependency of

the /gtr/level "9, For an individual node, this distance can be overruled by setting
/gtr/distance " P83

\genealogytree[

parent distance in child graph=5mm]
{
child{
glid=A1{A}
plid=B]{B}
c{C_1}
c{c_2}
c{C_3}

parent distance

——

A B

Ci||C2]]|Cs

/gtr/parent distance=(length) (no default, style)

This is an abbreviation for setting /gtr/parent distance in parent graph 70

and
/gtr/parent distance in child graph to the same (length).

77

/gtr/further distance=(length)

(no default, initially 3mm)
The given (length) defines the minimum distance of two nodes which are not parents or

children of the same family. The /gtr/further distance can be set in dependency of

the /gtr/level "9, For an individual node, this distance can be overruled by setting
/gtr/distance " P83,

\gtrsetq{

further distance=5mm
}
further distance
P A B Py P Py
Ry L
P Ps CH Ps Cb Py
Ci1Cy || Cs Cs31|Csl | A B||C5]||Cs

further distance

78

If /gtr/further distance 7 is set in level dependency, it is worth to note that this
distance is not used for the nodes on the specified layer but for joining the subtrees on
the specified layer. In the following example, the distances set on layer 1 and on layer 2
influence different nodes on layer 3.

\gtrset{
level 1/.style={further distance=10mm},
level 2/.style={further distance=5mm},
}

further distance (level 1)

further distance (level 2) further distance (level 2)
3 3 3 3 3 3 l 3 l 3
2 2 2 2
1 1
i
0

79

5.4 Identifiers

Identifiers play an important role for semi-automatic processing of graph data. Every node and
every family can be marked by an /gtr/id for later reference. If the graph data is exported or
generated by a tool, all nodes and families should be marked. This allows to manipulate the
graph without editing the generated data.

/gtr/id=(name) (no default, initially empty)
Every node and every family can be marked by a (name) using this option. This (name)
is used by /gtr/options for node ''®2 /gtr/options for family % etc, to set op-
tions for the specified node or family.

e The (name) should be unique inside the tikzpicture environment.
e A TikZ node (name) is automatically created for later usage.

child[id=family_al{ 7% family with td ’family_a’

plid=A]l{Father} /% mode with id ‘A’

plid=Bl{Mother} /% mode with id ’B’

c[id=C]{Child} 7% nmode with id °C’
}

For example, let us consider the Smith-Doe graph used many times in this document, see Sec-
tion 14.1 on page 257. Using the identifiers, Jane Doe should be emphasized strongly. Without
specific manipulation, the graph data is depicted as follows:

\begin{tikzpicture}
\genealogytree[template=signpost]
{input{example.option.graphl}}

\end{tikzpicture}

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987

Arthur Berta Charles

* 2008 * 2010 * 2014

80

One could inspect the source code in Section 14.1 on page 257 to see the given identifiers. For a
large dataset, this may become inconvenient. A good alternative is to use /gtr/show id "' 2%
to overlay the depicted graph with all given /gtr/id " values.

\begin{tikzpicture}

\genealogytree [template=signpost,show id]
{input{example.option.graph}}

\end{tikzpicture}

[(Irandna] [Grandma]

-

[Grandma
GpSm1949 GmSm1952 GpDo1955 GmDo1956
l * 1949 l * 1952 l * 1900 l * 1956 J
Smith Doe

[Il]

Jane1982 Harr1987

SmitIhDoe —I—‘

Arth2008 Bert2010 Char20 14

John1980

Now, Jane Doe can be emphasized. Note that the id value Jane1982 is also a TikZ node and
can be used such.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={Jane1982}{box={colback=red!50},pivot},
options for node={Harr1987}{distance=3.5cm}]
{input{example.option.graph}}
\draw [decorate,decoration={brace,amplitude=5pt,mirror,raise=2pt},
line width=1pt,yshift=0pt] (Janel982.south east) -- (Janel982.north east)
node [align=center,right=9pt,midway,fill=yellow] {Most important\\ person};
\end{tikzpicture}

81

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 %* 1952 * 1955 * 1956
John Smith Jane Doe Most important Uncle Harry
* 1980 * 1982 person %* 1987
Arthur Berta Charles
* 2008 * 2010 * 2014

5.5 Node Options

/gtr/options for node={(id list)}{ (options)} (style, no default)
The given (options) are set for all nodes with /gtr/id "8 values from the given (id list).
If an /gtr/id " "% value is not existing, the setting is silently ignored. The intended spot
for using /gtr/options for node is before \genealogytree "4 or inside its option list.
Also see Section 5.1.1 on page 66.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={Arth2008,John1980}{/
box={interior style={top color=red!30,bottom color=red}}
}
{input{example.option.graphl}}
\end{tikzpicture}

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

——

N

Jane Doe Uncle Harry
* 1982 * 1987
Berta Charles
* 2010 *2014

\gtrsetoptionsfornode{(id list)}{(options)}
Identical to using /gtr/options for node.

82

/gtr/node={(options)} (style, no default)
The given (options) are set for all nodes within the current scope. This scope is primarily
intended to be a /gtr/level "% or /gtr/level n 90 definition. For other spots, where

/gtr/node is not needed, it may be ignored or directly replaced by its content. Also see
Section 5.1.1 on page 66.

\begin{tikzpicture}
\genealogytree[template=signpost,
level 2/.style={
node={box={interior style={top color=red!30,bottom color=red}}}
H
{input{example.option.graph}}
\end{tikzpicture}

John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
Arthur Berta Charles
* 2008 * 2010 *2014

/gtr/distance=(length) (no default, initially -1sp)
A non-negative (length) replaces the default minimum distance to the preceeding sibling.
The default settings are given by /gtr/child distance in parent graph 7 etc.

\begin{tikzpicture}

\genealogytree[template=signpost,options for node={GpDo1955}{distance=2cm}]
{input{example.option.graph}}

83

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry
%* 1980 * 1982 %* 1987
Arthur Berta Charles
* 2008 * 2010 *2014

/gtr/pivot=(value) (default both, initially none)

Using this option, a node can gain a pivot role in the graph construction.

Feasible values are
e none: no special treatment.

e child: pivot role as a child of a family. The node will be placed centered according

to its parents or its pivot parent.

e parent: pivot role as a parent of a family. The node will be placed centered according

to its children or its pivot child.
e both: pivot role as a child and as a parent.

A sequence of /gtr/pivot settings for ancestors or descendants can be used to emphasize
a certain lineage. In the following example, the nodes marked in red form such a lineage.

The green node is a pivot as a child.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={Bert2010,John1980,GpSm1949}{pivot,
box={interior style={top color=red!30,bottom color=red}}},
options for node={Jane1982}{pivot=child,box={colback=green!50}}]
{input{example.option.graph}}

\end{tikzpicture}
Grandma Grandpa Grandma
Smith Doe Doe
* 1952 * 1955 * 1956
Jane Doe Uncle Harry
%* 1982 * 1987

Arthur Charles
* 2008 *2014

84

/gtr/vox={(options)} (no default)
Passes the given (options) to the underlying /gtr/node processor ! '1°. Depending on
the selected processor, the (options) are usually tcolorbox options which describe how a
node box is drawn. If a processor is not based on the tcolorbox package, the (options)
can be different, e.g. TikZ options.

\begin{tikzpicture}
\genealogytree[template=formal graph,
options for node={node_B}{box={colback=green!50}},
1{7
child{
g[box={colback=red!50}]{A}
plid=node_B]{B}
c{Cr c{D} c{E}
}
}
\end{tikzpicture}

/gtr/box clear (no value)
/gtr/box settings are additive. To clear all box settings, use this option.

/gtr/node box=(options) (no default)
This is an abbreviation for placing /gtr/box inside /gtr/node 83,

\begin{tikzpicture}
\genealogytree[template=formal graph,
level -1/.style={node box={colback=red!50}},

7
child{
g{A} p{B}
c{C} c{D} c{E}
}
}
\end{tikzpicture}

85

/gtr/family box=(options)

This is an abbreviation for placing /gtr/box ~ % inside /gtr/family "I

(no default)

\begin{tikzpicture}
\genealogytree[template=formal graph
IR ¥4
child{
g{A} p{B}
child[family box={colback=red!50}]{
g{C} p{a_1} c{a_2}
child{ g{a_3} p{a_4} c{a_5} c{a_6} }

¥
c{D} c{E}
}
}
\end{tikzpicture}

as ae

\.

7

/gtr/subtree box=(options)

This is an abbreviation for placing /gtr/box &

inside /gtr/subtree 9%,

(no default)

\begin{tikzpicture}
\genealogytree[template=formal graph
IR ¥4
child{
g{A} p{B}
child[subtree box={colback=red!50}]{
g{C} p{a_1} c{a_2}
child{ g{a_3} p{a_4} c{a_5} c{a_6} }

¥
c{D} c{E}
}
}
\end{tikzpicture}

86

/gtr/turn=(option) (default right, initially off)

This is a special /gtr/box "8 style to rotate the content a node. Typically, all nodes of
a /gtr/level n "9 may be rotated together.
Feasible (option) values are:

e off: no rotation.

e right: rotation by 90 degrees.

e upsidedown: rotation by 180 degrees.

e left: rotation by 270 degrees.

\begin{tikzpicture}
\genealogytree[template=formal graph]{/
child{
glturn] {A}
p{B}
c[turn=left]{C} c{D} c{E}
}
}
\end{tikzpicture}

=]

\begin{tikzpicture}
\genealogytree[template=signpost,
level 2/.style={level size=3cm,node size from=1cm to 2cm,
node={turn,box={no shadow,drop fuzzy shadow southwestl}}}]
{input{example.option.graph}}

\end{tikzpicture}

(R (3

= = g 3
c%cn U)EN As Q@
<t 0 @0 [BYe)
QI O < D 3,0 k=)
o — 8 = — - -
E-)‘ "g-k Sk =k 3

g g & 5

&} O O
\ \ 7

R—

John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987

Arthur Berta Charles
% 2008 %2010 %* 2014

1.

87

\begin{tikzpicture}
\genealogytree[template=signpost,
level 0/.style={level size=2cm,node size from=1cm to 2cm,
node={turn=left,box={no shadow,drop fuzzy shadow northeast}}}]
{input{example.option.graph}}

\end{tikzpicture}
a 3
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
- v
s)
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
7
*2= || * *Q
[°p=3 N g 5
sEl 29 |l =22
®E S ~ Q

The following three options are tcolorbox options which are declared by the genealogytree
package. They can be redefined for customization.

/tcb/male (style, no value)
A tcolorbox option defined as

\tcbset{male/.style={colframe=blue}}

/tcb/female (style, no value)
A tcolorbox option defined as

\tcbset{female/.style={colframe=red}}

/tcb/neuter (style, no value)
A tcolorbox option defined as

\tcbset{neuter/.style={}}

The following three options are genealogytree options which are shortcuts for setting the three
options above inside a /gtr/box "1 8%,

/gtr/male (style, no value, initially unset)
This is an abbreviation for placing /tcb/male inside /gtr/box &,

/gtr/female (style, no value, initially unset)
This is an abbreviation for placing /tcb/female inside /gtr/box "1 .

/gtr/neuter (style, no value, initially unset)

This is an abbreviation for placing /tcb/neuter inside /gtr/box "8,

Also see /gtr/database/sex " 143,

88

\begin{tikzpicture}
\genealogytree[template=formal graph,
{
child{
glmale]{A}
plfemale] {B}
c[female]{C} c[malel{D} clneuter]{E}
}
}
\end{tikzpicture}

\tcbsetq{
male/.style={sharp corners,colframe=blue,colback=blue!10,
watermark text=\gtrSymbolsSetDraw{blue!30}\gtrsymMale},
female/.style={arc=4pt,colframe=red,colback=red!10,
watermark text=\gtrSymbolsSetDraw{red!30}\gtrsymFemale},
neuter/.style={arc=2pt,colframe=black!80!white,colback=black!5,
watermark text=\gtrSymbolsSetDraw{black!20}\gtrsymNeuter},
¥
\begin{tikzpicture}
\genealogytree[template=formal graph,
17
child{
glmale] {A}
plfemale]{B}
c[female]{C} c[malel{D} c[neuter]{E}
}
}
\end{tikzpicture}

89

5.6 Family Options

/gtr/options for family={(id list)}{(options)} (style, no default)
The given (options) are set for all families with /gtr/id "% values from the given (id list).
If an /gtr/id " "% value is not existing, the setting is silently ignored. The intended spot
for using /gtr/options for family is before \genealogytree "I % or inside its option
list. Also see Section 5.1.1 on page 66 and Section 5.1.2 on page 67.

7~

\begin{tikzpicture}
\genealogytree[template=signpost,
options for family={Doe}{box={
coltext=green!25!black,fontupper=\bfseries,width=3cm,
interior style={top color=green!50!white,bottom color=green!75!black}

}H
{input{example.option.graph}}
\end{tikzpicture}
Grandpa Grandma
Smith Smith
* 1949 * 1952
John Smith
* 1980
Arthur Berta Charles
* 2008 * 2010 * 2014

\gtrsetoptionsforfamily{(id list)}{({options)}
Identical to using /gtr/options for family.

90

/gtr/family={({options)} (style, no default)
The given (options) are set for all nodes and edges within the current scope. This scope
is intended to be a /gtr/level "% or /gtr/level n 1?0 definition or an option of a

family identifier like parent or child. Also see Section 5.1.1 on page 66 and Section 5.1.2
on page 67.

\begin{tikzpicture}
\genealogytree[template=signpost,
level 2/.style={
family={
edges={swing,foreground=red,background=red!20},
box={interior style={top color=red!30,bottom color=red}}}
}
{input{example.option.graph}}
\end{tikzpicture}

Arthur Berta Charles
% 2008 %2010 %2014

91

/gtr/pivot shift=(length) (no default, initially Opt)
For a family, there is a parent pivot point (typically centered between the parents) and
a child pivot point (typically centered between the children). Normally, the auto-layout
algorithms brings both points in congruence. Using a /gtr/pivot shift, there is a shift
of the given (length) between these two points. Note that this works for child, parent,
and sandclock, but not for union.

\begin{tikzpicture}
\genealogytree [template=signpost]

parent [pivot shift=-1.5cm]{
g{Child}
plmale]{Father}
plfemale] {Mother}
}
}
\genealogytree[tree offset=4.5cm]{
parent{
g{Child}
plmale]{Father}
plfemale] {Mother}
}
}
\genealogytree[tree offset=9cm]{
parent [pivot shift=1.5cm]{
g{Child}
plmale]{Father}
plfemale]{Mother}
¥
}
\end{tikzpicture}

Father Mother Father Mother Father Mother

Child Child Child

92

5.7 Subtree Options

/gtr/options for subtree={(id list)}{(options)} (style, no default)

The given (options) are set for all subtrees with /gtr/id " values from the given (id

list). Subtrees are identified by the /gtr/id "1 80 of the root family of the subtree. If an
/gtr/id "8 value is not existing, the setting is silently ignored. The intended spot for
using /gtr/options for subtree is before \genealogytree % or inside its option list.
Also see Section 5.1.1 on page 66 and Section 5.1.2 on page 67.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for subtree={SmithDoe}{/
box={interior style={top color=red!30,bottom color=red}}}
]
{
parent{
g{Puppy}
input{example.option.graph}
parent
{
glfemale]l {Nanny}
plmale]{Pa}
plfemale]{Ma}
}
}
}
\end{tikzpicture}

- - - o

Puppy

\gtrsetoptionsforsubtree{(id list)}{(options)}

Identical to using /gtr/options for subtree.

93

/gtr/subtree={({options)}

and Section 5.1.2 on page 67.

\begin{tikzpicture}
\genealogytree[template=signpost,
level 2/.style={/

subtree={edges={swing,foreground=red,background=red!20}}}

]
{
parent{
g{Puppy}
input{example.option.graph}
parent
glfemale] {Nanny}
plmale]{Pa}
plfemale]{Ma}
}
}
\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

i

John Smith
* 1980

—=

(style, no default)
The given (options) are set for all families and their nodes and edges within the current
scope. This scope is intended to be a /gtr/level "% or /gtr/level n 7% definition
or an option of a family identifier like parent or child. Also see Section 5.1.1 on page 66

Jane Doe
%* 1982

Uncle Harry
* 1987

Pa

Ma

i

i

Nanny

Arthur Berta Charles
% 2008 %2010 %2014
Puppy

94

5.8 Level Options

With /gtr/level and /gtr/level n %% options can be set for individual levels of the graph.

Inside the key list of these styles, the following options can be used:

e All geometry options, see Section 5.3 on page 71.
e /gtr/node "% to set options for nodes.
o /gtr/family ""9! to set options for families.

/gtr/subtree " 9% to set options for subtrees.

—~P.103 1~ P.105

Also see /gtr/ignore and /gtr/ignore leve
Also see Section 5.1.1 on page 66 and Section 5.1.2 on page 67.

/gtr/level=(number)

(style, initially empty)

An initially empty style which as applied at each level with the level (number) as parameter.

This style can be redefined.

\begin{tikzpicture}
\genealogytree[template=signpost,
level/.style={node={show=level #13}}]
{input{example.option.graphl}}
\end{tikzpicture}

[cranape M Grandge N [crandpn [

level 2 level 2J llevel 2 llevel 2

J 1

J

level 1 level 1 level 1

L’_J L
I
I I |
[[]
level 0 level 0 level O

\

95

/gtr/level n

At each level with the level number n this style is applied after /gtr/level

style can be (re-)defined.

\begin{tikzpicture}
\genealogytree[template=signpost,
level 2/.style={node box={colback=black!30}},
level 1/.style={node box={colback=red!30}},
level 0/.style={node box={colback=yellow!30}},
]
{input{example.option.graph}}
\end{tikzpicture}

(style, initially unset)

Grandpa Grandma Grandpa
Smith Smith Doe
* 1949 * 1952 * 1955

Grandma,
Doe
* 1956

0

—

John Smith Jane Doe Uncle Harry
% 1980 % 1982 * 1987

Arthur Berta Charles

% 2008 %2010 %2014

96

—-P.95

This

5.9 Tree Positioning Options

/gtr/proband level=(number) (no default, initially 0)
Sets the level number of the proband to (number). All level numbers inside the given tree
will be adapted accordingly. This is useful in connection with /gtr/level "% dependent
settings, especially when two trees are connected.

/gtr/tree offset=(length) (no default, initially Opt)
Sets the offset value of the root family to (length). Depending on the given
/gtr/timeflow 168 this means a shift in horizontal or vertical direction in reference
of the tikzpicture coordinate system.

/gtr/after parser=(code) (no default, initially empty)
Adds (code) to a list of code which is executed after the tree content is parsed and before
the parsed data is drawn. This is used internally by other options and may not be needed
by a normal user.

The following options allow to shift the whole tree such that a specific node is placed at a specific
position.
e /gtr/set position: place a node centered at a position.
e /gtr/adjust position "?8: place a node relative to a position (respecting the node
dimensions).
e /gtr/adjust node
dimensions).

P99 place a node relative to another node (respecting both node

/gtr/set position=(node) at (position) (style, no default)
Adjusts the current graph such that a (node) of the graph is placed at the given (position).
If the (position) is given by coordinates, one has to use curly brackets to enclose (position),
e.g. {2,3}. The (node) is identified by a /gtr/id "7 80,

\begin{tikzpicture}
\node[draw,fill=red!30,minimum size=3cm] (X) at (0,0) {};
\draw[white] (X.south west)--(X.north east) (X.north west)--(X.south east);

\genealogytree[template=signpost,
set position=Harr1987 at X,
options for node={Harr1987}{box={colback=yellow!50}}]
{input{example.option.graph}}

\draw[red!70] (Harr1987) circle (1.5cm);

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
»_ |
|
John Smith Jane Do Uncle Harry
* 1980 * 1982 * 1987
Arthur Berta Charles
* 2008 * 2010 * 2014

97

/gtr/adjust position=(node) (direction) of (position)
distance (distance) shift (shift)

Adjusts the current graph such that a (node) of the graph is placed in the given (direction)
relative to the given (position) with a given (distance) in this direction and an optional
(shift) orthogonal to the direction. The (node) is identified by a /gtr/id &Y.
Feasible values for the (direction) are

e right

o left

e above

e below

(style, no default)

\begin{tikzpicture}
\draw[red] (-0.3,-0.3)--++(0.6,0.6) (-0.3,0.3)--++(0.6,-0.6);
\node [right=3mm] at (0,0) {Reference Position};

\genealogytree[template=signpost,
adjust position=Harr1987 left of {0,0} distance 1cm,
options for node={Harr1987}{box={colback=yellow!50}}]
{input{example.option.graph}}

98

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma

Smith Smith Doe Doe

* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry cps

%1930 %1982 %1987 >< Reference Position

Arthur Berta Charles
* 2008 * 2010 *2014

/gtr/adjust node=(node) (direction) of (reference node)

distance (distance) shift (shift)

(style, no default)

Adjusts the current graph such that a (node) of the graph is placed in the given (direction)
relative to the given (reference node) (a TikZ node) with a given (distance) in this di-
rection and an optional (shift) orthogonal to the direction. The (node) is identified by a
/gtr/id T80,
Feasible values for the (direction) are

\begin{tikzpicture}

right (right of (reference node).east)
left (left of (reference node).west)
above (above of (reference node) .north)
below (below of (reference node).south)

\node [fill=yellow!50,draw=red] (R) {Reference Nodel};

\genealogytree[template=signpost,
adjust node=Harr1987 left of R distance 1cm,
options for node={Harr1987}{box={colback=yellow!50}}]
{input{example.option.graph}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

0

—

Reference Node

John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987

Arthur Berta Charles

% 2008 %2010 * 2014

99

5.10 TikZ and Tcolorbox Options

/gtr/tikzpicture={(tikz options)} (no default, initially empty)
Used to insert (tikz options) to the tikzpicture environment inside genealogypicture "4,
This option is ignored by \genealogytree 45!

\begin{genealogypicture} [template=formal graph,
tikzpicture={execute at end picture={

\path[draw=red,double,double distance=1pt,very thick,rounded corners]
([xshift=-bmm,yshift=-5mm] current bounding box.south west) rectangle
([xshift=5mm,yshift=5mm] current bounding box.north east);}} 1]

child{

g[box={colback=red!50}]{A}

p{B}

c{C} c{D} c{E}

}
\end{genealogypicture}
Al|l B
C D E

/gtr/tikzset={(tikz options)} (no default, initially empty)
Used to insert (tikz options) before the tree is drawn by \genealogytree %% or
genealogypicture 149 In contrast to /gtr/tikzpicture, one can use /gtr/tikzset

also for \genealogytree "I *° but some some settings may need to be given in the argu-
ment of tikzpicture (see The TikZ and PGF Packages [4]).
Note that \genealogytree "4 does not limit the scope of these settings.

\begin{genealogypicture}[template=formal graph,
tikzset={myfill/.style={top color=yellow,bottom color=red}}]

child{
glbox={interior style=myfill}]{A}
p{B}
c{Cr c{D} c{E}

}

\end{genealogypicture}

100

/gtr/after tree={(tikz code)} (no default, initially empty)
Used to insert (tikz code) after the tree is drawn by \genealogytree % or

genealogypicture " 40, This is also used internally by other options.

\begin{genealogypicture}[template=formal graph,
after tree={ \draw[very thick,blue,-Latex] (node_A) to[out=180,in=120] (node_C);

}

child{
g[box={colback=red!50},id=node_A]{A}
p{B}
clid=node_Cl{C} c{D} c{E}

}

\end{genealogypicture}

It

C
/gtr/tcbset={(tcolorbozx options)} (no default, initially empty)
Used to insert (tcolorbox options) before the tree is drawn by \genealogytree % or
genealogypictureﬁp”m.

Note that \genealogytree " %% does not limit the scope of these settings.

\begin{genealogypicture} [template=formal graph,
tcbset={
male/.style={colframe=blue, colback=blue!5},
female/.style={colframe=red,colback=red!5}
}
]
child{
glmale]{A}
plfemale]{B}
c[male]{C} cl[femalel{D} c[malel{E}
}
\end{genealogypicture}

101

/tikz/fit to family=(id) (style, no default)
This is an extension to the fit library of TikZ. This option must be given to a node path
command. The (id) has to be an /gtr/id "7 ® value of a family. All nodes of this family
are given to the fit option of a TikZ node which is sized to frame all family members.

/tikz/fit to subtree=(id) (style, no default)
Like /tikz/fit to family, this is an extension to the fit library of TikZ. All nodes of
the subtree identified by (id) are given to the fit option of a TikZ node which is sized to
frame the whole subtree.

\begin{tikzpicture}
\genealogytree[template=tiny boxes]
{
child[id=R,family box={colback=bluel}]{
g7p-
child{
g-p-c-c-c-c-c-
child{ p-g-c- }
}
CRCar
child{ g-p-c- }
child[id=X,subtree box={colback=red}]{
p-g-
child{ g-p-c-c-c-c-c-c- }
union{
p-c-c-
child{ g-p-c-c- }
}
}
}
}

\node [draw=blue,fill=blue!20,fill opacity=0.25,inner sep=0.5mm,
pin={[pin edge=bluelleft:family with id R},
fit to family=R] {};

\node [draw=red,fill=red!20,fill opacity=0.25,inner sep=0.5mm,
pin={[pin edge=red]right:subtree with id X},
fit to subtree=X] {};

\end{tikzpicture}

family with id R — ” |
s0se 80 @8

@@@m? @ | ubtree with id X

102

5.11 Ignoring Input

The following options allow to ignore some parts of the input data. Note that debugging using
the methods from Chapter 11 on page 209 will usually ignore the ignore settings. Also, if some
counters are incremented by node or family options, these increments may not be undone by
ignoring the particular node or family.

/gtr/ignore=true|false (default true, initially false)
The /gtr/ignore option can be used inside the option list for any node or family specifier.
Child ¢ and parent p leaf nodes are simply ignored, if this option is used. An error will
arise, if a g node is ignored and there is no other g node for the family.

e Using /gtr/ignore inside a node ignores this node.

e Using /gtr/ignore inside a family means that the whole subtree becomes ignored.

e Using /gtr/ignore inside /gtr/level n "% means that all families on this level
are ignored. Since families span two levels, the effect may not be restricted to the
target level. Leaf nodes on the target level are not affected. Also see /gtr/ignore

level P 105

»P. 104

d P8 use /gtr/ignore node or

To ignore a node or subtree by its /gtr/i
/gtr/ignore subtree 104,

\begin{tikzpicture}
\genealogytree[template=signpost,timeflow=left,level size=3cm]
{
parent [id=DoeJones]{
gl[id=Deir2012,female] {Deirdre\\\gtrsymBorn\, 2012}
parent [id=Jones]{
glid=Mary1988,female] {Aunt Mary\\\gtrsymBorn\, 1988}
plid=JimJ1944 ,male]{Jim Jones\\\gtrsymBorn\, 1944}
/% the following node is going to be ignored
plignore,id=Jenn1949, female]{Jenny Jones\\\gtrsymBorn\, 1949}
}
}
}
\end{tikzpicture}

Deirdre Aunt Mary Jim Jones
* 2012 * 1988 * 1944

103

/gtr/ignore node={(id list)}
All nodes with /gtr/id "8 values from the given (id list) are ignored. If an /gtr/id
value is not existing, the setting is silently ignored.

(style, no default)
- P.80

\begin{tikzpicture}

\genealogytree[template=signpost,ignore node={Bert2010,Char2014,Harr1987}]
{input{example.option.graph}}

\end{tikzpicture}

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

0

John Smith Jane Doe
* 1980 * 1982

Arthur
* 2008

\gtrignorenode{(id list)}
Identical to using /gtr/ignore node.

/gtr/ignore subtree={(id list)} (style, no default)
All subtrees with /gtr/id” P80 values from the given (id list) are ignored. If an
/gtr/id "8 value is not existing, the setting is silently ignored.

\begin{tikzpicture}

\genealogytree[template=signpost,ignore subtree={Doel}]
{input{example.option.graph}}

\end{tikzpicture}

Grandpa Grandma
Smith Smith
* 1949 * 1952

—

John Smith
* 1980
Arthur Berta Charles
% 2008 %2010 *2014

\gtrignoresubtree{(id list)}
Identical to using /gtr/ignore subtree.

104

/gtr/ignore level=(number) (style, no default)
The level with the given (number) is ignored. This also removes unconnected nodes and
families. Note that /gtr/ignore level should never be used, if /gtr/proband
level P97 was set!

This style sets /gtr/level n 9 options to remove all unwanted nodes and families.
Depending on the algebraic sign of (number) the implementation differs. Zero has no effect.

\gtrset{ignore level=4}
4 is equal to
\gtrset{level 4/.style={node=ignorel},level 5/.style={ignore}}

\gtrset{ignore level=-4}
% s equal to
\gtrset{level -4/.style={ignore,node=ignore}}

\begin{tikzpicture}
\genealogytree[template=signpost,ignore level=2]

{input{example.option.graph}}
\end{tikzpicture}

[]

John Smith Jane Doe Uncle Harry
%* 1980 %* 1982 %* 1987

Arthur Berta Charles
%* 2008 %2010 * 2014

105

5.12 Inserting Input

The following options allow to insert parsable data into the input. This is a powerful feature
with the risk to corrupt the structure of the resulting graph. Note that grammar checks are not
so strictly applied at the insertion points and occurring errors may be difficult to detect.

»P.210 »P.212

\gtrparserdebug uses these

options.

ignores inserting options, while \gtrprocessordebug

Recursive insertion is possible, i.e. inserting into already inserted data, but should be handled
with care. Especially, using /gtr/insert after node and /gtr/insert after family 107
should never be used to insert data after the root element of an inserted node or family.

/gtr/insert after node={(id)}{(input data)} (style, no default)
Inserts (input data) into the graph data right after the node with the given (id) was pro-
cessed. If no node with (id) exists, this setting is silently ignored. If more than one insert
command was given for a specific node, following insert commands for this node are ignored.
Note that grammar checks are not so strictly applied at the insertion point, i.e. one has to
be more careful to obey the rules to avoid mess.

\begin{tikzpicture}
\genealogytree[template=formal graph,
content interpreter content={\gtrifnodeid{\gtrnodeid}{n_{\gtrnodenumber}}},
insert after node={A}{ c[box={colback=yellow!50}]1- 1},
insert after node={B}{ child[subtree box={colback=red!50}]{g-p-c-c-c-} 1},
]
{
child{ g-p-
child{ g-p-c-c[box={colback=blue!30},id=A]-c- }
c[box={colback=blue!30},id=B]-c-
}
}
\end{tikzpicture}

Iﬂ!l[zig:

I I
ng | | B nio| P11 |15
I I
I U U e R R
[7:: Al|ln7||ns| [ma2] |na3]| |14

106

/gtr/insert after family={(id)}{(input data)} (style, no default)
Inserts (input data) into the graph data right after the family with the given (id) was
processed. If no family with (id) exists, this setting is silently ignored. There should be not
more than one /gtr/insert after family command for a specific family; using it twice
may give unpredictable results. Note that grammar checks are not so strictly applied at the
insertion point, i.e. one has to be more careful to obey the rules to avoid mess. Especially,
never use /gtr/insert after family for the root family!

\begin{tikzpicture}
\genealogytree[template=formal graph,
content interpreter content={\gtrifnodeid{\gtrnodeid}{n_{\gtrnodenumber}}},
insert after family={fam_al}{
child[subtree box={colback=red!50}]{g-p-c-c-}
c [box={colback=yellow!50}]-
o
]
{
child[id=root]{ g-p-
child[subtree box={colback=blue!30},id=fam_al{ g-p-c-c-c- }

CCad
}
}
\end{tikzpicture}
niy no
i
i i .
ng || 4 ng || 19 | |M12| |113| |14

I

ns ne nr nio| |11

107

/gtr/insert at begin family={(id)}{(input data)} (style, no default)
Inserts (input data) into the graph data of the family with the given (id), before the content
of the family is processed. If no family with (id) exists, this setting is silently ignored.
There should be not more than one /gtr/insert at begin family command for a specific
family; using it twice may give unpredictable results. Note that grammar checks are not so
strictly applied at the insertion point, i.e. one has to be more careful to obey the rules to
avoid mess.

\begin{tikzpicture}
\genealogytree[template=formal graph,
content interpreter content={\gtrifnodeid{\gtrnodeid}{n_{\gtrnodenumber}}},
insert at begin family={fam_al}{
child[subtree box={colback=red!50}]1{g-p-c-c-}
p[box={colback=yellow!50}]-
i
]
{
child[id=root]{ g-p-
child[subtree box={colback=blue!30},id=fam_al{ g-c-c-c- }
CCas
}
}
\end{tikzpicture}

108

/gtr/insert at end family={(id)}{(input data)} (style, no default)
Inserts (input data) into the graph data of the family with the given (id), after the content
of the family is processed. If no family with (id) exists, this setting is silently ignored.
There should be not more than one /gtr/insert at end family command for a specific
family; using it twice may give unpredictable results. Note that grammar checks are not so

strictly applied at the insertion point, i.e. one has to be more careful to obey the rules to
avoid mess.

\begin{tikzpicture}
\genealogytree[template=formal graph,
content interpreter content={\gtrifnodeid{\gtrnodeid}{n_{\gtrnodenumber}}},
insert at end family={fam_a}{
child[subtree box={colback=red!50}]1{g-p-c-c-}
p[box={colback=yellow!50}]-
i
]
{
child[id=root]{ g-p-
child[subtree box={colback=blue!30},id=fam_al{ g-c-c-c- }
CCas
}
}
\end{tikzpicture}

ni3

Uz ns ne nr || ns

ng n10

109

5.13 Phantom Nodes and Subtrees

/gtr/phantom=(length) (style, default /gtr/node size ©73)

A /gtr/subtree 9 style which makes the whole current subtree invisible. This style
can also be applied for single nodes. If a (length) value is used, the /gtr/node size "7
for all nodes of the subtree is replaced by (length) (width for vertical time flow and height
for horizontal time flow).

\begin{tikzpicture}
\genealogytree[template=formal graph,
content interpreter content={\gtrifnodeid{\gtrnodeid}{n_{\gtrnodenumberl}}},

]
{
child{ g-p-
child{ g-p-
cl[id=A]-
% tnvuisible phantom
c[phantom=2cm] -
=
}
% phantom; borders made visible
child[phantom,subtree box={show bounding box}]{
g-p-c-c-c—
}
c[id=B]-
}
}
\end{tikzpicture}
L NI
ns nyg : :: : B
| N) |
T~ @ beeedaan
A ng |t b 41
| ' ' |
\begin{tikzpicture}

\genealogytree[template=formal graph,
content interpreter content={\gtrifnodeid{\gtrnodeid}{n_{\gtrnodenumber}l}},
insert after node={A}{ c[phantom]- },
insert after node={B}{ c[phantom*]- },

]

{
parent{

g-c[id=A]-c[id=B]-
p=p-
¥
}
\end{tikzpicture}

nr

ng
1
- I
niy A B

110

\begin{tikzpicture}

\genealogytree[template=formal graph,
content interpreter content={\gtrifnodeid{\gtrnodeid}{n_{\gtrnodenumber}l}},

]
{
child{ g-p-
child{ g-p-
child{ g-p-c-c-c-}
c-c-
child{ g-p-c-c-
child{ g-p-c-c-c-
}
}
child[phantom=3cm] {g[id=P1]-c[id=P2]-}
child{ g-p-c-
child{ g-p-
child{ g-p-c-c-c-c-}
CaCa
}
}
}
}

\path[draw,top color=yellow!50,bottom color=blue!50]

(P2.south west) rectangle node {Phantom Area} (Pl.north east);

\end{tikzpicture}
ny || n2
—_1~ T
1
n3 || "4 n23 || 124
——
I I | Phantom Area
ne nio| |11 | |12 |13 N2s5 | |26 || 1027
i N R
nr ng ng Nig| N5 | |16 || 117 n2g || 29| |34 |35
—_
s IR
nig| |19 | |20 n3o| 131 | |32 |33
v

111

/gtr/phantom=(length) (style, default /gtr/node size ' 73)

Identical to /gtr/phantom 0 but the phantom subtree is connected by an edge with
its embedding family.

\begin{tikzpicture}
\genealogytree[template=formal graph,
content interpreter content={\gtrifnodeid{\gtrnodeid}{n_{\gtrnodenumber}}},
]
{
child{ g-p-
child{ g-p-
clid=A]-
% invisible phantom
c [phantom*=2cm] -
&
}
% phantom; borders made visible
child [phantom#,subtree box={show bounding box}]{
g-p-c-c-c-
}
c[id=B]-
}
}
\end{tikzpicture}

J R
ns || na : o | B

112

5.14 Special and Auxiliary Options

/gtr/reset (no value)
Resets all options to their default values.

/gtr/code=(code) (no default)
The given (code) is executed immediately. This option is useful to place some arbitrary
code into an option list.

\begin{tikzpicture}
\genealogytree[template=formal graph,
code={\newcommand{\mycom}{(a_{\gtrnodenumber})}},
{
child{
g{A~\mycom}
p{B}
c{C} c{D~\mycom} c{E}
}
}
\end{tikzpicture}

/gtr/keysfrom=(macro) (no default)
The given (macro) (without parameters) is supposed to contain an option list. The keys
from the list are applied.

\newcommand{\mylist}{
level distance=1cm,
level -1/.style={node box={colback=red!50}},
edges={no background,foreground={blue,Circle-Latex}},

}
%
\begin{tikzpicture}
\genealogytree[template=formal graph, keysfrom=\mylist
{
child{
g{A}
p{B}
c{Cr c{D} c{E}
¥
}
\end{tikzpicture}

Al

113

114

Node Data (Content) Processing

Every node in a \genealogytree %% graph is drawn inside a rectangular box. These boxes

are arranged by the auto-layout algorithm to build the entire graph.

The interior of a node box is created by an element called /gtr/node processor ~ 16, Several
customizable node processors are predefined by the package to choose from. Further, an own
node processor can be added easily.

The node data may be used as-is or changed in some way before the node processor displays it.
This is done by an element called /gtr/content interpreter "I 133, Again, several content
interpreters are predefined by the package to choose from and own interpreters can be added.

The combination of node interpreter and node processor is called node data processing in the
following.

Two classes of node processings can be distinguished:

e Non-interpreting node data processings take their content text as-is and just format it
with colors, fonts, frames, etc; see Section 6.2 on page 117.

e Interpreting node data processings use some /gtr/content interpreter "I 133 to possi-
bly change the content.

— The most prominent processing is database node processing where the node content
is interpreted as organized data. Some representation of the data will form the visual
output; see Chapter 7 on page 139.

— Further interpreters are documented in Section 6.4 on page 133.

115

6.1 Setting a Node Data Processing and Processor

In this context, there is a small difference between node data processing and a node data proces-
sors. The processing is the combination of an node data interpreter and a node data processors.
If the interpreter does not change the node data, the difference vanishes.

/gtr/node processor=(macro) (no default)
Sets a (macro) for processing the content of a node. This (macro) has to be defined without

parameters. It should display the node content which is stored in \gtrBoxConten

£t P. 132'

\newcommand{\myprocessor}{/

}

\tikz\node [outer sep=0Opt]{\gtrBoxContent};/

\gtrset{node processor=\myprocessor}

This option is useful for authors who wish to implement some very specific node processing
(drawing) which is not covered by the standard mechanisms. See /gtr/processing for the
standard processors. Since the standard processors are highly customizable, there may be
no need to create a specific processor for most use cases.

A predefined /gtr/node processor is set by using /gtr/processing which also sets a

/gtr/content interpreter

—-P. 133

/gtr/processing=(processing) (no default, initially fit)
Defines the base procedure for processing the content of a node. Feasible values for
(processing) are

Values given to /gtr/box

fit: The content is set as-is inside a \tcboxfit macro from the tcolorbox package,
see Section 6.2.1 on page 117.

tcolorbox: The content is set as-is inside a tcolorbox environment from the
tcolorbox package, see Section 6.2.2 on page 121.

tcbox: The content is set as-is inside a \tcbox macro from the tcolorbox package,
see Section 6.2.3 on page 124.

tcbox*: As a variant to tcbox, the content is also set as-is inside a \tcbox macro
from the tcolorbox package, see Section 6.2.4 on page 127.

tikznode: The content is set as-is inside a \node macro from the tikz package, see
Section 6.2.5 on page 130.

database: The content is interpreted as database key-value pairs. The processed
content is set inside a \tcboxfit macro from the tcolorbox package, see Chapter 7
on page 139.

P85 will be interpreted according to the definded (processing).

For tcolorbox, the values have to be tcolorbox settings; for tikznode, the values have to
be tikz settings.

116

6.2

6.2.1

Predefined Non-Interpreting Processings

fit

/gtr/processing "F 116=fit

The preset processing is based on \tcboxfit of the tcolorbox package [3]. Options given to
/gtr/box " ¥ have to be tcolorbox options which are used by \tcboxfit.

The /gtr/no content interpreter

P13 g used. The main characteristics of the applied

node data processor are:

Full observance of /gtr/level size 7% /gtr/node size 7

from 7. These options can be used without restriction.

, and /gtr/node size

The node content is set inside a minipage. The text size of the content and the margins
are shrunk automatically, if needed. The used font should be freely scalable for this.

Due to the fit algorithm, this node processing will consume more compilation time than
other ones.

To observe node and level settings as far as possible, the dimensions can be set by
/tcb/gtrNodeDimensions or /tcb/gtrNodeDimensionsLandscape.
/tcb/gtrNodeDimensions is initially set.

This processor is also used for database processing, see Chapter 7 on page 139.

117

\begin{genealogypicture} [processing=fit]
child{ g{root} p{X}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
}
\end{genealogypicture}

root X

118

\begin{genealogypicture} [processing=fit,
level size=1cm,node size from=1.5cm to 4cm,
box={halign=center,valign=center,size=small,arc=2mm,colback=red!203}]
child{ g{root} p{This is some longer text.}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E}
p{This is a quite long text. This text so long that
the font size has to shrink.}

c{F} c{G} c{H} }

¢ This is some
100 longer text.

This is a quite long text.
Y A D E This text so long that the
font size has to shrink.
— ! '

}
\end{genealogypicture}

vs)

) ()

\begin{genealogypicture} [processing=fit,
timeflow=right,
level size=3cm,level distance=10mm,
node size from=1cm to 2cm,
box={halign=center,valign=center,size=small,arc=2mm, colback=blue!20}]
%
child{ g{root} p{This is some longer text.}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E}
p{This is a quite long text. This text so long that
the font size has to shrink.}
c{F} c{G} c{H} }
}
\end{genealogypicture}

<
A C]
y,
[root ~
D
This is some Y, ~\
longer text. ~ F
E Y,
Y, N

This is a quite) G
long text. This /
text so long that

the font size H
has to shrink.))

119

\begin{genealogypicture} [processing=fit,
level size=1.bcm,level distance=bmm,node size=2cm,
box={halign=center,valign=center,size=small,arc=2mm,colback=green!20}]
%
child{ g{root}
c[turn=left] {Abc}
c[turn=upsidedown] {Bcd}
c[turn=right]{Cde}
}
\end{genealogypicture}

)
TOO0t
[|]
s N
> > <
g pod O
\ Y,

120

6.2.2 tcolorbox

/gtr/processing’ P-116=tcolorbox

This processing is based on the tcolorbox environment of the tcolorbox package [3]. Options
given to /gtr/box " # have to be tcolorbox options.

The /gtr/no content interpreter ~F 13

node data processor are:

is used. The main characteristics of the applied

e For /gtr/timeflow % settings up and down, full observance of /gtr/node size "= 73,

but no observance of /gtr/node size from 7. The /gtr/level size 7 is ob-
served, but content which is too large may overflow.

e For /gtr/timeflow %% settings left and right, full observance of /gtr/level
size V"™, /gtr/node size '™ and /gtr/node size from 7 are both observed,
but content which is too large may overflow.

e Using the option natural height, the height of a node box can be freely adapted to its
content. This may be especially useful for /gtr/timeflow "% settings left and right,
but with some limited use for /gtr/timeflow %% settings up and down.

e Extremely customizable using options.

e To observe node and level settings as far as possible, the dimensions can be set by
/tcb/gtrNodeDimensions or /tcb/gtrNodeDimensionsLandscape.
/tcb/gtrNodeDimensions is initially set.

121

\begin{genealogypicture} [processing=tcolorbox]
child{ g{root} p{X}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
}
\end{genealogypicture}

root X

\begin{genealogypicture} [processing=tcolorbox,
level size=1.2cm,node size=2.5cm,
box={halign=center,valign=center,size=fbox,arc=2mm,colback=red!20}]
child{ g{root} p{This is some longer text.}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
}
\end{genealogypicture}

122

\begin{genealogypicture} [processing=tcolorbox,
timeflow=right,
level size=3cm,level distance=10mm,
box={halign=center,natural height,size=title,arc=1mm,colback=blue!20}]
child{ g{root} p{This is some longer text.}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
}
\end{genealogypicture}

(=~ ;
[root A ¢
This is some D] F
longer text. E
(Z

— — e

\begin{genealogypicture} [processing=tcolorbox,
level size=1.bcm,level distance=bmm,node size=2cm,
box={halign=center,valign=center,size=small,arc=2mm,colback=green!20}]
%
child{ g{root}
c[turn=left]{Abc}
c[turn=upsidedown] {Bcd}
cl[turn=right]{Cde}
}
\end{genealogypicture}

S
root
| | |
s a\
> 2 <
g pod @)
\ Y,

123

6.2.3 tcbox

—>P.116_

/gtr/processing =tcbox

This

processing is based on \tcbox of the tcolorbox package [3]. Options given to

/gtr/box " ¥ have to be tcolorbox options which are used by \tcbox.

The /gtr/no content interpreter

P 135 45 used. The main characteristics of the applied

node data processor are:

For /gtr/timeflow "7 %% settings up and down, no observance of /gtr/node size 73
and /gtr/node size from ™ but full observance of /gtr/level size 72 if
/tcb/gtrNodeDimensions is set.

For /gtr/timeflow %% settings left and right, no observance of /gtr/level
size 7", /gtr/node size '™ and /gtr/node size from 7 are both observed,
if /tcb/gtrNodeDimensions is set.

If not specified otherwise by options, the content is set as a single line and the box is sized
according to its content.

To observe node and level settings as far as possible, the dimensions can be set by
/tcb/gtrNodeDimensions or /tcb/gtrNodeDimensionsLandscape.
/tcb/gtrNodeDimensions is initially not set, but /gtr/turn 87
settings on.

will switch dimensions

\begin{genealogypicture} [processing=tcbox]

child{ g{root} p{X}

child{ p{Y} g{A} c{B} c{C} }

c{D}

child{ g{E} p{Z} c{F} c{G} c{H} }
¥

\end{genealogypicture}

root X]

124

\begin{genealogypicture} [processing=tcbox,
level size=1cm,
box={valign=center,size=title,arc=2mm,colback=red!20}]
child{ g{root} p{This is some longer text.}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
¥
\end{genealogypicture}

@(i)(This is some longer text.)
OO ®®@
D © © @G

\begin{genealogypicture} [processing=tcbox,
timeflow=right,
level size=2cm,level distance=10mm,
box={size=title,natural height,arc=Omm,colback=blue!20}]
child{ g{root} plbox={varwidth upper=\gtrNodeMaxWidth}]{This is some longer text.}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
}
\end{genealogypicture}

This is
some

longer
text.

SElElER
hy!

125

\begin{genealogypicture} [processing=tcbox,
level size=1.bcm,level distance=bmm,node size=2cm,
box={halign=center,valign=center,size=small,arc=2mm,colback=green!20}]
%
child{ glturn=off]{root}
c[turn=left] {Abc}
c[turn=upsidedown] {Bcd}
c[turn=right]{Cde}
}
\end{genealogypicture}

o0qVy
Cde

\begin{genealogypicture} [processing=tcbox,
level size=1.bcm,level distance=bmm,node size=2cm,
box={halign=center,valign=center,size=small,natural height,
arc=2mm, colback=green!20}]
%
child{ g{root}
c[turn=left,box={natural height}]{Abc}
c[turn=upsidedown,box={natural heightl}]{Bcd}
c[turn=right,box={natural height}]{Cde}
}
\end{genealogypicture}

(root)

g; (Pod) <

3 O

126

6.2.4 tcbox*®

P. 16t chox

/gtr/processing
This processing is based on \tcbox of the tcolorbox package [3]. Options given to
/gtr/box " ® have to be tcolorbox options which are used by \tcbox. This is a variant

of Section 6.2.3 on page 124.
The /gtr/no content interpreter ~F13°

node data processor are:

is used. The main characteristics of the applied

e For /gtr/timeflow %% settings up and down, observance of /gtr/node size 73
(but width may grow beyond) and full observance of /gtr/level size 72 if
/tcb/gtrNodeDimensions is set.

e For /gtr/timeflow %% settings left and right, some observance of /gtr/level
size "™ (but width may grow beyond). /gtr/node size " and /gtr/node size

from "7 are both observed, if /tcb/gtrNodeDimensions is set.

e If not specified otherwise by options, the content is set horizontally and vertically centered
as a single line.

e To observe node and level settings as far as possible, the dimensions can be set by
/tcb/gtrNodeDimensions or /tcb/gtrNodeDimensionsLandscape.
/tcb/gtrNodeDimensions is initially set.

127

\begin{genealogypicture} [processing=tcbox*]
child{ g{root} p{X}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
}
\end{genealogypicture}

root X
| |
l | l
Y A D E Z
|] | |
|] | |
B C F G
\begin{genealogypicture} [processing=tcbox*,
level size=1cm,
box={valign=center,size=title,arc=2mm,colback=red!20}]
child{ g{root} p{This is some longer text.}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
}
\end{genealogypicture}
[root J[This is some longer text.]
| |
| | |
e O JCe)=)

e JCe) =

128

\begin{genealogypicture} [processing=tcbox*,
timeflow=right,
level size=2cm,level distance=10mm,
box={size=title,natural height,arc=Omm,colback=blue!20}]
child{ g{root} plbox={varwidth upper=\gtrNodeMaxWidth}]{This is some longer text.}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
}
\end{genealogypicture}

This is
some
longer
text.

\begin{genealogypicture} [processing=tcbox*,
level size=1.bcm,level distance=bmm,node size=2cm,
box={halign=center,valign=center,size=small,arc=2mm,colback=green!20}]
%
child{ glturn=off]{root}
c[turn=left]{Abc}
c[turn=upsidedown] {Bcd}
cl[turn=right]{Cde}
}
\end{genealogypicture}

S
root
| | |
s N
> 5 -
g pod @)
\ Y,

129

6.2.5 tikznode

/gtr/processing’ P-16=tjkznode

This processing is based on \node of the tikz package [4]. Options given to /gtr/box "I &

have to be tikz options which are used by \node.

> P. 135

The /gtr/no content interpreter is used. The main characteristics of the applied

node data processor are:

»P.73

e No observance of /gtr/level size "™ /gtr/node size , and /gtr/node size

from P74,

e Not as customizable as other processors, but full tikz options.
e This node processing will consume the smallest compilation time.

e To observe node and level settings as far as possible, the dimensions can be set by
/tikz/gtrNodeDimensions or /tikz/gtrNodeDimensionsLandscape.
/tikz/gtrNodeDimensions is initially not set, but /gtr/turn ~ 7
settings on.

will switch dimensions

\begin{genealogypicture} [processing=tikznode]
child{ g{root} p{X}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
}
\end{genealogypicture}

root X

130

\begin{genealogypicture} [processing=tikznode,

level size=8mm,box={fill=yellow!10},]
child{ g{root} p{X}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
}
\end{genealogypicture}

root X
Y A D E 7
B C F G H
\begin{genealogypicture} [processing=tikznode,
timeflow=right,
level size=1cm,level distance=10mm]
child{ g{root} p{X}
child{ p{Y¥} g{A} c{B} c{C} }
c{D}
child{ g{E} p{Z} c{F} c{G} c{H} }
}
\end{genealogypicture}
Y —— 8B
A——¢C
root
D
X — F
E —
— G
7, ———
— H

\begin{genealogypicture} [processing=tikznode,
level size=1.bcm,level distance=bmm,node size=2cm,
box={fill=green!20,gtrNodeDimensions}]

%
child{ g{root}
c[turn=left]{Abc}
c[turn=upsidedown] {Bcd}
c[turn=right]{Cde}
}
\end{genealogypicture}

root

29V

pod

131

Cde

6.3 Creating a Customized Non-Interpreting Processor

For most applications, one if the predefined non-interpreting processings with their processors
will suffice, see Section 6.2 on page 117.

—P.116

But using /gtr/node processor , also a new node processor can be defined.

\gtrset{node processor=\myprocessor}

Here, \myprocessor is an own macro which has to be defined without parameters. Inside the
macro definition, the following can be used.

\gtrBoxContent
Contains the (already interpreted or not interpreted) node content.

\gtrNodeMinWidth
Contains the current target minimum node width as defined by the various tree settings.

\gtrNodeMaxWidth
Contains the current target maximum node width as defined by the various tree settings.

\gtrNodeMinHeight
Contains the current target minimum node height as defined by the various tree settings.

\gtrNodeMaxHeight
Contains the current target maximum node height as defined by the various tree settings.

\gtrNodeBoxOptions
Contains the option settings for the current node. These are the assembled /gtr/box P.85
settings as comma separated key-value list for the current node.

For demonstration, a simple processor based on the minipage environment is constructed:

\newcommand{\myprocessor}{/
\begin{minipage} [c] [\gtrNodeMinHeight] {\gtrNodeMinWidth}/
\begin{center}\gtrBoxContent\end{center}\end{minipage}/
Y
%
\begin{genealogypicture}[node processor=\myprocessor,
level size=8mm,level distance=10mm,node size=2cm]
%
child{ g{root}
c{Abc}
c{Bcd}
c{Cde}
}
\end{genealogypicture}

TO0t

Abc Bed Cde

132

6.4 Content Interpreters

The predefined non-interpreting processings from Section 6.2 on page 117 can easily
adapted to become interpreting, if /gtr/content interpreter or /gtr/content interpreter

*P-134 i5 set. The interpreter changes the node content somehow (see Chapter 7 on page 139
—P.116

code
for the main example) and gives the changed content to the chosen /gtr/node processor

/gtr/content interpreter=(macro) (no default)
Sets (macro) for interpreting the content of a node. This (macro) has to take one
mandatory parameter (the original box content). It has to define a new parameterless
macro \gtrBoxContent " 132 which should store the content which is given to the current
/gtr/node processor 116 for further compilation.

\gtrset{content interpreter=\myinterpreter}

The most important interpreter is realized by database processing, see Chapter 7 on
page 139. This option may be used to implement an own kind of database processing
which differs from the package implementation.

Another use case is to replace the node content completely by some automated content like
numbering the nodes.

\newcommand{\myinterpreter}[1]{\def\gtrBoxContent{#1~{(\gtrnodenumber)}}}

\begin{tikzpicture}
\genealogytree[
template=formal graph,
content interpreter=\myinterpreter]
{
child{
g{A} p{B}
child{ p{C} g{D} c{E} c{F} }
c{G}
}
}
\end{tikzpicture}

133

/gtr/content interpreter code={(code)} (no default)
Sets (code) for interpreting the content of a node. This (code) can use a parameter #1 (the
original box content) and has to define a new parameterless macro \gtrBoxContent "' 132
which should store the content which is given to the current /gtr/node processor "' 110
for further compilation.

\begin{tikzpicture}
\genealogytree[
template=formal graph,
content interpreter code={\def\gtrBoxContent{#1 {(\gtrnodenumber)}}} 1]
{
child{
g{A} p{B}
child{ p{C} g{D} c{E} c{F} }
c{G}
¥
}
\end{tikzpicture}

/gtr/content interpreter content={(code)} (no default)
Sets (code) for interpreting the content of a node. This (code) is the definition for
\gtrBoxContent "7 132. The (code) can use a parameter #1 (the original box content).

\begin{tikzpicture}
\genealogytree[
template=formal graph,
content interpreter content={#1"{(\gtrnodenumber)}}]
{
child{
g{A} p{B}
child{ p{C} g{D} c{E} c{F} }
c{G}
}
}
\end{tikzpicture}

134

\begin{tikzpicture}
\genealogytree[
template=formal graph,
content interpreter content={N_{\gtrnodenumber}}]

{
child{
g~ P~
child{ p- g- c¢c- c- c- union{ p- c- } }
=
child{ g- p- ¢- child{ g- p- ¢- ¢- c- ¢c- } }
}
}
\end{tikzpicture}
s I I R
Nig| |Nuz| |Nig| |Nig
/gtr/no content interpreter (no value, initially set)

Virtually removes any content interpreter. The node content is given directly to
the current /gtr/processing !0 for further compilation. Actually, this defines
\gtrBoxContent " 132 to contain the original box content.

/gtr/deletion content interpreter (no value, initially set)
Deletes any box content. This leads to empty boxes.

\begin{tikzpicture}
\genealogytree[
template=formal graph,
deletion content interpreter]
{
child{
g{A} p{B}
child{ p{C} g{D} c{E} c{F} }
c{G}
}
}
\end{tikzpicture}

135

/gtr/database content interpreter (no value, initially set)

This is the content interpreter for database processing, see Chapter 7 on page 139.

/% ... make database processing dependend on tcbox*
processing=tcbox*,
database content interpreter,

X ...

/gtr/id content interpreter (no value, initially set)

The box content is not only used as-is but is also set as /gtr/id " 80 of the node. This
implies that no macro code is used inside the nodes.

\begin{tikzpicture}
\genealogytree[
template=formal graph,
id content interpreter,
options for node={A,G}{box={colback=blue!50,colframe=blue}}]
{
child{
g{A} p{B}
child{ p{C} g{D} c{E} c{F} }
c{G}
}
}
\draw[-Latex,blue!75!black,thick]
(A) edgelout=180,in=180] (E)
edge [out=90, in=90] (B)
(G) edgel[out=270,in=0] (F)
\end{tikzpicture}

>

136

/gtr/content interpreter id and content={(id)}{(code)} (no default)
Sets (code) for interpreting the content of a node. This (code) is the definition for
\gtrBoxContent " 132 Also, the (id) for the node is set. The (code) and (id) can use
a parameter #1 (the original box content). Note that (id) will be fully expanded.

\begin{tikzpicture}
\genealogytree[
template=formal graph,
content interpreter id and content={n\gtrnodenumber}{N_{\gtrnodenumberl}},
options for node={n1,n7}{box={colback=blue!50,colframe=blue}}]
{
child{
g7p-
child{ p-g-c-c- }
=
}
}
\draw[-Latex,blue!75!black,thick]
(n1) edgelout=180,in=180] (n5)
edge [out=90, in=90] (n2)
(n7) edgel[out=270,in=0] (n6) ;
\end{tikzpicture}

) (o

137

138

Database Processing

Database processing is a specialized node data processing, see Chapter 6 on page 115. The node
content is interpreted as organized data and some representation of the data will form the visual
output.

To switch to database processing, use

/gtr/processing’ P-116=gatabase

The box content is interpreted as key-value database list. The actual box construction is based on
\tcboxfit of the tcolorbox package [3]. Options given to /gtr/box "% have to be tcolorbox
options which are used by \tcboxfit.

—-P.136

The /gtr/database content interpreter is used in combination with the node data

processor described in Section 6.2.1 on page 117.

For a quick example-based overview, see the full samples in Section 7.5 on page 149 which use
the data given in Section 7.2 on page 141.

139

7.1 Database Concept

The general idea of this database approach is to separate the data content of a node from the
formatting. While this is also a common TEX/IXTEX idea, the following concept goes somewhat
further.

The content producer could be a human person directly, but more presumably a machine like
a genealogy program. The node content is written as a comma separated key-value list. This
list is processed and its content formatted by a database processor. For a quick survey with an
example, see Section 7.2 on page 141.

Content Producer < Content Manipulator
(Genealogy Program) (Human)
Export Manual Setup

Genealogy Tree Input Enclosing
Content —_— KTEX document
(Database)

PDF document

The content is exported by a program or hand written as key-value list. The format of this list
is described in Section 7.3 on page 143. This list is processed by an enclosing INTEX document
which is created and manipulated by a human. This enclosing document specifies how the
content is displayed. This relieves the exporting program from caring about formatting issues
and gives full visual control to a human author. The author is relieved from putting down data
by hand which presumably is already data-processed with a genealogy program.

Also, the following methods allow to use the same database for different diagrams with possibly
different goals and designs.

140

7.2 Example Settings

This example data is used in the following (also documented in Section 14.2 on page 258).

File «example.database.graphn for the following examples

child[id=SmitBowd1742]{
glid=SmitChar1722]{

male,
name = {\pref{Charles} \surn{Smith}},
birth = {(caAD)1722}{London},
baptism = {1722-04-13}{London},
death+ = {1764-10-12}{}{killed},
comment = {Copper smith, soldier},

}

plid=BowdJane1724]{
female,
name = {\pref{Jane} \surn{Bowdenl}},
birth- = {(caAD)1724},
marriage = {1742-03-02}{London},
death = {1802-07-07}{New York},

}

c[id=BowdAbra1740]{
male,
name = {\pref{Abraham} \surn{Bowden}},
birth+ = {1740-01-04}{London}{out of wedlock},
death = {1740-02-23}{London}

}

c[id=SmitE1iz1744]{
female,
name = {\pref{Elizabeth} \nick{Liz} \surn{Smith}},
birth = {1744-02-02}{London},
death = {1812-04-12}{Boston},

comment = {Had a store in Boston},

}

c[id=SmitMich1758]{
male,
name = {\pref{Michael} \surn{Smith}},
birth+ = {1758-03-01}{}{died},

¥

}

Note especially the /gtr/id "% values. They are essential as handle to access a singular node

from an importing document without changing the database.

141

\begin{genealogypicture}[

processing=database,database format=full,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newline}{},

box={fit basedim=9pt,boxsep=2pt,segmentation style={solid},

halign=left,before upper=\parskiplpt,\gtrDBsex }]
input{example.database.graph}

\end{genealogypicture}

Charles SMITH Jane BOWDEN

* ca. 1722 %* ca. 1724
London @ 2.111.1742

2 13.1V.1722 London
London 1+ 7.VI1.1802

% 12.X.1764 New York

Copper smith, sol-

dier

Abraham Bow- FElizabeth “Liz” Michael SMITH
DEN SMITH *t 1.111.1758
(%) 4.1.1740 * 2.11.1744
London London
t 23.11.1740 T 12.1V.1812
London Boston
Had a store in
Boston

142

7.3 Data Keys

/gtr/database/name=(full name) (no default, initially empty)
This key holds the (full name) of a person presumably with markup. For customization, the
markup should be done with \pref " 159 \surn " 159 \nick """ instead of common
KTEX font settings.

Koo
name = {\pref{Elizabeth} \nick{Liz} \surn{Smith}},
Ao

—P. 159
»P. 159
—P. 159

marks a preferred given name.
e \nick marks a nickname.
e \surn marks a surname.

The saved data is accessible by \gtrDBname.

e \pref

/gtr/database/shortname=(short name) (no default, initially empty)
This key holds an optional (short name) of a person presumably with markup. For cus-
tomization, the markup should be done with \pref " %9 \surn "9 \nick 1% in-
stead of common ATEX font settings.

HBooc
shortname = {\nick{Liz} \surn{Smith}},
Koo c

The saved data is accessible by \gtrDBshortname.

/gtr/database/sex=(ser) (no default, initially neuter)
This key holds the (sex) of a person. Feasible values are male and female. neuter is an
additional feasible default value, if the sex is unknown, e.g. for a stillborn child without
further data. The saved data is accessible by \gtrDBsex.

X
sex = female,
A ..
/gtr/database/female (style, no value)

Shortcut for /gtr/database/sex=female.

/gtr/database/male (style, no value)
Shortcut for /gtr/database/sex=male.

/gtr/database/neuter (style, no value)
Shortcut for /gtr/database/sex=neuter.

/gtr/database/comment=(text) (no default, initially empty)
This key holds some comment (text) about a person, e.g. occupation or a very concise life
description. The saved data is accessible by \gtrDBcomment.

X
comment = {Copper smith, soldier},

Ao

143

/gtr/database/image=(file name) (no default, initially empty)
This key holds an image (file name) of a person’s portrait. The saved data is accessible by

\gtrDBimage.
Ao
image = Marry_Smith_1720. jpg,
Ao
/gtr/database/uuid=(text) (no default, initially empty)

This key holds an wuniversally unique identifier (UUID) (text) of a person. In contrast
to /gtr/id "7 80 the UUID should be globally constant. It may be used for interlinking
beyond the scope of a genealogy tree diagram. The saved data is accessible by \gtrDBuuid.

...
uuid = 1021aa0c-2508-488c-9760-£9£84b4df1dd,
Do o

/gtr/database/kekule=(number) (no default, initially empty)
This key holds the Kekulé number of a person. The saved data is accessible by
\gtrDBkekule.

4.
kekule = 1024,
4. ..

/gtr/database/relationship=(text) (no default, initially empty)
This key holds a relationship (text) describing the person. The saved data is accessible by
\gtrDBrelationship.

X
relationship = Grandfather,

...

The following data keys hold events. Every event consists of
e a date, see Section 7.4 on page 147,
e optionally a place
e and sometimes a modifier.
The three main events are
e Birth,
e Marriage,
e Death.

The other events may or may not be considered for data formatting.

The saved data for the events is accessible by \gtrPrintEvent 10
\gtrPrintDate " 101 and \gtrPrintPlace '9%, The existence of data can be

checked by \gtrifdatedefined "™ '0! and \gtrifplacedefined " 104,

144

/gtr/database/birth={(date)}{(place)} (no default)
This key holds a birth event with given (date) and (place).

X
birth = {1744-02-02}{London},
A
/gtr/database/birth+={(date) H (place) }H (modifier)} (no default)

This key holds a birth event with given (date), (place), and a (modifier) to describe the
event further. Feasible values for the (modifier) are

e emply (normal),

e out of wedlock,

e stillborn,

e died.
4. ..
birth+ = {1740-01-04}{London}{out of wedlock},
4. ..
/gtr/database/birth-=(date) (no default)

This key holds a birth event with given (date).

X
birth- = {1744-02-02},
Z...
/gtr/database/baptism={(date)}{(place)} (no default)

This key holds a baptism event with given (date) and (place).

/gtr/database/baptism+={(date)} (place)}H{ (modifier)} (no default)
Identical to /gtr/database/baptism since there is no valid (modifier).

/gtr/database/baptism-=(date) (no default)
This key holds a baptism event with given (date).

/gtr/database/engagement={(date)}{(place)} (no default)
This key holds an engagement event with given (date) and (place).

/gtr/database/engagement+={(date)}{(place) }H(modifier)} (no default)
Identical to /gtr/database/engagement since there is no valid (modifier).

/gtr/database/engagement-=(date) (no default)
This key holds an engagement event with given (date).

/gtr/database/marriage={(date)}{(place)} (no default)
This key holds a marriage event with given (date) and (place).

/gtr/database/marriage+={(date)}{(place)}{{modifier)} (no default)
This key holds a marriage event with given (date), (place), and a (modifier) to describe the
event further. Feasible values for the (modifier) are

e emply (normal),
e other.

/gtr/database/marriage-=(date) (no default)
This key holds a marriage event with given (date).

/gtr/database/divorce={(date)}{(place)} (no default)
This key holds a divorce event with given (date) and (place).

145

/gtr/database/divorce+={(date)}{(place) }H (modifier)} (no default)
Identical to /gtr/database/divorce " !*° since there is no valid (modifier).

/gtr/database/divorce-=(date) (no default)
This key holds a divorce event with given (date).

/gtr/database/death={(date)}{(place)} (no default)
This key holds a death event with given (date) and (place).

/gtr/database/death+={(date)}{(place)}{{modifier)} (no default)
This key holds a death event with given (date), (place), and a (modifier) to describe the
event further. Feasible values for the (modifier) are

e empty (normal),
e killed.

/gtr/database/death-=(date) (no default)
This key holds a death event with given (date).

/gtr/database/burial={(date)}{(place)} (no default)
This key holds a burial event with given (date) and (place).

/gtr/database/burial+={(date)}{(place)}{(modifier)} (no default)
This key holds a burial event with given (date), (place), and a (modifier) to describe the
event further. Feasible values for the (modifier) are

e empty (normal),
e cremated.

/gtr/database/burial-=(date) (no default)
This key holds a burial event with given (date).

/gtr/database unknown key={option) (no default, initially warn)
The node data may contain more key-value pairs than needed for the current processing.
This option controls how the package should react when detecting unknown keys. Feasible
(option) values are

e ignore: ignore unknown keys,

e warn: warn about unknown keys,

e error: stop processing at unknown keys,

e save: store the value of an unknown key. If a key dummy is detected, its value is stored
under /gtr/database/save/dummy.

146

7.4

Input Format for Dates

A date can be given as a single date or as a date range. A single date is specified in the format

(¢)yyyy-mm-dd

with calendar c, year yyyy, month mm, and day dd. The calendar c flag is optional and can be

AD: Anno Domini; this is the default setting, if the calender flag is omitted. Use this (or
nothing) for every normal’ date.

BC: Before Christ; obviously used for dates before Christ.

GR: Gregorian calendar; use this in situations, where the difference betweeen Gregorian
and Julian calendar should be emphasized.

JU: Julian calendar; use this in situations, where the difference betweeen Gregorian and
Julian calendar should be emphasized.

e calD: circa, but AD; use this for insecure date settings.

e caBC: circa, but BC; use this for insecure date settings.

e ca: circa; do not use this directly. The language settings for this will be used automatically,

if caAD is given and /gtr/calendar print 7 1%?=all but AD is set.

e other: other flags may be used without error. The flag is just noted.

The date format can be shortened to (c)yyyy-mm and (c)yyyy. Since the calendar flag is

optional, yyyy-mm-dd, yyyy-mm, and yyyy are also possible.

A date range is specified in the format

(c)yyyy-mm-dd/ (c) yyyy-mm-dd

Every partial date may be shortened as described above.
Also, /(c)yyyy-mm-dd and (c)yyyy-mm-dd/ are valid to denote open ranges.

Date Examples

Formatted Dates

Specification d.M.yyyy month d yyyy dd/mon/yyyy
1875-12-07 7.XI1.1875 December 7, 1875 07/Dec/1875
(JU) 1642-12-25 25.X11.1642/4k December 25, 164271 25/Dec /1642111
(GR) 1599-08 VIII.15998r¢: August, 15998r°s: Aug/15998res:
1475 1475 1475 1475
(BC)27-01-16 16.1.27 BC January 16, 27 BC 16/Jan/27 BC
/1690-03 before I11.1690 before March, 1690 before Mar/1690
1775-07-15/ after 15.VIL.1775 after July 15, 1775 after 15/Jul/1775

1888-05/1889-06-07
(caAD)1955-02

V.1888-7.VI.1889
ca. 11.1955

May, 1888—-June 7, 1889
ca. February, 1955

147

May /188807 /Jun/1889
ca. Feb/1955

\gtrParseDate{(name)}{(date)}
Dates are parsed as part of events automatically, see Section 7.3 on page 143.
But with \gtrParseDate, a (date) can be parsed directly. The parsed data
is stored wusing the given (name) as \gtrDB(name)cal, \gtrDB(name)day,
\gtrDB(name)month, \gtrDB(name)year, \gtrDB(name)endcal, \gtrDB(name)endday,
\gtrDB(name)endmonth, \gtrDB(name)endyear.

\gtrParseDate{xy}{1875-12-07}
The parsed date is

|\gtrDBxycall| (\gtrDBxycal),
I\gtrDBxyday| (\gtrDBxyday),
|\gtrDBxymonth| (\gtrDBxymonth),
|\gtrDBxyyear| (\gtrDBxyyear).

Formatted date: \gtrset{date format=d/M/yyyy}\gtrPrintDate{xy}
The parsed date is \gtrDBxycal (AD), \gtrDBxyday (07), \gtrDBxymonth (12),

\gtrDBxyyear (1875).
Formatted date: 7/XII/1875

148

7.5 Formatting the Node Data

While the macros and options of the next sections describe how to format a single piece of data,
the /gtr/database format integrates a collection of these pieces to format the total content of

a node.

/gtr/database format=(format) (style, no default, initially medium)
Selects a predefined (format) for selecting and arranging data values. The standard (format)
designs use gtrprintlist "7 !67 to list events. New (format) designs can be added by

\gtrDeclareDatabaseFormat

"5 The following sections describe how to customize

certain parts of the standard (format) designs, e.g. /gtr/date format ™ !6! for changing
the date style.
Feasible (standard) (format) values are

full: name, birth, baptism, engagement, marriage, divorce, death, burial, and com-
ment.

full marriage above: identical to full, but engagement, marriage, divorce is put
above and separated by a \tcbline.

full marriage below: identical to full, but engagement, marriage, divorce is put
below and separated by a \tcbline.

e full no marriage: identical to full, but without engagement, marriage, and divorce.
e medium: name, birth (or baptism), marriage (or engagement or divorce), death (or

burial), and comment.

medium marriage above: identical to medium, but marriage (or engagement or di-
vorce) is put above and separated by a \tcbline.

medium marriage below: identical to medium, but marriage (or engagement or di-
vorce) is put below and separated by a \tcbline.

medium no marriage: identical to medium, but without engagement, marriage, and
divorce.

short: name, birth (or baptism), marriage (or engagement or divorce), and death (or
burial).

short marriage above: identical to short, but marriage (or engagement or divorce)
is put above and separated by a \tcbline.

short marriage below: identical to short, but marriage (or engagement or divorce)
is put below and separated by a \tcbline.

short no marriage: identical to short, but without engagement, marriage, and di-
vorce.

name: name only.

symbol: symbol only.

empty: nothing.

marriage: only marriage (or engagement or divorce). This format is intended to be
used not for nodes, but for edge labels, see /gtr/label database options ! !87,

149

database format=full

\begin{genealogypicture}[
processing=database,database format=full,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newlinel}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,
halign=flush left,before upper=\parskiplpt,\gtrDBsex }]
input{example.database.graph}
\end{genealogypicture}

Charles SMITH f Jane BOWDEN
%* ca. 1722 %* ca. 1724
London @ 2.111.1742
= 13.1V.1722 London
London T 7.VIL.1802
¥ 12.X.1764 New York
Copper smith,
soldier
| |
4 I 4 I N I
Abraham Elizabeth “Liz” Michael SMITH
BOwDEN SMITH *t 1.111.1758
(%) 4.1.1740 * 2.11.1744
London London
T 23.11.1740 T 12.1V.1812
London Boston
Had a store in
Boston

database format=full marriage above

\begin{genealogypicture}[
processing=database,database format=full marriage above,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newline}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,

halign=flush left,before upper=\parskiplpt,\gtrDBsex }]

input{example.database.graph}

\end{genealogypicture}

Charles SMITH @ 2.111.1742
% ca. 1722 London
London J B
% 13.1V.1722 ane BOWDEN
Loden %* ca. 1724
. New York
Copper smith,
soldier
| |
4 I e I N I
Abraham Elizabeth “Liz” Michael SMITH
BoOwDEN SMITH *t 1.111.1758
(%) 4.1.1740 * 2.11.1744
London London
T 23.11.1740 T 12.1V.1812
London Boston
Had a store in
Boston

150

database format=full marriage below

\begin{genealogypicture}[

processing=database,database format=full marriage below,

node size=3cm,level size=3.2cm,

list separators hang,place text={\newline}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,
halign=flush left,before upper=\parskiplpt,\gtrDBsex }]

input{example.database.graph}
\end{genealogypicture}

Charles SMITH [Jane BowpEN

* ca. 1722 %* ca. 1724
London T 7.VI1.1802

2 13.1V.1722 New York
London

X 12.X.1764 @LQ(;IIEQHMQ

Copper smith,

soldier

Abraham Elizabeth “Liz” Michael SMITH
BOWDEN SMITH %t 1.I11.1758
(%) 4.1.1740 % 2.11.1744
London London
T 23.11.1740 T 12.1V.1812
London Boston
Had a store in
Boston

database format=full no marriage

\begin{genealogypicture}[

processing=database,database format=full no marriage,

node size=3cm,level size=3.2cm,

list separators hang,place text={\newlinel}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,
halign=flush left,before upper=\parskiplpt,\gtrDBsex }]

input{example.database.graph}
\end{genealogypicture}

f Charles SMITH

p
Jane BOWDEN

%* ca. 1722 %* ca. 1724
London + 7.VIL.1802
= 13.1V.1722 New York
London
% 12.X.1764
Copper smith,
soldier
|
(I (I (I
Abraham Elizabeth “Liz” Michael SMITH
BOWDEN SMITH *t 1.111.1758
(%) 4.1.1740 * 2.11.1744
London London
t 23.11.1740 T 12.1V.1812
London Boston
Had a store in
Boston

151

database format=medium

\begin{genealogypicture}[
processing=database,database format=medium,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newlinel}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,
halign=flush left,before upper=\parskiplpt,\gtrDBsex }]
input{example.database.graph}
\end{genealogypicture}

Charles SMITH f Jane BOWDEN
%* ca. 1722 %* ca. 1724
London @® 2.111.1742
% 12.X.1764 London
Copper smith, 1 7.VIL.1802
soldier New York
| |
4 I 4 I N .
Abraham Elizabeth “Liz” Michael SMITH
BOwDEN SMITH *t 1.111.1758
(%) 4.1.1740 * 2.11.1744
London London
T 23.11.1740 T 12.1V.1812
London Boston
Had a store in
Boston

database format=medium marriage above

\begin{genealogypicture}[
processing=database,database format=medium marriage above,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newline}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,

halign=flush left,before upper=\parskiplpt,\gtrDBsex }]

input{example.database.graph}

\end{genealogypicture}

[Charles Smitn || @ 2.111.1742

* ca. 1722 London

London

X 12.X.1764 R DI

Copper smith 0 G, i

soldier ’ 1 7.VII.1802

New York
I N | !

4 I e I N I
Abraham Elizabeth “Liz” Michael SMITH
BOwDEN SMITH *t 1.I11.1758
(%) 4.1.1740 % 2.11.1744

London London
T 23.11.1740 T 12.1V.1812
London Boston
Had a store in
Boston

152

database format=medium marriage below

\begin{genealogypicture}[
processing=database,database format=medium marriage below,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newline}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,

halign=flush left,before upper=\parskiplpt,\gtrDBsex }]

input{example.database.graph}

\end{genealogypicture}

Charles SMITH Jane BOWDEN
* ca. 1722 %* ca. 1724
London T 7.VIL.1802
% 12.X.1764 New York
Clgraziy it @ 2.111.1742
soldier
London
| |
p] j |]
Abraham Elizabeth “Liz” Michael SMITH
BOWDEN SMITH *t 1.II1.1758
(*) 4.1.1740 %* 2.11.1744
London London
t 23.11.1740 T 12.1V.1812
London Boston
Had a store in
Boston

database format=medium no marriage

\begin{genealogypicture}[
processing=database,database format=medium no marriage,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newlinel}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,

halign=flush left,before upper=\parskiplpt,\gtrDBsex }]

input{example.database.graph}

\end{genealogypicture}

Charles SMITH f Jane BOWDEN
%* ca. 1722 %* ca. 1724
London T 7.VI1.1802
% 12.X.1764 New York
Copper smith,
soldier
| |
e I 4 I N I
Abraham Elizabeth “Liz” Michael SMITH
BOWDEN SMITH *t 1.111.1758
(%) 4.1.1740 * 2.11.1744
London London
T 23.11.1740 T 12.1V.1812
London Boston
Had a store in
Boston

153

database format=short

\begin{genealogypicture}[
processing=database,database format=short,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newlinel}{},

box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,
halign=flush left,before upper=\parskiplpt,\gtrDBsex }]
.graph}

input{example.database
\end{genealogypicture}

f Charles SMITH

p
Jane BOWDEN

%* ca. 1722 %* ca. 1724
London @ 2.111.1742
% 12.X.1764 London
1 7.VI1.1802
New York

~

rAbmham Elizabeth “Liz” Michael SMITH
BOwDEN SMITH *t 1.II1.1758
(%) 4.1.1740 * 2.11.1744
London London
T 23.11.1740 T 12.1V.1812
London Boston

database format=short marriage above

\begin{genealogypicture}[
processing=database,database format=short marriage above,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newline}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,

halign=flush left,before upper=\parskiplpt,\gtrDBsex }]

input{example.database.graph}

\end{genealogypicture}

[Charles Smitn | [@ 21111742
* ca. 1722 London
% Ilzgr;golr;(i 4 Jane BOWDEN
o % ca. 1724
1 7.VIL.1802
New York

N

rAbmham Elizabeth “Liz” Michael SMITH
BowDEN SMITH *t 1.111.1758
(%) 4.1.1740 * 2.11.1744
London London
T 23.11.1740 T 12.1V.1812
London Boston

154

database format=short marriage below

\begin{genealogypicture}[
processing=database,database format=short marriage below,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newline}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,

halign=flush left,before upper=\parskiplpt,\gtrDBsex }]

input{example.database.graph}

\end{genealogypicture}

Charles SMITH f Jane BOWDEN

* ca. 1722 %* ca. 1724
London T 7.VI1.1802
% 12.X.1764 New York
@ 2.111.1742

London

Abraham Elizabeth “Liz” Michael SMITH
BOWDEN SMITH %t 1.I11.1758
(%) 4.1.1740 % 2.11.1744

London London
T 23.11.1740 T 12.1V.1812

London Boston

database format=short no marriage

\begin{genealogypicture}[
processing=database,database format=short no marriage,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newlinel}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,

halign=flush left,before upper=\parskiplpt,\gtrDBsex }]

input{example.database.graph}

\end{genealogypicture}

a é
Charles SMITH Jane BOWDEN

%* ca. 1722 %* ca. 1724
London T 7.VIL.1802
% 12.X.1764 New York

rAbmham Elizabeth “Liz” Michael SMITH
BOWDEN SMITH *t 1.I11.1758
(%) 4.1.1740 * 2.11.1744
London London
T 23.11.1740 T 12.1V.1812
London Boston

155

database format=name

\begin{genealogypicture}[
processing=database,database format=name,
node size=3cm,level size=1lcm,
box={fit basedim=9pt,boxsep=2pt,
halign=flush center,valign=center,\gtrDBsex }]
input{example.database.graph}
\end{genealogypicture}

[Charles SMITH [Jane BOWDEN]

Abraham FElizabeth “Liz”
BOwWDEN SMITH

Michael SMITH

database format=symbol

\begin{genealogypicture}[
processing=database,database format=symbol,
node size=1cm,level size=1cm,
box={fit basedim=16pt,boxsep=2pt,
halign=flush center,valign=center,\gtrDBsex }]
input{example.database.graph}
\end{genealogypicture}

o}

SIENE

database format=empty

\begin{genealogypicture}[
processing=database,database format=empty,
node size=1cm,level size=1cm,
box={fit basedim=16pt,boxsep=2pt,
halign=flush center,valign=center,\gtrDBsex }]
input{example.database.graph}
\end{genealogypicture}

LI

156

\gtrDeclareDatabaseFormat{({format)}{(option code)}{(content code)}
Declares a new (format) to be used as value for /gtr/database format " '*9. The (option
code) is used after the data is read and before the box is set. The (content code) is used to
fill the box content. It is recommended to start a new (format) name with the letter 'x’ to
avoid collisions with future standard values.

\gtrDeclareDatabaseFormat{xkekule}{/
\ifdefvoid{\gtrDBkekule}{}{\gtrset{box={title=\gtrDBkekulel}}}/
H7Z
\gtrPrintName/
\begin{gtreventlist}/
\gtrifdatedefined{birth}{\gtrlistseparator\gtrPrintEvent{birth}}{
\gtrifdatedefined{baptism}{\gtrlistseparator\gtrPrintEvent{baptism}}{}/
Y
\gtrifdatedefined{death}{\gtrlistseparator\gtrPrintEvent{death}}{
\gtrifdatedefined{burial}{\gtrlistseparator\gtrPrintEvent{burial}}{}/
Y
\end{gtreventlist}/
\gtrifcommentdefined{\gtrPrintComment}{}/
\gtrifdatedefined{marriage}{\tcbline\begin{gtreventlist}/
\gtrlistseparator\gtrPrintEvent{marriage}\end{gtreventlist}}{}/
Y
%
\begin{genealogypicture}[
processing=database,database format=xkekule,
node size=3cm,level size=3.2cm,
list separators hang,place text={\newline}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,
center title,fonttitle=\bfseries\normalsize,
halign=flush left,before upper=\parskiplpt,\gtrDBsex }]

child{

glid=SmitChar1722]{
male,
kekule = 2,
name = {\pref{Charles} \surn{Smith}},
birth = {1722}{London},
baptism = {1722-04-13}{London},
death+ = {1764-10-12}{}{killed},
comment = {Copper smith, soldier},

}

plid=BowdJane1724]{
female,
kekule =3,
name = {\pref{Jane} \surn{Bowden}},
birth- = {1724},

marriage = {1742-03-02}{London},

death = {1802-07-07}{New York},
}
c[id=BowdAbra1740]{
male,
name = {\pref{Abraham} \surn{Bowden}},
birth+ = {1740-01-04}{London}{out of wedlock},
death = {1740-02-23}{London}
}
c[id=SmitEliz1744]{
female,
kekule = 1,
name = {\pref{Elizabeth} \nick{Liz} \surn{Smith}},
birth = {1744-02-02}{London},
death = {1812-04-12}{Boston},

comment = {Had a store in Bostonl},

}
c[id=SmitMich1758]{

157

male,
name
birth+
}
}
\end{genealogypicture}

{\pref{Michael} \surn{Smith}},
{1758-03-01}{}{died},

Charles SMITH

* 1722
London

% 12.X.1764

Copper smith,
soldier

Jane BOWDEN
* 1724

1 7.VII.1802
New York

@ 2.111.1742
London

|
T Pr——

f Michael SMITH

BowDEN Elizabeth “Liz” %t 1.I11.1758
(%) 4.1.1740 SMITH
London % 2.11.1744
+ 23.11.1740 London
Loncem t 12.IV.1812
Boston
Had a store in
Boston

158

7.6 Formatting Names

\gtrPrintName
Used to insert the formatted name. The output format of the name is controlled by
/gtr/name and other following options.

\gtrset{database/.cd,name={\pref{Elizabeth} \nick{Liz} \surn{Smith}}}
Ao
\gtrPrintName

Elizabeth “Liz” SMITH

\pref{{given name)}
Marks a preferred (given name). May be redefined directly or using /gtr/pref code.

\surn{(surname)’}
Marks a (surname). May be redefined directly or using /gtr/surn code.

\nick{(nickname)}
Marks a (nickname). May be redefined directly or using /gtr/nick code.

/gtr/pref code={(code)} (no default)
Redefines \pref using (code).

\gtrset{database/.cd,name={\pref{Elizabeth} \nick{Liz} \surn{Smith}}}
\gtrset{pref code={\textcolor{blue}{\bfseries #1}}}

Booc

\gtrPrintName

Elizabeth “Liz” SMITH

/gtr/surn code={{code)} (no default)
Redefines \surn using (code).

\gtrset{database/.cd,name={\pref{Elizabeth} \nick{Liz} \surn{Smith}}}
\gtrset{surn code={\textcolor{blue}{\bfseries #1}}}

Booc

\gtrPrintName

Elizabeth “Liz” Smith

/gtr/nick code={(code)} (no default)
Redefines \nick using (code).

\gtrset{database/.cd,name={\pref{Elizabeth} \nick{Liz} \surn{Smith}}}
\gtrset{nick code={\textcolor{blue}{\bfseries #1}}}

Booc

\gtrPrintName

Elizabeth Liz SMITH

/gtr/name=full | short (no default, initially full)
Controls, if \gtrPrintName should preferably use the full version (/gtr/database/name "I 143)
or the short version (/gtr/database/shortname 7 43) of a name. If the preferred version
is not available, the other version is used.

159

/gtr/name font={(code)} (no default)
Sets the font (and/or color) for \gtrPrintName " 199,

\gtrset{database/.cd,name={\pref{Elizabeth} \nick{Liz} \surn{Smith}}}
\gtrset{name font=\fontfamily{ptm}\selectfont\color{green!50!black}}
Booc

\gtrPrintName

Elizabeth “Liz” SMITH

/gtr/empty name text={(text)} (no default, initially ?7)
Sets the text to be print by \gtrPrintName " '%° if /gtr/database/name ' '** and
/gtr/database/shortname " 43 were not set.

\gtrPrintName

\gtrset{empty name text={N.N.}}
\gtrPrintName

77
N.N.

/gtr/name code={(code)} (no default)
Defines (code) to be executed by \gtrPrintName * %9, Use this, if /gtr/name "% and
/gtr/name font are not flexible enough.

\gtrset{database/.cd,name={\pref{Elizabeth} \nick{Liz} \surn{Smithl}},female}
\gtrset{name code={\gtrPrintSex~\gtrDBname}}

Ao

\gtrPrintName

Q@ Elizabeth “Liz” SMITH

160

7.7 Formatting Dates

\gtrPrintDate{(name)}

Used to insert a formatted date referred by (name). This (name) is an event name like
birth, see Section 7.3 on page 143, or any other name used by \gtrParseDate " !*8, The
output format of the date is controlled by /gtr/date format and other following options.

\gtrset{database/.cd,birth={1354-02-09}{Rome}}

Ao
The birth was \gtrPrintDate{birth}.
The death was \gtrPrintDate{death}.

The birth was 9.11.1354. The death was ?77.

\gtrifdatedefined{(name)}{(true)}{(false)}
Expands to (true), if a date with the given (name) is defined, and to (false) otherwise.

\gtrset{database/.cd,birth={1354-02-09}{Rome}}

Booc
\gtrifdatedefined{birth}{The birth was \gtrPrintDate{birth}.}{}
\gtrifdatedefined{death}{The death was \gtrPrintDate{deathl}.}{}

The birth was 9.11.1354.

/gtr/date format={(format)}

(no default, initially d.M.yyyy)

This option controls how day, month, and year of a date are formatted when using

\gtrPrintDate. This setting is not /gtr/language

are.

Feasible (format) values are

\gtrset{database/.cd,birth={1354-02-09}{Rome}}

dd.mm.yyyy
d.m.yyyy
d.M.yyyy
dd/mm/yyyy
d/m/yyyy
d/M/yyyy
mm/dd/yyyy
m/d/yyyy
yyyy-mm-dd
yyyy

d.month yyyy
d month yyyy
month d yyyy

d.mon.yyyy

d mon yyyy
d/mon/yyyy
dd-mon-yyyy

dd/mon/yyyy

09.02.1354
9.2.1354
9.11.1354
09/02/1354
9/2/1354
9/11/1354
02/09/1354
2/9/1354
1354-02-09

1354

9. February 1354
9 February 1354
February 9, 1354
9. Feb. 1354

9 Feb 1354
9/Feb /1354
09-Feb-1354
09/Feb /1354

\gtrset{date format=month d yyyy}
Booc
The birth was \gtrPrintDate{birth}.

The birth was February 9, 1354.

161

'P-207 dependent, but month names

/gtr/date code={{code)} (no default)
Defines (code) to be executed by \gtrPrintDate ©"!6!. Use this, if /gtr/date
format ~ 1101 is not flexible enough.

\gtrset{database/.cd,birth={1354-02-09}{Rome}}
\gtrset{date code={/

\ifcsdef{#1imonth}{/
\ifcsdef{#1day}{\csuse{#1day}}{}/
(\csuse{#1month}) /

H¥Z

\csuse{#lyearl}/

1
X
The birth was \gtrPrintDate{birth}.

The birth was 09(02)1354.

/gtr/calendar text for=(calendar) is {(prefix)}{(postfiz)} (no default)
Defines a (prefir) and a (postfir) text for a (calendar). This setting is /gtr/language "' 2"7
dependent for known calendars. This option also allows to set up new (calendar) entries.

\gtrset{database/.cd,birth={(AUC)2107-02-09}{Rome}}
\gtrset{calendar text for=AUC is {}{ a.u.c.}}

B

The birth was \gtrPrintDate{birth}.

The birth was 9.I1.2107 a.u.c..

/gtr/calendar print={({option)} (no default, initially all but AD)
Defines, if the calendar setting is used for formatting. Feasible (option) values are
e all: all calendar settings, including AD.
e none: no calendar settings.
e all but AD: all calendar settings, but excluding AD.

\gtrset{database/.cd,birth={(BC)63-09-23}{Rome},death={(AD) 14-08-19}{Nola}}
Ao

Augustus was born \gtrPrintDate{birth} and died \gtrPrintDate{death}.
\par\gtrset{calendar print=none}

Augustus was born \gtrPrintDate{birth} and died \gtrPrintDate{death}.
\par\gtrset{calendar print=all}

Augustus was born \gtrPrintDate{birth} and died \gtrPrintDate{death}.

Augustus was born 23.1X.63 BC and died 19.VIII.14.
Augustus was born 23.IX.63 and died 19.VIIIL.14.
Augustus was born 23.1X.63 BC and died AD 19.VIII.14.

/gtr/date range full={(pre)}{(mid)}{{app)} (no default, initially {}{-}{})
If the date is a date range with a start date and an end date, the (pre), (mid), and (app)
texts are placed appropriately. This setting is /gtr/language ~ 2’7 dependent.

\gtrset{database/.cd,birth={1354-02-09/1355-07-20}{Rome}}
\gtrset{date range full={between }{ and }{}}

Booe

The birth was \gtrPrintDate{birth}.

The birth was between 9.11.1354 and 20.VII.1355.

162

/gtr/date range before={(pre)}{(app)} (no default, initially {before }{})
If the date is a date range an end date, but without start date, the (pre) and (app) texts
are placed around the end date. This setting is /gtr/language 2’7 dependent.

\gtrset{database/.cd,birth={/1355-07-20}{Rome}}
\gtrset{date range before={\textless\,}{}{}}
B

The birth was \gtrPrintDate{birth}.

The birth was < 20.VIIL.1355.

/gtr/date range after={(pre)}{(app)} (no default, initially {after }{})
If the date is a date range a start date, but without end date, the (pre) and (app) texts are
placed around the start date. This setting is /gtr/language * 7?7 dependent.

\gtrset{database/.cd,birth={1354-02-09/}{Romel}}
\gtrset{date range after={\textgreater\,}{}}
Booc

The birth was \gtrPrintDate{birth}.

The birth was > 9.11.1354.

/gtr/date range separator={(text)} (style, no default, initially unset)
Sets the same separator text for /gtr/date range full 192 /gtr/date range before,
/gtr/date range after.

\gtrset{database/.cd,birth={1354-02-09/}{Rome}}
\gtrset{date range separator={--}}

Booe

The birth was \gtrPrintDate{birth}.

The birth was 9.11.1354—.

163

7.8 Formatting Places

\gtrPrintPlace{{name)}
Used to insert a formatted place referred by (name). This (name) is an event name like birth,
see Section 7.3 on page 143. The output format of the place is controlled by /gtr/place
text.

\gtrset{database/.cd,birth={1354-02-09}{Rome}}
Ao
The birth was \gtrPrintDate{birth} \gtrPrintPlace{birth}.

The birth was 9.I1.1354 in Rome.

\gtrifplacedefined{(name)}{(true)}{(false)}
Expands to (true), if a place with the given (name) is defined, and to (false) otherwise.

\gtrset{database/.cd,birth={1354-02-09}{Rome}}

Ao

The birth was \gtrPrintDate{birth}/
\gtrifplacedefined{birth}{ \gtrPrintPlace{birth}}{}.

The birth was 9.11.1354 in Rome.

/gtr/place text={(pre)}{(app)} (no default, initially {in }{})
The (pre) and (app) texts are placed around the place text. This setting is
/gtr/language "1 29T dependent.

\gtrset{database/.cd,birth={1354-02-09}{Rome}}

\gtrset{place text={(}{)}}

Bo o c

The birth was \gtrPrintDate{birth}/
\gtrifplacedefined{birth}{ \gtrPrintPlace{birth}}{}.

The birth was 9.11.1354 (Rome).

164

7.9 Formatting Events

\gtrPrintEvent{(name)}
Used to insert a formatted event referred by (name). This (name) is an event name like birth,
see Section 7.3 on page 143. The output format of the event is controlled by /gtr/event
text P 166 \gtrPrintEventPrefix, \gtrPrintDate ' 61 and \gtrPrintPlace ' 164,

\gtrset{database/.cd,birth={1354-02-09}{Rome}}
Ao ..
\gtrPrintEvent{birth}

%* 9.I1.1354 in Rome

\gtrifeventdefined{(name)}{(true)}{(false)}
Expands to (true), if an event with the given (name) is defined, and to (false) otherwise.
This is an alias for \gtrifdatedefined ~ 10!,

\gtrset{database/.cd,birth={1354-02-09}{Rome}}
Ao
\gtrifeventdefined{birth}{\gtrPrintEvent{birth}}{}

% 9.I1.1354 in Rome

\gtrPrintEventPrefix{(name)}
Used to insert an event prefix like a symbol. The prefix depends upon the (name) of the
event and upon an optional modifier. The output format of the prefix is controlled by the
following options with the /gtr/event prefix path.

Birth: \gtrPrintEventPrefix{birth}
\par\gtrset{/gtr/event prefix/birth=(b)}
Birth: \gtrPrintEventPrefix{birth}

Birth: *
Birth: (b)
/gtr/event prefix/birth=(text) (no default, initially \gtrsymBorn ~F-201)
Prefix (text) for a normal birth.
/gtr/event prefix/birth/out of wedlock=(fext) (no default,
initially \gtrsymBornoutofwedlock ~F-201)
Prefix (text) for a birth out of wedlock.
/gtr/event prefix/birth/stillborn=(text) (no default, initially \gtrsymStillborn F 201)
Prefix (text) for a birth of a stillborn child.
/gtr/event prefix/birth/died=(text) (no default, initially \gtrsymDiedonbirthday ~F 201)
Prefix (text) for a birth if a child who died on birthday.
/gtr/event prefix/baptism=(tert) (no default, initially \gtrsymBaptized ~F-201)
Prefix (text) for a baptism.
/gtr/event prefix/engagement=(tert) (no default, initially \gtrsymEngaged *202)
Prefix (text) for a engagement.
/gtr/event prefix/marriage=(text) (no default, initially \gtrsymMarried ~F202)

Prefix (text) for a normal marriage.

165

/gtr/event prefix/marriage/other=(tert)(no default, initially \gtrsymPartnership ~F202)

Prefix (text) for another partnership.

/gtr/event prefix/divorce=(tert) (no default, initially \gtrsymDivorced ~F202)
Prefix (text) for a divorce.

/gtr/event prefix/death=(text) (no default, initially \gtrsymDied - 202)
Prefix (text) for a normal death.

/gtr/event prefix/death/killed=(text) (no default, initially \gtrsymKilled *202)
Prefix (text) for a death in war.

/gtr/event prefix/burial=(text) (no default, initially \gtrsymBuried - 203)
Prefix (text) for a normal burial.

/gtr/event prefix/burial/cremated=(text)(no default, initially \gtrsymFuneralurn " 203)
Prefix (text) for a cremation.

/gtr/event format={(format)} (no default, initially d.M.yyyy)

This option controls events are formatted when using \gtrPrintEvent ~ 165,

Feasible (format) values are
e prefix date place % 9.I1.1354 in Rome
e prefix date % 9.11.1354
e date 9.11.1354

/gtr/event text={(pre)}{(sep date)}{(sep place){(app)} (no default, initially {}{~}{ 3})

The four text pieces are placed inside \gtrPrintEvent 1% as follows:

(preyprefix(sep date)date(sep place)place({app)

This setting is not /gtr/language " 27 dependent.
\gtrset{database/.cd,birth={1354-02-09}{Rome}}
\gtrset{event text={[}{: }{ }{I1}}
A ..
\gtrPrintEvent{birth}
[%*: 9.I1.1354 in Rome]

/gtr/event code={(code)} (no default)

Defines (code) to be executed by \gtrPrintEvent ' '6°. Use this, if /gtr/event format
and /gtr/event text are not flexible enough.

\gtrset{database/.cd,birth={1354-02-09}{Rome}}
\gtrset{event code={/
\gtrPrintEventPrefix{#1}
\gtrifplacedefined{#1}{(\gtrPrintPlace{#1}) }{}/
\gtrPrintDate{#1}/
1}
Ao
\gtrPrintEvent{birth}

* (in Rome) 9.11.1354

166

7.10 Formatting Lists of Events

\begin{gtrprintlist}{(first)}{(middle)}{(last)}{(empty)}
(environment content)
\end{gtrprintlist}
This environment is intended for automatically generated content. Inside this environment,
a macro \gtrlistseparator is defined.
e \gtrlistseparator expands to (first), when it is called the first time.
e \gtrlistseparator expands to (middle), when it is called later.
o (last) is used at the end of the environment, if \gtrlistseparator was called at least
once.
(empty) is used at the end of the environment, if \gtrlistseparator was never called.

\begin{gtrprintlist}{\unskipl}/
{\unskip,\ }\unskip.}{\unskip}
\gtrlistseparator One
\gtrlistseparator Two One, TWO, Three, Four.
\gtrlistseparator Three
\gtrlistseparator Four
\end{gtrprintlist}

\begin{gtrprintlist}/
{\begin{itemize}\item}{\item}/
{\end{itemize}}{\unskip}

\gtrlistseparator One
\gtrlistseparator Two
\gtrlistseparator Three
\gtrlistseparator Four

\end{gtrprintlist}

One
Two
Three
Four

\begin{gtreventlist}
(environment content)
\end{gtreventlist}

This is a gtrprintlist environment with parameters specified by /gtr/list
separators 1 168, This environment is used internally by most /gtr/database

format "1 1% settings to print event lists.

\gtrset{list separators=
{\unskip}{\unskip,\ }/
{\unskip.}{\unskip}}

\begin{gtreventlistl}/
\gtrlistseparator One
\gtrlistseparator Two
\gtrlistseparator Three
\gtrlistseparator Four

\end{gtreventlist}

One, Two, Three, Four.

167

/gtr/list separators={(first)}{(middle)}{ (last)}{{empty)} (no default,
initially {\par}{\par}{\par}{\par})

Defines gtreventlist * 67 as a gtrprintlist "7 97 with the given parameters. This is
used to list events.

\begin{genealogypicture}[
processing=database,database format=full,
node size=4cm,level size=2cm,
name code={\gtrDBname.},
list separators={ }{, }.}{},
comment code={\ \textit{\gtrDBcomment.}},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,
halign=left,before upper=\parskiplpt,\gtrDBsex }]
input{example.database.graph}
\end{genealogypicture}

Charles SMITH. Jane BOWDEN.

% ca. 1722 in London, * ca. 1724, @ 2.111.1742
2 13.IV.1722 in Lon- in London, t 7.VIL.1802
don, ¥ 12.X.1764. Cop- in New York.

per smith, soldier.

Abraham BOWDEN Elizabeth “le” SMITH. Michael SMITH
(%) 4.1.1740 in London, % 2.11.1744 in London, %1 1.I11.1758.
T 23.11.1740 in London T 12.1V.1812 in Boston
Had a store in Boston.
/gtr/list separators hang=(length) (style, default \tcbfitdim)

Defines gtreventlist 1197 as a gtrprintlist "I '57 where the items hang with (length)
after the first line.

\begin{genealogypicturel}[
processing=database,database format=full,
node size=3cm,level size=3.2cm,
list separators hang=2mm,place text={\newlinel}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,

halign=left,before upper=\parskiplpt,\gtrDBsex }]

input{example.database.graph}

\end{genealogypicture}

Charles SMITH [Jane BowpEN
* ca. 1722 * ca. 1724

London @ 2.111.1742
= 13.1V.1722 London

London T 7.VIL.1802
% 12.X.1764 New York
Copper smith, sol-
dier

| |]
Abraham Bow- Elizabeth “Liz” Michael SMITH
DEN SMITH *t 1.111.1758
(%) 4.1.1740 % 2.11.1744
London London
T 23.11.1740 T 12.1V.1812
London Boston
Had a store in
Boston

168

7.11 Formatting Comments

\gtrPrintComment

Used to insert the formatted comment. May be redefined directly or using /gtr/comment
code.

\gtrset{database/.cd,comment={Copper smith, soldier}}
A
\gtrPrintComment

Copper smith, soldier

\gtrifcommentdefined{(true)}{(false)}
Expands to (true), if a comment is defined, and to (false) otherwise.

\gtrset{database/.cd, comment={Copper smith, soldier}}
Ao
\gtrifcommentdefined{\gtrPrintComment}{}

Copper smith, soldier

/gtr/comment code={(code)} (no default, initially {\itshape\gtrDBcomment})
Redefines \gtrPrintComment using (code).

\gtrset{database/.cd,comment={Copper smith, soldier}}
\gtrset{comment code={(\gtrDBcomment)1}}
Booc

\gtrPrintComment

(Copper smith, soldier)

7.12 Formatting Sex

\gtrPrintSex
Used to insert a symbolic sign for the sex.

\gtrset{database/.cd,sex=female}
Ao
\gtrPrintSex

?

\gtriffemale{(true)}{(false)}
Expands to (true), if \gtrDBsex holds female, and to (false) otherwise.

\gtrifmale{(true)}{{false)}
Expands to (true), if \gtrDBsex holds male, and to (false) otherwise.

Note that the content of the data key /gtr/database/sex ' !*3 is accessible by \gtrDBsex.
Since /tcb/female '® /tcb/male’ T8 /tcb/neuter "8 and /gtr/female 88
/gtr/male "8 /gtr/neuter "% are defined, \gtrDBsex can be used directly as a for-
matting option, see Section 7.2 on page 141 and the examples in Section 7.5 on page 149.

169

7.13 Formatting Images

\gtrifimagedefined{(true)}{(false)}
Expands to (true), if an image is defined, and to (false) otherwise.

\gtrset{database/.cd, image=Carl_Friedrich_Gauss.jpg}
A
\gtrifimagedefined{\includegraphics[width=3cm] {\gtrDBimage}}{no image}

A=
N7k

/tcb/if image defined={(true)}{(false)} (style, no value)
Sets (true) tcolorbox options, if an image is defined, and sets (false) tcolorbox options
otherwise. This key is intended to be used inside /gtr/box ~ I constructs.

\gtrsetq{
options for node={mynodel}{
box={if image defined={watermark graphics=\gtrDBimagel}{}}

/tcb/image prefix={(tert)} (no default, initially empty)
Add a prefix (text) to every image file name.

\gtrset{image prefix=picturedir/}
\gtrset{database/.cd, image=mytest. jpg}t
Booe

Picture file: \texttt{\gtrDBimage}

Picture file: picturedir/mytest.jpg

170

Edges

Edges are drawn between all nodes of a family. For the auto-layout algorithm, the edges are
opaque. Space is reserved for the edges according to the various distance settings for nodes, but
the edge dimensions themselves are not considered during layout. The following settings and
options influence the visual appearance of the edges.

Edges are drawn in two steps: a /gtr/edge/background ¥ followed by a

/gtr/edge/foreground " 181 After all edges are drawn, the nodes are drawn (possibly
over the edges).

171

8.1 Edge Settings

/gtr/edges={(edge options)} (style, no default, initially perpendicular)
Defines the (edge options) for drawing the edges between the nodes of a fam-
ily. Normally, an edge is drawn with a /gtr/edge/background 152 graph and a
/gtr/edge/foreground " 18! graph to allow visual separation of superposed edges. This
setting may be given globally, as option of \genealogytree '*° or locally wrapped by

/gtr/family "F91 Also see Section 5.1.2 on page 67.
\begin{tikzpicture}
\genealogytree [template=signpost,edges=rounded]

{
parent [id=SmithDoe] {

g[id=Arth2008,male] {Arthur\\\gtrsymBorn\, 2008}

c[id=Bert2010,female] {Berta\\\gtrsymBorn\,2010%}

c[id=Char2014,male] {Charles\\\gtrsymBorn\,2014}

parent [id=Smith,family={edges={foreground={blue!50,line width=2mm}}}]{
glid=John1980,male]{John Smith\\\gtrsymBorn\, 1980}
p[id=GpSm1949,male] {Grandpa Smith\\\gtrsymBorn\,1949}
plid=GmSm1952,female] {Grandma Smith\\\gtrsymBorn\, 1952}

}
plid=Jane1982,female] {Jane Doe\\\gtrsymBorn\, 1982}
}
}
\end{tikzpicture}
Grandpa Grandma
Smith Smith
* 1949 * 1952
John Smith Jane Doe
* 1980 * 1982
Arthur Berta Charles
% 2008 %2010 *2014

172

/gtr/family edges={(edge options)} (style, no default)
This is a shortcut for embedding /gtr/edges " 17 into /gtr/family "L

\begin{tikzpicture}
\genealogytree[template=signpost,edges={rounded}]
{
parent [id=SmithDoe] {
g[id=Arth2008,male] {Arthur\\\gtrsymBorn\, 2008}
c[id=Bert2010,female] {Berta\\\gtrsymBorn\,2010}
c[id=Char2014,male]{Charles\\\gtrsymBorn\,2014}
parent [id=Smith,family edges={foreground={red!50,line width=2mm}}]{
g[id=John1980,male] {John Smith\\\gtrsymBorn\, 1980}
pl[id=GpSm1949,male]{Grandpa Smith\\\gtrsymBorn\, 1949}
pl[id=GmSm1952,female] {Grandma Smith\\\gtrsymBorn\, 1952}

}
plid=Jane1982,female]{Jane Doe\\\gtrsymBorn\, 1982}
}
}
\end{tikzpicture}
Grandpa Grandma
Smith Smith
% 1949 %1952
John Smith Jane Doe
* 1980 * 1982

{)

Arthur Berta Charles
* 2008 * 2010 *2014

173

/gtr/edges for family={(family)}{({edge options)} (style, no default)

This is a shortcut for embedding /gtr/edges " 172 into /gtr/options for family .
\begin{tikzpicture}
\genealogytree[template=signpost,
edges for family={SmithDoe}{
foreground={red,line width=2pt},background={yellow,line width=3ptl}},
]
{input{example.option.graph}}
\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry
% 1980 % 1982 * 1987
Arthur Berta Charles
* 2008 * 2010 * 2014
/gtr/subtree edges={(edge options)} (style, no default)
This is a shortcut for embedding /gtr/edges "1™ into /gtr/subtree "9,
/gtr/edges for subtree={(family)}{(edge options)} (style, no default)
->P.172

—-P.93

This is a shortcut for embedding /gtr/edges into /gtr/options for subtree

174

\gtredgeset{(options)}

Sets (options) for the /gtr/edge key subtree. Mainly, this macro is intended to easily set

up styles for edges.

\begin{tikzpicture}

\gtredgeset{myedges/.style={rounded=6pt,

foreground={blue!50!black},background={blue!20!white}}}

X ..

\genealogytree[template=signpost,edges=myedges]
{input{example.option.graph}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

——

John Smith
* 1980

(

—

Jane Doe
* 1982

Uncle Harry
* 1987

)

[

]

Arthur
* 2008

Berta
%* 2010

Charles
*2014

/tikz/genealogytree edges scope (style, initially empty)
This style is used to scope the drawing of the edges. It may be redefined e.g. to draw edges
on a certain layer.

/4 draw edges on the background layer
\usetikzlibrary{backgrounds}
\tikzset{genealogytree edges scope/.style={on background layerl}}

Note that edges are drawn before nodes. Typically, the setting to draw on the background
layer is not necessary. If two genealogy trees are merged, this additional setting may be
useful.

175

8.2 Edge Types

/gtr/edge/perpendicular (no value, initially set)

The edges are drawn in a perpendicular style.

\begin{tikzpicture}
\genealogytree [template=signpost,edges={perpendicular}]
{input{example.option.graph}}

\end{tikzpicture}
a B
Grandpa Grandma Grandpa Grandma,
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
Arthur Berta Charles
* 2008 * 2010 *2014

/gtr/edge/rounded=(length) (default 6pt)
The edges are drawn in a perpendicular but rounded style. The (length) describes the size
of the rounding.

\begin{tikzpicture}
\genealogytree [template=signpost,edges={rounded=6pt}]
{input{example.option.graph}}

\end{tikzpicture}
a N
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe

* 1949 * 1952 * 1955 * 1956

~ 7
John Smith Jane Doe Uncle Harry

* 1980 * 1982 * 1987

y

L)
[1

Arthur
* 2008

Charles
* 2014

Berta
%2010

176

/gtr/edge/swing=(length) (default 12pt)

The edges are drawn in a swinging style. The (length) describes the control parameter of
the underlying curved path.

\begin{tikzpicture}

\genealogytree[template=signpost,edges={swing=12pt}]
{input{example.option.graph}}

\end{tikzpicture}

a 3
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
- v
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
V
Arthur Berta Charles
* 2008 * 2010 * 2014

177

/gtr/edge/mesh={(options)} (default empty)
The edges are drawn meshed between parents and children. The (options) are TikZ to path
options.

e For a family without children or without parents, no edge will be drawn.

e For a family with at least two parents and at least two children, a mesh is drawn. The
intended use case is for families with just one parent or just one child, i.e. for ordinary
trees.

\begin{tikzpicture}
\genealogytree[template=signpost,edges=mesh]
{input{example.option.graph}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
Arthur Berta Charles
* 2008 * 2010 *2014
\begin{tikzpicture}

\genealogytree[template=signpost,
edges={mesh={/
to path={.. controls +(270:0.5) and +(90:0.5) .. (\tikztotarget)}
}}1{input{example.option.graph}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma

Smith Smith Doe Doe

* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry

* 1980 * 1982 * 1987

Arthur Berta Charles
* 2008 * 2010 * 2014

178

/gtr/edge/custom={({down)}{(up) H left) }H (right)} (no default)
The edges are drawn in a custom style. This option takes four mandatory parameters
(down), (up), (left), and (right), each of which is a macro. The (down) macro is used to
draw edges for /gtr/timeflow " %®=down, etc.

Every macro has to take four mandatory parameters:
1. An etoolbox (listmacro) which contains the list of anchor positions for the parents.
2. An etoolbox (listmacro) which contains the list of anchor positions for the children.
3. A TikZ node name which denotes the family core (center).
4. A TikZ style which should be applied to draw the edges.

\newcommand{\myedgedraw} [4]1{/
% parents (#1):
\renewcommand*{\do} [1]{
\draw [#4] (##1)--(#3);
\path[draw=green!50!black,fill=green!30] (##1) circle (3pt);}/
\dolistloop{#1}/
% children (#2):
\renewcommand*{\do}[1]{
\draw [#4] (##1)--(#3);
\path[draw=yellow!50!black,fill=yellow!50] (##1) circle (3pt);}/
\dolistloop{#2}/
% family core (#3):
\path[draw=purple!50!black,fill=purple!50] (#3) circle (3pt);
}

\begin{tikzpicture}
\genealogytree[template=signpost,
box={enhanced jigsaw,opacityback=0.75},

edges={
custom={\myedgedraw}{\myedgedraw}{\myedgedraw}{\myedgedraw},
H
{input{example.option.graph}}
\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
Arthur Berta Charles
* 2008 * 2010 * 2014

179

/gtr/edge/none

This is a special /gtr/edge/custon

—>P.179

(no value)

style which simply draws nothing. May be used

for just this purpose or to replace automatic edge drawing by manual edge drawing.

\usetikzlibrary{quotes}

\begin{tikzpicture}

\genealogytree[template=signpost,edges=nonel
{input{example.option.graphl}}

\draw[-Latex,green!50!black, thick]

(GpSm1949)

edge [out=270,in=270, "husband"] (GmSm1952)
edge [out=225,in=180, "father"] (John1980)
edge [out=180,in=180, "grandfather"’] (Arth2008)

(Bert2010) edgel[out=90,in=270, "daugther"] (Jane1982)
(Jane1982) edgel[out=90,in=270, "daugther"] (GmDo1956) ;
\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 % 1955 * 1956
daugther
wsband aue
father
John Smith Jane Doe Uncle Harry
grandfather * 1980 * 1982 * 1987
daugth}/A
Arthur Berta Charles
% 2008 %2010 * 2014

180

8.3 Edge Parameters

/gtr/edge/foreground={(tikz options)} (style, no default)
Defines the foreground (tikz options) for drawing the edges between the nodes.

\begin{tikzpicture}

\genealogytree[template=signpost,
edges={foreground={1line width=2pt,red,dashed,line cap=butt},no background}]

{input{example.option.graph}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
L] L] L] L]
|] |] |] |]
L L gemmmmmmmay
|] |] |]
. . . .
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
L] L]
|] |]
r-'--------r-------l-.
|] |] |]
Arthur Berta Charles
* 2008 %2010 %* 2014
\begin{tikzpicture}

\genealogytree[template=signpost,level distance=1.7cm,
edges={rounded, foreground={line width=2pt,red,Circle-LaTeX,shorten <=-4pt},

background={line width=3pt,yellow}}]
{input{example.option.graphl}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry
* 1980 * 1982 % 1987
Arthur Berta Charles
* 2008 * 2010 *2014

(style, no value)

/gtr/edge/no foreground
Removes the /gtr/edge/foreground edges.

181

/gtr/edge/background={(tikz options)} (style, no default)
Defines the background (tikz options) for drawing the edges between the nodes.

\begin{tikzpicture}
\genealogytree[template=signpost,
edges={foreground={line width=0.5pt,red},
background={line width=2pt,yellowl}}]
{input{example.option.graphl}}
\end{tikzpicture}

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

—

—

John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987

Arthur Berta Charles

%* 2008 %* 2010 *2014

/gtr/edge/no background (style, no value)

Removes the /gtr/edge/background edges.

/gtr/edge/anchoring=periphery|center (no default, initially periphery)
Defines anchoring points for the edges. Feasible value are periphery and center.

\begin{tikzpicture}
\genealogytree[template=signpost,
edges={swing=bmm,anchoring=center,
foreground={line width=4mm},background={line width=5mm}}]
{input{example.option.graph}}
\end{tikzpicture}

Grandma
Doe
* 1956

Grandpa
Smith
% 1949

John Smith
* 1980

Uncle Harry
* 1987

182

/gtr/edge/hide single leg=true|false
If set to true, the orphan leg of a family with just one member is hidden.

\begin{tikzpicture}

\genealogytree[template=signpost,

edges={hide singl
{

parent{ g{Orphan}
}
\end{tikzpicture}

\begin{tikzpicture}

e leg}]

}

\genealogytree[template=signpost,

edges={hide singl
{

parent{ g{Orphan}
}
\end{tikzpicture}

e leg=falsel}]

}

/gtr/edge/xshift=(length)
Shifts the edge core position horizontally by (length).

\begin{tikzpicture}

\genealogytree[template=signpost,edges={swing,xshift=5mm}]

{input{example.op
\end{tikzpicture}

tion.graph}}

(default true, initially true)

Orphan

Orphan

(no default, in initially Opt)

Grandpa
Smith
* 1949

Grandma
Smith
* 1952

Grandpa
Doe
* 1955

Grandma
Doe
* 1956

=

* 1980

John Smith

—C

Jane Doe
* 1982

Uncle Harry

* 1987

i

Arthur
% 2008

Berta
%2010

Charles
%2014

183

/gtr/edge/yshift=(length)
Shifts the edge core position vertically by (length).

(no default, in initially Opt)

\begin{tikzpicture}
\genealogytree [template=signpost,edges={swing,yshift=-3mm}]
{input{example.option.graph}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma

Smith Smith Doe Doe

* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry

* 1980 * 1982 * 1987

Arthur Berta Charles
* 2008 * 2010 * 2014

184

8.4 Edge Labels

/gtr/label={(tert)} (style, no default)

Adds a label (text) to the current family. This is realized by a TikZ node with /gtr/label

options. The current family is determined by a surrounding /gtr/family 9!

or
/gtr/options for family !9

\begin{genealogypicture} [template=signpost,
label options={fill=white,node font=\footnotesizel},

options for family={SmithDoe}{label={\gtrsymMarried~2006}}]
input{example.option.graph}
\end{genealogypicture}

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
@ 2006
I
Arthur Berta Charles
* 2008 * 2010 *2014

\begin{genealogypicture} [template=signpost,
label options={fill=green!20,node font=\footnotesize},
label={\gtrsymMarried}]
input{example.option.graph}
\end{genealogypicture}

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 %* 1955 * 1956
[o ®
|
John Smith Jane Doe Uncle Harry
%* 1980 % 1982 %* 1987
B —
Arthur Berta Charles
* 2008 %2010 * 2014

/gtr/label options={{options)} (style, no default)
Sets TikZ node (options) to be used for /gtr/label. See /gtr/label for an example.

185

/gtr/family label={(text)} (style, no default)

Shortcut for using /gtr/label 18

inside /gtr/family "L,

\begin{tikzpicture}
\genealogytree[template=signpost,
label options={fill=white,node font=\footnotesize},
H{
parent [id=SmithDoe,family label={\gtrsymMarried~2006}]{
g[id=Arth2008,male] {Arthur\\\gtrsymBorn\, 2008}
c[id=Bert2010,female] {Berta\\\gtrsymBorn\,2010}
c[id=Char2014,male] {Charles\\\gtrsymBorn\,2014}
parent [id=Smith,family label={\gtrsymMarried~19763}]{
g[id=John1980,male] {John Smith\\\gtrsymBorn\, 1980}
p[id=GpSm1949,male] {Grandpa Smith\\\gtrsymBorn\,b 1949}
p[id=GmSm1952,female] {Grandma Smith\\\gtrsymBorn\, 1952}
}
parent [id=Doe,family label={\gtrsymMarried~1980}]{
glid=Jane1982,female] {Jane Doe\\\gtrsymBorn\, 1982}
c[id=Harr1987,male]{Uncle Harry\\\gtrsymBorn\, 1987}
p[id=GpDo1955,male]{Grandpa Doe\\\gtrsymBorn\, 1955}
p[id=GmDo1956,female] {Grandma Doe\\\gtrsymBorn\, 1956}
}
}
}
\end{tikzpicture}

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

I—GD 1976 J

* 1980

John Smith

o]

Uncle Harry
* 1987

Arthur
%2008

Berta
%* 2010

Charles
*2014

/gtr/subtree label={(text)}

Shortcut for using /gtr/label

> P.

185

186

inside /gtr/subtree

»P.94

(style, no default)

8.5 Edge Labels Database

Analog to database processing for nodes, see Chapter 7 on page 139, the edge labels can be
formatted by database style entries.

The database content for edge labels has to be given inside the option list for a parent or child
using /gtr/family database.

/gtr/family database={(data keys)} (no default, initially empty)
Sets (data keys) for the edge labeling of the current family. For (data keys), any setting
from Section 7.3 on page 143 can be used, but only marriage information or similar may be
reasonable.

Booc
child[id=SmitBowd1742,family database={marriage={1742-03-02}{London}}]{
Koo

/gtr/label database options={(options)} (no default)
The (options) settings define how the /gtr/family database values are used to
create label content. The default operations are /gtr/use family database and
/gtr/database format ' !'*=marriage. Note that setting /gtr/database format 14
inside /gtr/label database options does only change the format for edge labels, but not
for nodes.

Booc
label database options={
database format=marriage, / that is the default walue
place text={(}{)} /% changed only for labels
I8
Ao

/gtr/ignore family database (no value)
If set, then all /gtr/family database values are simply ignored. This has to be used inside
/gtr/label database options to have an effect.

Booc
label database options={ignore family database},

A

/gtr/use family database (no value)
If set, then all /gtr/family database values are processed to generate label content. This
has to be used inside /gtr/label database options to have an effect.

187

\begin{genealogypicture}[
processing=database,database format=medium no marriage,
node size=3cm,level size=3.2cm,level distance=1cm,
list separators hang,place text={\newline}{},
box={fit basedim=9pt,boxsep=2pt,segmentation style=solid,
halign=left,before upper=\parskiplpt,\gtrDBsex },
label database options={place text={(}{)}},
label options={fill=white,node font=\footnotesize,inner sep=0.5mm,draw=green!30!black},
]
child[id=SmitBowd1742,family database={marriage={1742-03-02}{London}}]{
g[id=SmitChar1722]{

male,
name = {\pref{Charles} \surn{Smith}},
birth = {(caAD)1722}{London},
baptism = {1722-04-13}{London},
death+ = {1764-10-12}{}{killed},
comment = {Copper smith, soldier},

}

plid=BowdJane1724]{
female,
name = {\pref{Jane} \surn{Bowdenl}},
birth- = {(caAD)1724},
death = {1802-07-07}{New York},

}

c[id=BowdAbra1740]{
male,
name = {\pref{Abraham} \surn{Bowden}},
birth+ = {1740-01-04}{London}{out of wedlock},
death = {1740-02-23}{London}

}

c[id=SmitE1iz17441{
female,
name = {\pref{Elizabeth} \nick{Liz} \surn{Smith}},
birth = {1744-02-02}{London},
death = {1812-04-12}{Boston},
comment = {Had a store in Boston},

}

c[id=SmitMich1758]{
male,
name = {\pref{Michael} \surn{Smithl}},
birth+ = {1758-03-01}{}{died},

}

}

\end{genealogypicture}

Charles SMITH

Jane BOWDEN

% ca. 1722 % ca. 1724
London T 7.VIL.1802

% 12.X.1764 New York

Copper smith, sol-

dier

\.

J

| |
@ 2.111.1742 (London)

—

S

Abraham Bow- FElizabeth “Liz” Michael SMITH
DEN SMITH %t 1.111.1758
(%) 4.1.1740 * 2.11.1744
London London
t 23.11.1740 T 12.1V.1812
London Boston
Had a store in
Boston

188

8.6 Adding and Removing Nodes from Edge Drawing

/gtr/add child=(child) to (family) (style, no default)
Connect a node of an existing graph as (child) to a (family) of the current graph. The

auto-layout algorithm is not aware of this addition.

\begin{tikzpicturel}[scale=0.9,transform shape]

\gtrset{template=signpost}

\genealogytree[

edges={foreground={red!50!blue,line width=2pt},

background={red!50!blue!15!white,line width=3pt}},
options for node={GmDo1956}{box={colback=red!30!white}} 1]
{input{example.option.graph}}

\genealogytree[
edges={foreground={green!50!blue,line width=2pt},
background={green!50!blue!15!white,line width=3pt}},
box={colback=green!30!white},
adjust node=PhDo1982 right of Harr1987 distance 3mm,
add child=GmDo1956 to GreatDoe

{

child[id=GreatDoe,pivot shift=1.7cm]{

g[id=GgpDo1910,male]{Great-Grandpa Doe\\\gtrsymBorn\,1910}
plid=GgmDo1918,female] {Great-Grandma Doe\\\gtrsymBorn\,1918}

child{

gl[id=JaDo1957 ,male] {Jack Doe\\\gtrsymBorn\, 1957}
plid=MaJo1960,female]{Mary Jones\\\gtrsymBorn\, 1960}

child{

g[id=PhD01982,male] {Phil Doe\\\gtrsymBorn\,b 1982}
pl[id=SyP01982,female]{Sybil Porter\\\gtrsymBorn\, 1982}

c[id=Will12005,male]{Will\\\gtrsymBorn\, 2005}

c[id=Xave2005,male] {Xaver\\\gtrsymBorn\,2005}
c[id=Zeb2010,male] {Zeb\\\gtrsymBorn\, 2010}

}
c[1d=AnD01984,female] {Anne Doe\\\gtrsymBorn\, 1984}
}
}
}
\end{tikzpicture}
Great- Great-
Grandpa Grandma
Doe Doe
* 1910 * 1918
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe Jack Doe || Mary Jones
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry Phil Doe Sybil Porter Anne Doe
* 1980 * 1982 * 1987 * 1982 * 1982 % 1984
Arthur Berta Charles Will Xaver Zeb
* 2008 *2010 *2014 * 2005 * 2005 * 2010

189

/gtr/add parent=(parent) to (family)

auto-layout algorithm is not aware of this addition.

\begin{tikzpicture}
\gtrset{template=signpost}

\genealogytree[

edges={foreground={red!50!blue,line width=2pt},
background={red!50!blue!15!white,line width=3pt}},

options for node={Harr1987}{distance=1.6cm,box={colback=red!30!white}}]
{input{example.option.graphl}}

\genealogytree[

edges={foreground={green!50!blue,line width=2pt},
background={green!50!blue!15!white,line width=3ptl}},
box={colback=green!30!white},
adjust node=JimJ1944 right of GmDo1956 distance 3mm,
add parent=Harr1987 to DoeJones]

{

parent [id=DoeJones,pivot shift=-1.4cm]{
glid=Deir2012,female] {Deirdre\\\gtrsymBorn\,2012}
parent [id=Jones]{
glid=Mary1988,female] {Aunt Mary\\\gtrsymBorn\, 1988}
plid=JimJ1944 ,male]{Jim Jones\\\gtrsymBorn\, 1944}
plid=Jenn1949,female]{Jenny Jones\\\gtrsymBorn\, 1949}

(style, no default)
Connect a node of an existing graph as (parent) to a (family) of the current graph. The

}
}
}
\end{tikzpicture}
Grandpa Grandma Grandpa Grandma Jim J J J
Smith Smith Doe Doe Er e o
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry Aunt Mary
* 1980 * 1982 * 1987 * 1988
Arthur Berta Charles Deirdre
* 2008 * 2010 *2014 * 2012

190

> P. 189 t > P. 190

An alternative approach to /gtr/add child and /gtr/add paren is to draw the
interconnecting node twice (the first one could be drawn as /gtr/phantom* " '12). The second
instance is drawn over the first instance using /gtr/set position 7. Both instances need
to have different /gtr/id "™ values. Note that both parts of the graph can still be over-
lapping and may have to be adjusted manually, since the auto-layout algorithms handles each
\genealogytree "I *° separately.

\begin{tikzpicture}
\gtrset{template=signpost}
\genealogytree[
edges={foreground={red!50!blue,line width=2pt},
background={red!50!blue!15!white,line width=3pt}},
]
{input{example.option.graph}}

\genealogytree[
edges={foreground={green!50!blue,line width=2pt},
background={green!50!blue!15!white,line width=3pt}},
box={colback=green!30!white},
set position=Harr1987_2 at Harr1987,
]
{
parent [id=DoeJones]{
glid=Deir2012,female] {Deirdre\\\gtrsymBorn\, 2012}
plid=Harr1987_2,male,box={colback=red!30!white}]{Uncle Harry\\\gtrsymBorn\, 1987}
parent [id=Jones]{
gl[id=Mary1988,female,distance=1.4cm]{Aunt Mary\\\gtrsymBorn\, 1988}
plid=JimJ1944 ,male] {Jim Jones\\\gtrsymBorn\, 1944}
plid=Jenn1949,female]{Jenny Jones\\\gtrsymBorn\, 1949}

}
}
}
\end{tikzpicture}
Grandpa Grandma Grandpa Grandma Jim Jones Jenny Jones
Smith Smith Doe Doe * 1944 *}1’949
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry Aunt Mary
* 1980 * 1982 * 1987 * 1988

Arthur
% 2008

Berta
% 2010

Charles
* 2014

191

Deirdre
* 2012

/gtr/remove child=(child) from (family) (style, no default)
Removes a node as (child) from a (family) of the current graph. The auto-layout algorithm
is not aware of this removal.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={Jane1982}{pivot=child},/ make Jane the pivot child
remove child=Harr1987 from Doe, % remove Harry
extra edges prepend for family= % add Harry again with dots
{Doe}{GmDo1956}{Harr1987}{foreground={dotted,line cap=round},
no background}

]
{input{example.option.graph}}
\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
Arthur Berta Charles
* 2008 * 2010 *2014

/gtr/remove parent=(parent) from (family) (style, no default)
Removes a node as (parent) from a (family) of the current graph. The auto-layout algorithm
is not aware of this removal.

\begin{tikzpicture}
\genealogytree [template=signpost,
remove parent=GpSm1949 from Smith]
{input{example.option.graph}}

192

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma

Smith Smith Doe Doe

* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry

* 1980 * 1982 * 1987

Arthur Berta Charles
* 2008 * 2010 *2014

/gtr/disconnect=(value) (default both, initially unset)
Using this option inside node options disconnects the current node from the edges of the
current graph. Using this option elsewhere may cause unwanted side effects. The auto-
layout algorithm is not aware of this removal. Depending of the given (value), the node is
disconnected as parent or child or both.

Feasible values are
e child: disconnect the node as child of a family.
e parent: disconnect the node as parent of a family. Note that a g node is only removed
from its primary family, but not from connected union families.
e both: disconnect the node as child and as parent.
/gtr/remove child 7192 and /gtr/remove parent ' 192
/gtr/disconnect needs no /gtr/id "0

allow more precise control, but
values.

\begin{tikzpicture}
\genealogytree [template=formal graphl]
{
parent{
g{A}
c{B}
c[disconnect ,box={colback=blue!10}]{C}
parent{
gldisconnect,box={colback=red!10}]{D}
p{F}
p{G}
}
parentq{
g{E}
pldisconnect,box={colback=green!10}]{H}
p{I}
}
}
}
\end{tikzpicture}

193

8.7 Extra Edges

/gtr/extra edges={(parents)}{(children)}{(edge options)} (style, no default)
Appends an extra set of edges to the current family. The edges are drawn between the
given (parents) list and the given (children) list using the (edge options). Note that parents
and children are defined by their /gtr/id " ®" values. They do not necessarily have to
be real members of the current family. The current family is given by a surrounding
/gtr/family V9! or /gtr/options for family P9

\begin{tikzpicture}
\genealogytree[template=signpost,
options for family={SmithDoel}{extra edges={Jane1982}{Arth2008,Char2014}{
foreground={red,line width=2pt,-Latex},background={yellow,line width=3pt}}},
]
{input{example.option.graph}}
\end{tikzpicture}

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

0

John Smith
* 1980

—

Jane Doe
* 1982

Uncle Harry
* 1987

¥

Y

Arthur Berta Charles
% 2008 %2010 %2014

/gtr/family extra edges={(parents)}{(childs)}{(edge options)} (style, no default)
This is a shortcut for embedding /gtr/extra edges into /gtr/family 9%

194

/gtr/extra edges for family={(family)}{(parents)}{(childs)}{(edge options)} (
style, no default)

P19 into /gtr/options for

This is a shortcut for embedding /gtr/extra edges
family ~ P90,

\begin{tikzpicture}
\genealogytree[template=signpost,
extra edges for family={SmithDoel}{Jane1982}{Arth2008,Char2014}{
foreground={red,line width=2pt,-Latex},background={yellow,line width=3pt}},

]
{input{example.option.graph}}
\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry
% 1980 % 1982 * 1987
Arthur Berta Charles
* 2008 * 2010 * 2014
/gtr/extra edges for families={(family list)}{(edge options)} (style, no default)

This allows to set /gtr/extra edges for family for multiple families. Therefore, the
(family list) is a comma separated list of entries of type x={{family) }{(parents)}{(children)}

\begin{tikzpicture}
\genealogytree[template=signpost,
extra edges for families={x={Doe}{GmD01956}{Jane1982},
x={SmithDoe}{Jane1982}{Arth2008,Char2014}}{
foreground={red,line width=2pt,-Latex},background={yellow,line width=3pt}},

{input{example.option.graphl}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987

| I
¥ L4

Arthur Berta Charles
* 2008 * 2010 *2014

195

/gtr/extra edges prepend={(parents)}{(children)}{{edge options)} (style, no default)
Appends an extra set of edges to the current family. The edges are drawn between the
given (parents) list and the given (children) list using the (edge options). This is identical
to /gtr/extra edges 14 but the drawing lies under the normal edges.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for family={SmithDoe}{extra edges prepend={Jane1982}{Arth2008}{
foreground={red!25!yellow,line width=5pt},no backgroundl}},
]
{input{example.option.graphl}}
\end{tikzpicture}

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

o

—

N\
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987

v
Arthur Berta Charles
* 2008 * 2010 *2014

/gtr/family extra edges prepend={(parents)}{(children)}{(edge options)ystyle, no default)
This is a shortcut for embedding /gtr/extra edges prepend into /gtr/family "' 9!

196

/gtr/extra edges prepend for family={(family)}{(parents)}{{children)}{(edge options)} (
style, no default)

a P19 into /gtr/options

This is a shortcut for embedding /gtr/extra edges prepen
for family P9,

\begin{tikzpicture}
\genealogytree[template=signpost,
extra edges prepend for family={SmithDoe}{Jane1982}{Arth2008}{
foreground={red!25!yellow,line width=5pt},no background},

]
{input{example.option.graph}}
\end{tikzpicture}
N
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
s D
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
\ v
Arthur Berta Charles
* 2008 * 2010 *2014

/gtr/extra edges prepend for families={(family list)}{(edge options)} (style, no default)
This allows to set /gtr/extra edges prepend for family for multiple families. There-
fore, the (family list) is a comma separated list of entries of type

x={(family) {(parents)}{(children)}

\begin{tikzpicture}
\genealogytree[template=signpost,
extra edges prepend for families={x={Doe}{GmDo1956}{Jane1982},
x={SmithDoe}{Jane1982}{Arth2008}}{
foreground={red!25!yellow,line width=5pt},no background}
]
{input{example.option.graph}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma

Smith Smith Doe Doe

* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry

* 1980 * 1982 * 1987

Arthur Berta Charles
* 2008 %2010 * 2014

197

198

Genealogy Symbols

9.1 Symbol Color Settings

If the genealogy symbols are only needed in black color, there is nothing special to consider.
Currently, the symbols are drawn as pictures and saved in boxes for efficiency. If different colors
are needed, the symbols have to be redrawn. The named color gtrsymbol holds the (current)
symbol color.

9.1.1 Global Color Settings

In the preamble, the color of all genealogy symbols can be set by redefining the color gtrsymbol.
For example, if all symbols should be created in blue, one can use:

VA
\colorlet{gtrsymbol}{blue}
B aoc

\begin{document}

VA

\end{document}

Note that this setting has to be given inside the preamble after the package is loaded and before
\begin{document}.

199

9.1.2 Local Color Settings

If symbols with a color different from the global symbol color should be used inside the document,
one of the following commands can be used.

\gtrSymbolsSetCreate{(color)}
Recreates all symbols for the current TEX group with the given (color). The named color
gtrsymbol will also be set to (color). Use this macro, if it is expected that many symbols
of this color will be used inside the current TEX group.

\gtrsymBorn\,14.XI.1475

{
\gtrSymbolsSetCreate{red}
\gtrsymMarried\,22.II.1502,
\gtrsymDied\,8.X.1553,

}

\gtrsymBuried\,10.X.1553

* 14.X1.1475 @ 22.11.1502, +8.X.1553, 010.X.1553

\gtrSymbolsSetCreateSelected{(color)}{(list)}
Recreates all symbols from the given comma separated (list) for the current TEX group
with the given (color). The named color gtrsymbol will also be set to (color). The (list)
contains the base names of the selected symbols, e.g. Born for \gtrsymBorn 2?1 Symbols
which are not present in this list, will keep their old color. Use this macro, if it is expected
that many symbols of this color will be used inside the current TEX group.

\gtrSymbolsSetCreateSelected{blue}{Male}
\gtrSymbolsSetCreateSelected{red}{Female}
\gtrSymbolsSetCreateSelected{yellow!50!black}{Born,Died}

\gtrsymBorn, \gtrsymMale, \gtrsymFemale, \gtrsymNeuter, \gtrsymDied.

*7 dl? Q? Q’ 1-'

\gtrSymbolsSetDraw{(color)}
Inside the current TEX group, every symbol is drawn with the given (color) when it is used.
It is drawn again, if it is used again. The named color gtrsymbol will also be set to (color).
Use this macro, if it is expected that only few symbols of this color will be used inside the
current TEX group or if colors constantly change.

\gtrsymBorn\,14.XI.1475

{
\gtrSymbolsSetDraw{red}
\gtrsymMarried\,22.II.1502,
\gtrSymbolsSetDraw{blue}
\gtrsymDied\,8.X.1553,

}

\gtrsymBuried\,10.X.1553

* 14.X1.1475 @ 22.11.1502, t8.X.1553, (10.X.1553

200

9.2 List of Symbols

\gtrsymBorn %

Birth / born (Unicode U+24A).

Johann Maier \gtrsymBorn\,14.XI.1475

Johann Maier % 14.X1.1475

\gtrsymBornoutofwedlock (%)

Born out of wedlock / illegitimate.

Johann Maier \gtrsymBornoutofwedlock\,14.XI.1475
Johann Maier (%) 14.X1.1475
\gtrsymStillborn tT%

Stillborn.

\textit{Anonymus} Maier \gtrsymStillborn\,14.XI.1475

Anonymus Maier T% 14.X1.1475
\gtrsymDiedonbirthday %t

Died on the birthday.

Johann Maier \gtrsymDiedonbirthday\,14.XI.1475

Johann Maier %t 14.X1.1475
\gtrsymBaptized =%

Baptism / baptized (Unicode U+2248).

Johann Maier \gtrsymBaptized\,14.XI.1475

Johann Maier 22 14.X1.1475

201

S

\gtrsymEngaged O

Engagement / engaged (Unicode U+26AC).

Johann Maier \gtrsymEngaged\,14.XI.1475

Johann Maier O 14.X1.1475
\gtrsymMarried @

Marriage / married (Unicode U+26AD).

Johann Maier \gtrsymMarried\,14.XI.1475

Johann Maier @ 14.X1.1475
\gtrsymDivorced OO

Divorce / divorced (Unicode U+26AE).

Johann Maier \gtrsymDivorced\,14.XI.1475

Johann Maier OO 14.X1.1475
\gtrsymPartnership OO

Partnership / unmarried (Unicode U+26AF).

Johann Maier \gtrsymPartnership\,14.XI.1475

Johann Maijer O-O 14.X1.1475
\gtrsymDied ¥t

Death / died (Unicode U+2020, U+271D).

Johann Maier \gtrsymDied\,14.XI.1475

Johann Maier +14.X1.1475
\gtrsymKilled X

Killed in action / fallen (Unicode U+2694).

Johann Maier \gtrsymKilled\,14.XI.1475

Johann Maier X 14.X1.1475

202

XK =+ 8 8

\gtrsymBuried {

Burial / buried (Unicode U+26B0).

Johann Maier \gtrsymBuried\,14.XI.1475

Johann Maier 14.X1.1475

\gtrsymFuneralurn @

Funeral urn / cremated (Unicode U+26B1).

Johann Maier \gtrsymFuneralurn\,14.XI.1475

Johann Maier 0 14.X1.1475

\gtrsymFemale Q

Female (Unicode U+2640).

Maria Maier \gtrsymFemale

Maria Maier @

\gtrsymMale &

Male (Unicode U+2642).

Johann Maier \gtrsymMale

Johann Maier &

\gtrsymNeuter @

Neuter / Unknown sex (Unicode U+26B2).

\textit{Anonymus} Maier \gtrsymNeuter

Anonymus Maier Q@

203

0. Q40

9.3 Legend to Symbols

The further macros and options allow to create a legend to symbols. This legend contains either
all symbols or only the currently used symbols. Also, the description texts can be adapted to
different languages or individual settings.

9.3.1 Printing a Legend

\gtrSymbolsRecordReset
The occurrence of a symbol inside the document text is recorded. \gtrSymbolsLegend "' 207
prints all recorded symbols. To clear the current recording (locally),
\gtrSymbolsRecordReset can be used. Note that records are taken globally, but re-
sets are local to the current TEX group.

\gtrSymbolsRecordReset
Use symbol: \gtrsymBorn\par
{
\gtrSymbolsRecordReset
Use symbol inside group: \gtrsymMarried\par

{
Use symbol further inside: \gtrsymDied\par
}
Local legend inside group: \gtrSymbolsLegend\par
}

Global legend: \gtrSymbolsLegend

Use symbol: *

Use symbol inside group: @

Use symbol further inside: t

Local legend inside group: @®@=married, t=died.
Global legend: %=born, @=married, t=died.

/gtr/symbols record reset (no value)
Identical to \gtrSymbolsRecordReset. This option is useful for application inside
\genealogytree "I 4% or genealogypicture "6, See \gtrSymbolsLegend 2% for an
example.

\gtrSymbolsFullLegend [(language)]
Prints a full unabridged legend to symbols according to /gtr/language
according to (language).

—P207 or optionally

\textsl{\gtrSymbolsFullLegend[english]}
*=born, (¥)=born out of wedlock, t%=stillborn, %t=died on the birthday,

2 =paptized, O=engaged, @=married, OO=divorced, O-O=unmarried partnership,
t=died, X=killed in action, Q=buried, O=cremated, Q=female, &=male, Q=neuter.

204

\gtrSymbolsLegend[(language)]
Prints a legend to symbols according to /gtr/language or optionally according to
(language). The legend only contains these symbols which were actually used inside the

document so far or since the last call to \gtrSymbolsRecordReset ~ 2% or /gtr/symbols
- P.204
t .

- P.207

record rese

\begin{genealogypicture}[node size=3.2cm,level size=2.5cm,
box={fit basedim=9pt,boxsep=2pt,colback=red!10,segmentation style={solid}},
symbols record reset,code={\gtrSymbolsSetCreate{bluel}},
after tree={\node[font=\scriptsize\itshape,text width=3cm,above right,
fill=blue!5] at ([xshift=1cm]Michael.south east) {\gtrSymbolsLegend};},
]
child{
glid=Charles]{Charles Smith\par\gtrsymBorn~1722 London\par
\gtrsymBaptized~13.IV.1722\\ London\par
\gtrsymKilled~12.X.1764}
p{Jane Bowden\par\gtrsymBorn~1724\par
\gtrsymDied~7.VII.1802\\ New York
\tcbline
\gtrsymMarried~2.III.1742\\ London
}
c{Abraham Bowden\par
\gtrsymBornoutofwedlock~4.I.1740 London\par
\gtrsymDied~23.II1.1740 London}
c{Elizabeth Smith\par
\gtrsymBorn~2.II.1742 London\par
\gtrsymDied~12.IV.1812 Boston}
c[id=Michael]{Michael Smith\par\gtrsymDiedonbirthday~1.III.1761}
}
\end{genealogypicture}

Charles Smith Jane Bowden

% 1722 London * 1724

>~ 13.1V.1722 T 7.VIL.1802

London New York

% 12X 1764 ® 2.111.1742
London

Abraham Bowden
(%) 4.1.1740 London
1 23.11.1740 London

Elizabeth Smith
% 2.11.1742 London
T 12.1V.1812 Boston

Michael Smith
*t 1.I11.1761

*=born, (¥)=born
out of wedlock,

*t=died on the birth-
day, ¥ =baptized,

@ =married, t=died,
X.=killed in action.

9.3.2 Description Texts and Language Settings

The following options of the key family /gtr/symlang/ are language dependent and can be set
globally by /gtr/language 207

english

*=born, (¥)=born out of wedlock, tk=stillborn, *t=died
on the birthday, ¥=baptized, O=engaged, @ =married,
O-O=unmarried partnership, t=died,
0=buried, 0=cremated, Q=female,

\gtrset{language=english}

4o OO =divorced,

\gtrSymbolsFullLegend X =killed in action,
Jd'=male, Q=neuter.

205

german

*=geboren, (k)=auferehelich geboren, tk=tot geboren,
*t=am Tag der Geburt gestorben, ¥=getauft, O=verlobt,
@ =verheiratet, OO =geschieden, O-O=aufereheliche
Verbindung, t=gestorben, X=gefallen, Q=begraben,
0=eingedschert, Q@=weiblich, S'=mdnnlich, @=Geschlecht

\gtrset{language=german}
A oos
\gtrSymbolsFullLegend

unbekannt.

/gtr/symlang/Born=(text) (no default, initially born)
Legend (text) used for %.

/gtr/symlang/Bornoutofwedlock=(text) (no default, initially born out of wedlock)
Legend (text) used for (%).

/gtr/symlang/Stillborn=(text) (no default, initially stillborn)
Legend (text) used for t%.

/gtr/symlang/Diedonbirthday=(text) (no default, initially died on the birthday)
Legend (text) used for %t.

/gtr/symlang/Baptized=(text) (no default, initially baptized)
Legend (text) used for 2=.

/gtr/symlang/Engaged=(text) (no default, initially engaged)
Legend (text) used for O.

/gtr/symlang/Married=(text) (no default, initially married)
Legend (text) used for @.

/gtr/symlang/Divorced=(text) (no default, initially divorced)
Legend (text) used for OO.

/gtr/symlang/Partnership=(text) (no default, initially unmarried partnership)
Legend (text) used for O-O.

/gtr/symlang/Died=(text) (no default, initially died)
Legend (text) used for t.

/gtr/symlang/Killed=(text) (no default, initially killed in action)
Legend (text) used for X.

/gtr/symlang/Buried=(text) (no default, initially buried)
Legend (text) used for Q.

/gtr/symlang/Funeralurn=(text) (no default, initially cremated)
Legend (text) used for 0.

/gtr/symlang/Female=(text) (no default, initially female)
Legend (text) used for Q.

/gtr/symlang/Male=(text) (no default, initially male)
Legend (text) used for J.

/gtr/symlang/Neuter=(text) (no default, initially neuter)

Legend (text) used for Q.

206

10

Language and Text Settings

10.1 Preamble Settings

/gtr/language=(language) (no default, initially english)
Sets the (language) for the description texts of the package. Typically, this option should
be used inside the preamble, but it may also be used inside the document to switch between
languages.

e If this option is used inside the preamble, the corresponding language library is loaded
automatically.
e [f this option is used inside the document, the corresponding language library has to
be loaded separately inside the preamble by \gtrloadlanguage ~ 2%,
e If this option is not used at all, the english language is set.
Feasible values for (language) are:
e english
e german with variants:
— german-german
— german-austrian

\documentclass{...}

Ao
\gtrset{language=german-austrian}
Booc

\begin{document}

Bo o c

\end{document}

The current language name is stored inside \gtrlanguagename.

The current language is ’\gtrlanguagename’.

The current language is ’english’.

The /gtr/language option sets various keys for description texts. These texts can be
customized selectively, if needed.

207

\gtrset{language=german}
\gtrSymbolsRecordReset

\gtrsymBorn\ 1775, \gtrsymDied\ 1832.
\hfill(\gtrSymbolsLegend)

\gtrset{symlang/Born=geb.}
\gtrSymbolsRecordReset

\gtrsymBorn\ 1775, \gtrsymDied\ 1832.
\hfill (\gtrSymbolsLegend)

\gtrset{language=english}
\gtrSymbolsRecordReset

\gtrsymBorn\ 1775, \gtrsymDied\ 1832.
\hfill (\gtrSymbolsLegend)

* 1775, T 1832. (¥=geboren, t=gestorben.)
* 1775, T 1832. (¥=geb., t=gestorben.)
* 1775, + 1832. (¥=born, t=died.)

\gtrloadlanguage{(list of languages)}
Loads a comma separated (list of languages). This has to be given inside the preamble, if
more than one language should be used in the document. Every loaded language can be
used by /gtr/language "' 27 inside the document. For a list of feasible language names,
see /gtr/language ©207,

\documentclass{...}

A
\gtrloadlanguage{english,german}
Ao

\begin{document}

Ao

\end{document}

10.2 Document Settings

Switching between languages inside the document is done by setting /gtr/language " 2. Note
that every language to be used has to be loaded inside the preamble by \gtrloadlanguage.

208

11

Debugging: Library

The library is loaded by a package option or inside the preamble by:
\gtruselibrary{debug}

This also loads the packages array and tabularx and the breakable library of tcolorbox

11.1 Parser Debugging

The debugger for the parser can be used to check a manually or automatically generated tree
source code to be well-formed. In this context, well-formedness means correct (IATEX) grouping
and correct nesting with subgraph elements following the given graph grammar, see Chapter 4.
It is not checked, if all mandatory graph elements are present or if too many elements are given.

Also, the debugger gives a formal structured view of the given data which is useful to search for
input errors if the graphical representation fails.

209

\gtrparserdebug[(options)]{{graph content)}
Parses the given (graph content). If the content is well-formed, a structured list of the given
data is produced. The families are automatically colored in the list. Any (options) are

checked by setting them and they are logged in the produced list.

\gtrparserdebug{
parent{/
c[id=pBl{B\\(child)}/
gl[id=pA]{A\\ (proband)}/
c[id=pC]l{C\\(child)}”
c[id=pD]1{D\\(child)}/
plid=pE]{E\\(parent)}/
pl[id=pF]1{F\\(parent)}/

Genealogytree Parser Debugger

Start: Parent Family 1, Level 1

Child: Individual 1, Family 1, Level 0
Options: id=pB
Content: B\\(child)

Child: Individual 2, Family 1, Level 0
Options: id=pA
Content: A\\ (proband)

Child: Individual 3, Family 1, Level 0
Options: id=pC
Content: C\\(child)

Child: Individual 4, Family 1, Level 0
Options: id=pD
Content: D\\ (child)

Parent: Individual 5, Family 1, Level 1
Options: id=pE
Content: E\\ (parent)

Parent: Individual 6, Family 1, Level 1
Options: id=pF
Content: F\\ (parent)

End: Parent Family 1, Level 1

End of Genealogytree Parser Debugger

N . . . v V. R

210

\gtrparserdebuginput [(options)]{(file name)}
Loads the file denoted by (file name) and parses its content. If the content is well-formed,
a structured list of the given data is produced. The families are automatically colored in
the list. Any (options) are checked by setting them and they are logged in the list.

The following example uses the graph from Section 14.1 on page 257.

\gtrparserdebuginput{example.option.graph}

Genealogytree Parser Debugger

Start: Parent Family 1, Level 1

Options: id=SmithDoe

Child: Individual 1, Family 1, Level 0
Options: id=Arth2008,male

Content: Arthur\\\gtrsymBorn \,2008

Child: Individual 2, Family 1, Level 0
Options: id=Bert2010,female
Content: Berta\\\gtrsymBorn \,2010

Child: Individual 3, Family 1, Level 0
Options: id=Char2014,male
Content: Charles\\\gtrsymBorn \,2014

Start: Parent Family 2, Level 2
Options: id=Smith
Child: Individual 4, Family 2, Level 1
Options: id=John1980,male
Content: John Smith\\\gtrsymBorn \,1980
Parent: Individual 5, Family 2, Level 2
[P] Options: 1d=GpSm1949,male
Content: Grandpa Smith\\\gtrsymBorn \, 1949
Parent: Individual 6, Family 2, Level 2
[P| Options: 1d=GmSm1952, female
Content: Grandma Smith\\\gtrsymBorn \,1952

End: Parent Family 2, Level 2

Start: Parent Family 3, Level 2

Options: id=Doe

Child: Individual 7, Family 3, Level 1
Options: id=Jane1982,female

Content: Jane Doe\\\gtrsymBorn \,1982
Child: Individual 8, Family 3, Level 1
Options: id=Harr1987,male

Content: Uncle Harry\\\gtrsymBorn \,1987
Parent: Individual 9, Family 3, Level 2
Options: id=GpDo1955,male

Content: Grandpa Doe\\\gtrsymBorn \,1955
Parent: Individual 10, Family 3, Level 2
Options: id=GmDo1956,female

Content: Grandma Doe\\\gtrsymBorn \, 1956

End: Parent Family 3, Level 2
End: Parent Family 1, Level 1 I

NE A AW

[~]

[~ [<]

End of Genealogytree Parser Debugger

211

11.2 Processor Debugging

\gtrprocessordebug [(options)]{{graph content)}
Processes the given (graph content). If the content can be processed without error, a
structured list of the processed data is produced. The families are automatically colored in
the list. Any (options) are set for processing.

\gtrprocessordebug{
parent{/

c[id=pBl{B\\(child)}/
g[id=pA]{A\\ (proband)}/
cl[id=pCl{C\\ (child)}/
c[id=pD]{D\\(child)}”
plid=pEI{E\\(parent)}/
plid=pFI1{F\\(parent)}/

}
}
Genealogytree Processor Debugger
f Family 1
type: par type of family
id: (none) identifier
fam: (none) enclosing family
offset: 0.0pt x (ory) offset relative to enclosing fam-
ily
pos: 7.11319pt y (or x) absolute position
cwest@anchor: 1 west contour starting node
ceast@anchor: 4 east contour starting node
g 2 g-node of the family
par: 5, 6 parent nodes
chi: 1,2, 3,4 child nodes
patpar: 5, 6 patchwork parent nodes
patchi: 1, 2, 3, 4 patchwork child nodes
union: (none) further partner families
ps: Opt pivot shift length (parents vs childs)
x: 0.0pt x anchor
y: (none) y anchor
frac: 0.5 line positioning fraction
opt@family: (none) options for the family
opt@subtree: (none) options for the subtree
Parents of Family 1

212

Person 5

id: pE identifier (also node alias)
fam: 1 enclosing family
chiof: (none) child of family
parof: 1 parent of family
x: 0.0pt x anchor E
y: 113.811pt y anchor (parent)
dim: 71.13188pt width (or height)
cwest@val: 0.0pt west contour value
cwest@next: (none) west contour successor
cwest@thread: (none) west contour thread
cwest@tgap: (none) west contour thread gap
ceast@val: 71.13188pt east contour value
ceast@next: (none) east contour successor
ceast@thread: (none) east contour thread
ceast@tgap: (none) east contour thread gap
Person 6
id: pF identifier (also node alias)
fam: 1 enclosing family
chiof: (none) child of family
parof: 1 parent of family
x: 76.82242pt 5 F
y: 113.811pt y anchor (parent)
dim: 71.13188pt width (or height)
cwest@val: 76.82242pt west contour value
cwest@next: (none) west contour successor
cwest@thread: (none) west contour thread
cwest@tgap: (none) west contour thread gap
ceast@val: 147.9543pt east contour value S
ceast@next: (none) east contour successor
ceast@thread: (none) east contour thread
ceast@tgap: (none) east contour thread gap
Childs of Family 1
Person 1
id: pB identifier (also node alias)
fam: 1 enclosing family
chiof: 1 child of family
parof: (none) parent of family
x: -72.5545pt x anchor B .
y: 0.0pt y anchor (child)
dim: 71.13188pt width (or height)
cwest@val: -72.5545pt west contour value
cwest@next: 5 west contour successor
cwest@thread: (none) west contour thread
cwest@tgap: (none) west contour thread gap
ceast@val: -1.42262pt east contour value
ceast@next: 6 east contour successor
ceast@thread: (none) east contour thread
ceast@tgap: (none) east contour thread gap

213

Person 2

id: pA identifier (also node alias)
fam: 1 enclosing family
chiof: 1 child of family
parof: (none) parent of family
x: 1.42264pt x anchor A
y: 0.0pt y anchor (proband)
dim: 71.13188pt width (or height)
cwest@val: 1.42264pt west contour value
cwest@next: (none) west contour successor
cwest@thread: (none) west contour thread
cwest@tgap: (none) west contour thread gap
ceast@val: 72.55452pt east contour value
ceast@next: 6 east contour successor
ceast@thread: (none) east contour thread
ceast@tgap: (none) east contour thread gap
Person 3
id: pC identifier (also node alias)
fam: 1 enclosing family
chiof: 1 child of family
parof: (none) parent of family
x: 75.39978pt x anchor C .
y: 0.0pt y anchor (child)
dim: 71.13188pt width (or height)
cwest@val: 75.39978pt west contour value
cwest@next: (none) west contour successor
cwest@thread: (none) west contour thread
cwest@tgap: (none) west contour thread gap
ceast@val: 146.53166pt east contour value S
ceast@next: 6 east contour successor
ceast@thread: (none) east contour thread
ceast@tgap: (none) east contour thread gap
Person 4
id: pD identifier (also node alias)
fam: 1 enclosing family
chiof: 1 child of family
parof: (none) parent of family
x: 149.37692pt z anchor D
y: 0.0pt y anchor (child)
dim: 71.13188pt width (or height)
cwest@val: 149.37692pt west contour value
cwest@next: (none) west contour successor
cwest@thread: (none) west contour thread
cwest@tgap: (none) west contour thread gap
ceast@val: 220.5088pt east contour value
ceastOnext: 6 east contour successor
ceast@thread: (none) east contour thread
ceast@tgap: (none) east contour thread gap

End of Genealogytree Processor Debugger

214

\gtrprocessordebuginput [(options)]{(file name)}
Loads the file denoted by (file name) and processes its content. If the content can be
processed without error, a structured list of the processed data is produced. The families
are automatically colored in the list. Any (options) are set for processing.

The following example uses the graph from Section 14.1 on page 257.

\gtrprocessordebuginput{example.option.graph}

Genealogytree Processor Debugger

Family 1
type: par type of family
id: SmithDoe identifier
fam: (none) enclosing family
offset: 0.0pt x (ory) offset relative to enclosing fam-
ily
pos: 7.11319pt y (or x) absolute position
cwest@anchor: 1 west contour starting node
ceast@anchor: 3 east contour starting node
g 1 g-node of the family
par: 4,7 parent nodes
chi: 1,2, 3 child nodes
patpar: 4, 7 patchwork parent nodes
patchi: 1, 2, 3 patchwork child nodes
union: (none) further partner families
ps: Opt pivot shift length (parents vs childs)
x: 0.0pt x anchor
y: (none) y anchor
frac: 0.5 line positioning fraction
opt@family: (none) options for the family
opt@subtree: (none) options for the subtree

Parents of Family 1

Person 4
id: John1980 identifier (also node alias)
fam: 2 enclosing family
chiof: 2 child of family
arof: 1 parent of family :
’ x: 38.41121pt x anchor John Smith
y: 113.811pt y anchor * 1980
dim: 71.13188pt width (or height)
cwest@val: 38.41121pt west contour value
cwestOnext: 5 west contour successor
cwest@thread: (none) west contour thread
cwest@tgap: (none) west contour thread gap
ceast@val: 109.54309pt east contour value
ceast@next: 6 east contour successor
ceast@thread: (none) east contour thread
ceast@tgap: (none) east contour thread gap

215

Person 7

id:

fam:

chiof:

parof:

X:

y:

dim:
cwest@val:
cwestOnext:
cwest@thread:
cwest@tgap:
ceast@val:
ceast@Onext:
ceast@thread:
ceastOtgap:

Jane1982
3

3

1
157.91275pt
113.811pt
71.13188pt
1.42264pt
9

(none)
(none)
72.55452pt
10

(none)
(none)

identifier (also node alias)
enclosing family

child of family

parent of family

x anchor

y anchor

width (or height)

west contour value

west contour successor
west contour thread

west contour thread gap
east contour value S
east contour successor

east contour thread

east contour thread gap

Jane Doe
%* 1982

Childs of Family 1

Person 1
id: Arth2008 identifier (also node alias)
fam: 1 enclosing family
chiof: 1 child of family
parof: (none) parent of family
x: 24.18484pt © anchor Arthur
y: 0.0pt y anchor * 2008
dim: 71.13188pt width (or height)
cwest@val: 24.18484pt west contour value
cwest@next: 4 west contour successor
cwest@thread: (none) west contour thread
cwest@tgap: (none) west contour thread gap
ceast@val: 95.31673pt east contour value
ceastOnext: 8 east contour successor
ceast@thread: (none) east contour thread
ceast@tgap: (none) east contour thread gap
Person 2
id: Bert2010 identifier (also node alias)
fam: 1 enclosing family
chiof: 1 child of family
parof: (none) parent of family
x: 98.16199pt x anchor Berta
y: 0.0pt y anchor * 2010
dim: 71.13188pt width (or height)
cwest@val: 98.16199pt west contour value
cwest@next: (none) west contour successor
cwest@thread: (none) west contour thread
cwest@tgap: (none) west contour thread gap
ceast@val: 169.29387pt east contour value
ceast@next: 8 east contour successor
ceast@thread: (none) east contour thread
ceast@tgap: (none) east contour thread gap

216

Person 3
id: Char2014 identifier (also node alias)
fam: 1 enclosing family
chiof: 1 child of family
parof: (none) parent of family
x: 172.13913pt anchor Charles
y: 0.0pt y anchor * 2014
dim: 71.13188pt width (or height)
cwest@val: 172.13913pt west contour value
cwest@next: (none) west contour successor
cwest@thread: (none) west contour thread
cwest@tgap: (none) west contour thread gap
ceast@val: 243.27101pt east contour value
ceast@next: 8 east contour successor
ceast@thread: (none) east contour thread
ceast@tgap: (none) east contour thread gap
Family 2
type: par type of family
id: Smith identifier
fam: 1 enclosing family
offset: Opt x (ory) offset relative to enclosing fam-
ily
pos: 120.9242pt y (or x) absolute position
cwest@anchor: 4 west contour starting node
ceast@anchor: 4 east contour starting node
g 4 g-node of the family
par: 5, 6 parent nodes
chi: 4 child nodes
patpar: 5, 6 patchwork parent nodes
patchi: 4 patchwork child nodes
union: (none) further partner families
ps: Opt pivot shift length (parents vs childs)
x: 0.0pt x anchor
y: (none) y anchor
frac: 0.5 line positioning fraction
opt@family: (none) options for the family
opt@subtree: (none) options for the subtree

Parents of Family 2

217

Person 5

id:

fam:

chiof:

parof:

X:

y:

dim:
cwest@val:
cwestOnext:
cwest@thread:
cwest@tgap:
ceast@val:
ceast@next:
ceast@thread:
ceastOtgap:

Person 6

id:

fam:

chiof:

parof:

X:

y:

dim:
cwest@val:
cwestOnext:
cwest@thread:
cwestQtgap:
ceast@val:
ceastOnext:
ceast@thread:
ceast@tgap:

GpSm1949

2

(none)

2

0.0pt
227.62201pt
71.13188pt
0.0pt
(none)
(none)
(none)
71.13188pt
(none)
(none)
(none)

GmSm1952
2

(none)

2
76.82242pt
227.62201pt
71.13188pt
76.82242pt
(none)
(none)
(none)
147.9543pt
(none)
(none)
(none)

Childs of Family 2

Person 4

id:

fam:

chiof:

parof:

X:

y:

dim:
cwest@val:
cwestOnext:
cwest@thread:
cwest@tgap:
ceast@val:
ceast@Onext:
ceast@thread:
ceastOtgap:

John1980
2

2

1
38.41121pt
113.811pt
71.13188pt
38.41121pt
5

(none)
(none)
109.54309pt
6

(none)
(none)

identifier (also node alias)

enclosing family

child of family

parent of family

x anchor

y anchor

width (or height)

west contour value
west contour successor
west contour thread
west contour thread gap
east contour value

east contour successor
east contour thread
east contour thread gap

identifier (also node alias)

enclosing family

child of family

parent of family

x anchor

y anchor

width (or height)

west contour value
west contour successor
west contour thread
west contour thread gap
east contour value

east contour successor
east contour thread
east contour thread gap

identifier (also node alias)

enclosing family

child of family

parent of family

x anchor

y anchor

width (or height)

west contour value
west contour successor
west contour thread
west contour thread gap
east contour value

east contour successor
east contour thread
east contour thread gap

218

Grandpa
Smith
* 1949

Grandma
Smith
% 1952

John Smith
% 1980

Family 3

type:
id:

fam:
offset:

pos:
cwest@anchor:
ceast@anchor:
g:

par:

chi:

patpar:
patchi:
union:

ps:

X:

y:

frac:
opt@family:
opt@subtree:

par
Doe

1
156.49011pt

120.9242pt
7
0

0

o = 00 =

8
7
9,
77
93
77
(none)

Opt
156.49011pt
(none)

0.5

(none)
(none)

Parents of Family 3

Person 9

id:

fam:

chiof:

parof:

X:

y:

dim:
cwest@val:
cwest@next:
cwest@thread:
cwestOtgap:
ceast@val:
ceastOnext:
ceast@thread:
ceast@tgap:

Person 10

id:

fam:

chiof:

parof:

X:

y:

dim:
cwest@val:
cwestOnext:
cwest@thread:
cwestOtgap:
ceast@val:
ceastOnext:
ceast@thread:
ceast@tgap:

GpDo1955
3

(none)

3
156.49011pt
227.62201pt
71.13188pt
0.0pt
(none)
(none)
(none)
71.13188pt
(none)
(none)
(none)

GmDo1956

3

(none)

3
233.31253pt
9227.62201pt
71.13188pt
76.82242pt
(none)
(none)
(none)
147.9543pt
(none)
(none)
(none)

type of family

identifier

enclosing family

x (ory) offset relative to enclosing fam-
ily

y (or x) absolute position

west contour starting node

east contour starting node

g-node of the family

parent nodes

child nodes

patchwork parent nodes

patchwork child nodes

further partner families

pivot shift length (parents vs childs)
x anchor

y anchor

line positioning fraction

options for the family

options for the subtree

identifier (also node alias)
enclosing family

child of family

parent of family

x anchor

y anchor

width (or height)

west contour value

west contour successor
west contour thread
west contour thread gap
east contour value

east contour successor
east contour thread
east contour thread gap

Grandpa
Doe
* 1955

identifier (also node alias)
enclosing family

child of family

parent of family

x anchor

y anchor

width (or height)

west contour value

west contour successor
west contour thread

west contour thread gap
east contour value

Grandma
Doe
%* 1956

east contour successor
east contour thread
east contour thread gap

219

Childs of Family 3

Person 7

id:

fam:

chiof:

parof:

X:

y:

dim:
cwest@val:
cwestOnext:
cwest@thread:
cwest@tgap:
ceast@val:
ceast@next:
ceast@thread:
ceast@tgap:

Person 8

id:

fam:

chiof:

parof:

X:

y:

dim:
cwest@val:
cwestOnext:
cwest@thread:
cwest@tgap:
ceast@val:
ceast@Onext:
ceast@thread:
ceastOtgap:

Jane1982
3

3

1
157.91275pt
113.811pt
71.13188pt
1.42264pt
9

(none)
(none)
72.55452pt
10

(none)
(none)

Harr1987
3

3

(none)
231.8899pt
113.811pt
71.13188pt
75.39978pt
(none)
(none)
(none)
146.53166pt
10

(none)
(none)

identifier (also node alias)
enclosing family

child of family

parent of family

x anchor

y anchor

width (or height)

west contour value

west contour successor
west contour thread
west contour thread gap
east contour value

east contour successor
east contour thread
east contour thread gap

identifier (also node alias)
enclosing family

child of family

parent of family

x anchor

y anchor

width (or height)

west contour value

west contour successor
west contour thread
west contour thread gap
east contour value

east contour successor
east contour thread
east contour thread gap

Jane Doe
% 1982

Uncle Harry
* 1987

End of Genealogytree Processor Debugger

220

11.3 Graphical Debugging

\gtrdebugdrawcontour{(options){{path options)}

After a \genealogytree % is drawn inside a tikzpicture environment, the

auto-layout contour lines of a family can be displayed with this macro. For
(options), the keys /gtr/debug/family number T 222 /gtr/debug/family id " F-222
/gtr/debug/contour 1?2 may be used to specify the family and the contour lines to
draw. The (path options) are used to draw a TikZ path.

e Contour lines for the root family should always be displayed correctly.

e Contour lines for embedded families may be displayed prolonged, because these
are used to build the contour lines of their embedding families. Note that
\gtrdebugdrawcontour shows the remains of the building process, but not the dy-
namics of the process.

e Contour lines for union families are not displayed, since they are melted to their
embedding child family.

\begin{tikzpicture}
\genealogytree[template=formal graph]
{
child{
g{P_1} p{P_2} c{C_1} c{C_2}
child{
g{C_3} p{P_3} c{C_4} c{C_5} c{C_6}
}
}
}
\gtrdebugdrawcontour{}{draw=blue,line width=2pt}
\end{tikzpicture}

P P

Ci||C2| | Cs || P3

Cs||Cs||Cs

221

/gtr/debug/family number=(number) (no default, initially 1)
Selects a family by (number) inside the option list of \gtrdebugdrawcontour 22!,

\begin{tikzpicture}
\genealogytree [template=formal graph,show family]
{
child{
g{P_1} p{P_2} c{C_1} c{C_2}
child{
g{C_3} p{P_3} c{C_4} c{C_5} c{C_63}
}
}
}
\gtrdebugdrawcontour{family number=2}{draw=blue,line width=2pt}
\end{tikzpicture}

|1||1|
|1||1 2||2
2||2||2

/gtr/debug/family id=(id) (no default, initially unset)
Selects a family by (id) inside the option list of \gtrdebugdrawcontour ~ 22!,

\begin{tikzpicture}
\genealogytree [template=formal graph,
options for family={fam_al}{box={colback=red!50}}]

{
child{
g{P_1} p{P_2} c{C_1} c{C_2}
child[id=fam_a]{
g{C_3} p{P_3} c{C_4} c{C_5} c{C_62}
}
}
}
\gtrdebugdrawcontour{family id=fam_a}{draw=blue,line width=2pt}
\end{tikzpicture}

P || P»

Ci||C21Cs || P

—

Cs||Cs5||Cs

222

/gtr/debug/contour=west|east|both|none (no default, initially both)
The two contour lines are always referred to as west and east contour lines independent of
the /gtr/timeflow "I %% setting. With this option, a partial contour drawing can be used.

\begin{tikzpicture}
\genealogytree [template=formal graph,
options for family={fam_a}{box={colback=blue!30}},
options for family={fam_b}{box={colback=red!30}},
]
{
child{
g{P_1} p{P_2} c{C_1} c{C_2}
child[id=fam_a]{
g{C_3} p{P_3} c{C_4} c{C_5} c{C_6}
}
child[id=fam_b]{
g{C_7} p{P_4} c{C_8%}
}
}
}
\gtrdebugdrawcontour{}{draw=green,line width=2pt}
\gtrdebugdrawcontour{contour=east,family id=fam_a}{draw=blue,line width=2pt}
\gtrdebugdrawcontour{contour=west,family id=fam_bl}{draw=red,line width=2pt}
\end{tikzpicture}

(71 (72 (73 1%3 (77 fﬁ

Cal|Cs5]1|C6] | Cs

223

\begin{tikzpicture}
\genealogytree[template=signpost]{
parent [id=myid]{
c[id=pBl{B\\(child)}
glid=pA,box={colback=red!20!white}]{A\\ (proband)}
c[id=pCIl{C\\(child)}
c[id=pD]{D\\(child)}
parent [id=partial,family={box={colback=red!5}}]{
g[id=pX]{X\\ (parent)}
p{a} p{B} c{C} c{D} c{E}
}
parent [id=partial2,family={box={colback=green!5}}]{
glid=pY]{Y\\ (parent)}
p{U} p{V}
}
}

}
\gtrdebugdrawcontour{family id=partial}
{preaction={draw=red,line width=1mm,opacity=.5},draw=red,line width=0.4pt}

\gtrdebugdrawcontour{family id=partial2}
{preaction={draw=green,line width=1mm,opacity=.5},draw=green,line width=0.4pt}

\gtrdebugdrawcontour{family id=myid}
{preaction={draw=blue,line width=1mm,opacity=.5,dashed},draw=blue,line width=0.4pt}

\end{tikzpicture}

A B U \%
| |
| T
X Y
(parent) (parent)
7
| |
| | | |
B A C D
(child) (proband) (child) (child)

224

11.4 Show Information

Note that most options in this section only work, if a /gtr/processing ! !¢ based on a box
from the tcolorbox package is chosen (this is the default setting).

/gtr/show=(text) (style, no default)

Shows a (text) overlay for each node of the tree.

\begin{tikzpicture}
\genealogytree[template=signpost,show={Test}]

{input{example.option.graph}}
\end{tikzpicture}

T

[(
Test lTest lTest

T |

I I I
(

((1
lTestI Test lTestJ

L

/gtr/show id (style, no value)

Shows the /gtr/id " values of every node and every family. This can be very valuable
not only for debugging, but also for visual identification of nodes to manipulate.

\begin{tikzpicture}

\genealogytree [template=signpost,show id]
{input{example.option.graph}}

\end{tikzpicture}

[(randna][Grandma] [(Grandna [Grandma]
GpSm1949 GmSm1952 GpDol1955 GmDo1956

l * 1949 Jl * 1952 Jl * 1900 l * 1956 J

Smith Doe

225

/gtr/show level (style, no value)

Shows the level numbers of every node. This information can be used for setting
/gtr/level "T9 and /gtr/level n 1%,

\begin{tikzpicture}
\genealogytree [template=signpost,show level]

{input{example.option.graph}}
::;E!
—

\end{tikzpicture}

J

L

o slle
1] [

(style, no value)

Shows the internal numbers of every node and every family. It is strongly recommended

to reference a node by a chosen /gtr/id ""®0 and not by its internal number, because
numbers may easily change when editing the tree.

—

/gtr/show number

\begin{tikzpicture}
\genealogytree[template=signpost,show number]
{input{example.option.graphl}}

516119]10
[

4) (718

226

/gtr/show family (style, no value)
Shows the internal family numbers each node belongs to. A g node can be part of many
families, but only one family is the enclosing family. For a union family, the family number
is displayed, but the enclosing family is the family of the g node.

\begin{tikzpicture}

\genealogytree [template=signpost,show family]
{input{example.option.graphl}}

\end{tikzpicture}

313
I S
313

1
|

ATATA

/gtr/show type (style, no value)
Show the node type for every node.

\begin{tikzpicture}
\genealogytree[template=signpost,show typel]

{input{example.option.graph}}
\end{tikzpicture}

Unc Ty
d
3

Jol i
1g)

227

228

12

Templates: Library fltemplates

The library is loaded by a package option or inside the preamble by:

\gtruselibrary{templates}

12.1 Using Templates

/gtr/template=(name) (style, no default)
Sets a predefined style (name) for a genealogytree graph. A template does not provide
new functionality, but combines various options for specific trees, e.g., used inside this
documentation. It serves as a shortcut. If a template is used, it is recommended to apply
it as very first option.

12.2 Template 'formal graph’

template=formal graph

This style is based on /gtr/processing " 10=tcbox*. The box content is set as formula in

mathematical mode. For further examples, see Section 5.3 on page 71.

\begin{tikzpicture}
\genealogytree[template=formal graph]{
child{
g{P_1} P,
p{P_2}
c{C_1}

c{c_2}
c{C_3} (71 (72 (73

}
}
\end{tikzpicture}

229

12.3 Template 'signpost’

template=signpost

—P.116

This style is based on /gtr/processing =fit. For further examples, see Section 5.2 on

page 68 and many more.

\begin{tikzpicture}
\genealogytree [template=signpost]{
child{ Father Mother

g{Father}
p{Mother} | |
c{Child 1}
c{Child 2} | | |
c{Child 3}

} Child 1 Child 2 Child 3

}
\end{tikzpicture}

12.4 Template 'symbol nodes’

template=symbol nodes

This style is based on /gtr/processing ~ I 19=tcbox*. For the content, a single token m selects
a male node (also male), a single token f selects a female node (also female), and every other
token selects a neuter node. The symbol coloring with \gtrSymbolsSetCreateSelected ~ 2%
has to be done before entering a tikzpicture environment.

\gtrSymbolsSetCreateSelected{blue}{Male}
\gtrSymbolsSetCreateSelected{red}{Female}
\gtrSymbolsSetCreateSelected{black}{Neuter}
\begin{tikzpicture}
\genealogytree[template=symbol nodes]{

, 29
EY IR OEO B
oJelEIolE

child{gm pf cm c- cm}
}
}
\end{tikzpicture}

230

12.5 Template 'tiny boxes’

template=tiny boxes

This style is based on /gtr/processing " 1=tcbox*. The content of all boxes is removed.
Therefore, a single token like ’-’ is enough to declare the content. For further examples, see
Chapter 13 on page 247.

\begin{tikzpicture}
\genealogytree[template=tiny boxes]{
child{
g-p-c-
child{g-p-c-c-}
child{g-p-c-c-c-}
}
}
\end{tikzpicture}

12.6 Template ’'tiny circles’

template=tiny circles

This style is based on /gtr/processing ~" 0=tcbox*. The content of all boxes is removed.
Therefore, a single token like '~ is enough to declare the content. All distances are set equally
and edges are drawn meshed. For further examples, see Chapter 13 on page 247.

\begin{tikzpicture}
\genealogytree[template=tiny circles]{
child{
g-c-
child{g-c-c-}
child{g-c-c-c-}
}
}
\end{tikzpicture}

231

12.7 Template 'directory’

template=directory

This style is based on /gtr/processing I "O=tcbox* and sets /gtr/timeflow " ®=left.
Note that optimal level sizes have to be set manually.

\begin{genealogypicture} [template=directory,
level O0/.style={level size=11mm},
level -1/.style={level size=11mm},
level -2/.style={level size=15mm},
level -3/.style={level size=31mm},
level -4/.style={level size=62mm},
]
child{ g{tds}
child[subtree box={colback=green!20}]{ g{doc}
child{ g{latex}
child{ g{genealogytree}
c{genealogytree.pdf}
c{genealogytree.doc.sources.zip}
c{README}
}
}
}
child[subtree box={colback=red!15}1{ g{tex}
child{ g{latex}
child{ g{genealogytree}
c{genealogytree.sty}
c{gtrcore.*.code.tex}
c{gtrlang.*.code.tex}
c{gtrlib.*.code.tex}
}
}
}
}
\end{genealogypicture}

- genealogytree.pdf
- doc/ — latex/ — genealogytree/ -4 genealogytree.doc.sources.zip

~ README

tds/ H
/ - genealogytree.sty

- gtrcore.*.code.tex
L tex/ — latex/ — genealogytree/ -
- gtrlang.*.code.tex

- gtrlib.*.code.tex

232

12.8 Template 'database pole’

template=database pole

This style is based on /gtr/processing ~ ' '=database. and sets

/gtr/database format T 1%9=full marriage above.

The boxes are quite small for placing many nodes horizontally. Also, many settings are adapted
for this style.

The following example uses a file documented in Section 14.2 on page 258.

Charles Smith) [@ 2.111.1742 in |
% ca. 1722 in London
London
2= 13.1IV.1722 in
London
% 12.X.1764
Copper smith,
soldier

Jane Bowden
* ca. 1724

1 7.VI1.1802 in
New York

\begin{genealogypicture}
[template=database pole] T T
input{example.database.graph} [| |

end{genealo icture Abraham Elizabeth “Liz” Michael Smith

\ e &yp ¥ Bowden Smith *1 1.111.1758

(%) 4.1.1740 in * 2.11.1744 in
London London

T 23.11.1740 in 1t 12.IV.1812 in
London Boston

Had a store in
Boston

The next example uses the graph data from Section 2.3.5 on page 37.

233

\begin{genealogypicture} [template=database pole,tikzpicture={scale=0.9,transform shape}]
input{example.gauss.graph}
\end{genealogypicture}

1 15.1V.

;

in Volkenrode
(Niedersachen)

Vélkenrode
(Niedersachen)

1749 in

I_'_I

Hinrich Gooss | [@ 24.X1.1705) Andreas
* ca. 1655 in Vélkenrode Bentze
t25.X.1726 in | | (Niedersachen) * 11.1687
Vélkenrode " Katharina t ca. 1750 in
(Niedersachen) f.. ";’""a Velpke
3 (Niedersachsen)
* 19.VIII.1674

——

—

Jiirgen Gooss ® ca. 1735 in | Christoph Katharina
* 1715 in Vélkenrode Bentze Krone
Vélkenrode (Niedersachen) * 1717 in * ca. 1710

(Niedersachen) — Velpke 1 after 1743 in

+ 5.VIL1774 in aeathatina (Niedersachsen) Velpke

Braunschweig E 28 a:.ena 1 1.1X.1748 in (Niedersachsen)

(Niedersachsen) ggenings Velpke
Lehmmaurer & Cs' 1}h710 n (Niedersachsen)
ethen - Steinhauer
1 3.IV.1774 in
Braunschweig
(Niedersachsen)
Gebhard @ 25.1V.1776
Dietrich GauB3 in Velpke
% 13.11.1743 in (Niedersachsen)
Braunschweig —_—
(Niedersachsen) Dorothea
t 14.1V.1808 in Senze g
Braunschweig * 18.VI.1743 in
(Niedersachsen) . Velpke
Girtner, (Niedersachsen)
Wasserkunst- 118.1V.1839 in
meister, Gottingen
Rechnungs- (Niedersachsen)
fiihrer Steinhauers-
tochter

)

I

(@ 9.X.1805 in | Johann Carl [@ 14.VII1.1810
Braunschweig Friedrich GauB in Gottingen
(Niedersachsen) | | % 30.IV.1777 in | | (Niedersachsen)
Johanna (Eir:;;ssi‘;]v:;%) Friederica
Elisabeth q Wilhelmine
Rosina Osthoff v 2G30Itlt|%18g5e?1 n Waldeck
ié 8,V.17hSO in (Niedersachsen) * 1é).|V.1788 in
raunschweig 9 ottingen
(Niedersachsen) Mzwtsi;tignnz%(er, (Niedersachsen)
1 11.X.1809 in CrEr 0 1 12.1X.1831 in
Gottingen Physiker Gottingen
(Niedersachsen) (Niedersachsen)
WeiBgerber- Rechtswis-
stochter senschaftler-
stochter
|] I l
I | | p 1
Carl Joseph Wilhelmina Ludwig GauB3 Eugen Peter Wilhelm Henriette
GauBB GauBB * 10.1X.1809 in Samuel Marius August Carl Wilhelmine
% 21.VI111.1806 % 29.11.1808 in Géttingen GauB Matthias GauB Karoline
in Braunschweig Gattingen (Niedersachsen) * 29.VI1.1811 * 23.X.1813 in Therese GauB
(Niedersachsen) (Niedersachsen) + 1.111.1810 in in Gottingen Géttingen * 9.VI.1816 in
1 4.VI1.1873 in 1 12.VI11.1840 Géttingen (Niedersachsen) (Niedersachsen) Géttingen
Hannover in Tiibingen (Niedersachsen) | | * 4.VI1.1896 in +23.VI11.1879 (Niedersachsen)
(Niedersachsen) (Baden- Columbia in St. Louis 1 11.11.1864 in
Wiirttemberg) (Missouri) (Missouri) Dresden
Rechtswis- (Sachsen)
senschaftler,
Kaufmann
\ \

234

12.9 Template 'database portrait’

template=database portrait
This style is based on /gtr/processing " '1®=database and sets
/gtr/database format T 14%=short no marriage.

The boxes are quite small for placing many nodes horizontally. Also, many settings are adapted
for this style. If /gtr/database/image "I %! is present, the corresponding image is inserted.
Otherwise, a symbolic portrait is drawn.

\begin{genealogypicture}
[template=database portrait]

child{ H Test
g{male,name=Hans Test, *-EﬁLEéo Berta
birth={1520-02-17}{Footown}, t 12xi.1s8s || T 21111592

death={1588-12-12}{Footown}}
p{female,name=Berta,

death={1592-03-02}{Footown}}
c{name=Unknown,

birth+={1553-01-12}{Footown}
{stillborn}}
}

\end{genealogypicture}

Unknown
1% 12.1.1553

N

The next example uses the graph data from Section 2.3.5 on page 37.

235

\begin{genealogypicture} [template=database portrait]
input{example.gauss.graph}
\end{genealogypicture}

L Katharina Andreas
H_":"lCh 1(;';;(;55 Liitken Bentze
T 2‘;3)'(1726 * 19.VIII.1674 * 111687
e 1 15.1V.1749 t ca. 1750
& J N—
Katharina - :
Jiirgen Gooss Magdalena ng's‘:ggh KaKt::)a':';na
* 1715 Eggenlings
+ 5.VI1.1774 * ca. 1710 * 1717 % ca. 1710
’ ’ +3.1V.1774 T 1.1X.1748 1 after 1743

|
»
P

Gebhard Dorothea
Dietrich GauB Benze
% 13.11.1743 % 18.VI1.1743
1 14.1vV.1808 1 18.1V.1839

—
-
P

Johanna Friederica
Elisabeth Rosina || Jehann Carl Wilhelmine
Friedrich GauB3
Osthoff * Y, Waldeck
* 8.V.1780 30.1V.1777 * 15.1V.1788
+ 11.X.1809 t23.11.1855 +12.1X.1831

¢

L)
4

I

i i Eugen Peter Wilhelm August Henriette
Caré:gsﬁeph W’Z’:L’gma Ludwig GauBl Samuel Marius Carl Matthias DI
* 21.VIII1806 | | % 29.11.1808 * 10.1X.1809 GauB Gaub GauB
+ 4.V11.1873 + 12.VI11.1840 + 1.111.1810 * 29.VI1.1811 * 23.X.1813 * 9.VI.1816
T . . t 4.VI1.1896 1 23.VII1.1879 +11.11.1864

\

J

236

12.10 Template 'database traditional’

template=database traditional

—P.116

This style is based on /gtr/processing =database, sets

/gtr/database format ' !'49=short no marriage and /gtr/timeflow 68

=down .

Using this template, a sober black-and-white drawing with only short information is created.
The box content is not framed.

e For p nodes, the content is bottom aligned.
e For c nodes, the content is top aligned.

e For g nodes, the content is center aligned. While this is usally reasonable, g nodes in
families without childs or parents may have to be adapted manually. The the root node
is treated automatically.

The following example uses a file documented in Section 14.2 on page 258.

Charles Smith Jane Bowden

\begin{genealogypicture}[* ca. 1722 * ca. 1724
template=database traditiomal, % 12.X.1764 t7.V11.1802
level size=1.3cm] (L i J)
input{example.database.graph} Abraham Bowden Elizabeth “Liz” Michael Smith
\end{genealogypicture} (%) 4.1.1740 Smith *t 1.111.1758
1 23.11.1740 * 2.11.1744
1 12.1vV.1812

The next example uses the graph data from Section 2.3.5 on page 37.

\begin{genealogypicture}[template=database traditional,
level size=1.2cm,node size=2.2cm,date format=yyyy,list separators={\par}{ }{}{}]
input{example.gauss.graph}

\end{genealogypicture}

Hinrich Gooss Katharina Liitken Andreas Bentze
* ca. 1655 T 1726 * 1674 t 1749 % 1687 T ca. 1750
Katharina
Jiirgen Gooss Magdalena Christoph Bentze Katharina Krone
% 1715 t 1774 Eggenlings % 1717 + 1748 % ca. 1710 t after
% ca. 1710 t 1774 1743

—T —T

Gebhard Dietrich Dorothea Benze

GauB
% 1743 + 1808 * 1743 T 1839

[

. Johann Carl F{iederi_ca
Johanna Elisabeth Friedrich GauB Wilhelmine

Rosina Osthoff Waldeck
* 1780 + 1809 * 1777 1 1855 * 1788 t 1831

f [R S—

{ 1 |
Carl Joseph GauB3 Wilhelmina GauB3 Ludwig GauB Eugen Peter Wilhelm August Henriette
* 1806 t 1873 * 1808 t 1840 * 1809 t 1810 Samuel Marius Carl Matthias GauB Wilhelmine Karoline
Gau3 * 1813 T 1879 Therese GauB
% 1811 t 1896 % 1816 t 1864

237

12.11 Template 'ahnentafel 3’

template=ahnentafel 3

This style is based on /gtr/processing " 19=database and sets /gtr/timeflow ' ¥=left.

Note that this style is very restrictive and its sole intended use is to easily set up predefined
ancestor tables with three generations of ancestors. One should apply only parent, p, and g
constructs which gives a binary tree.

\begin{genealogypicture} [template=ahnentafel 3,empty name text={},
date format=d mon yyyy
]
parent{
g{male,name=\pref{Frederik} \surn{Smith},
birth={1900-01-01}{New York},death={1970-01-01}{New York},
marriage={1929-01-01}{New York},comment={Used Cars Salesman}}
parentq{
g{male,name=\pref{Ernest} \surn{Smith},
birth={1870-02-02}{London},death={1940-02-02}{London},
marriage={1899-02-02}{London}, comment={Milkman}}
parentq{
g{male,name=\pref{Dominik} \surn{Schmidt},
birth={1840-03-03}{Berlin},death={1910-03-03}{London},
marriage={1869-03-03}{Berlin}, comment={Bakerl}}
p{male,name=\pref{Christian} \surn{Schmied},
birth={1810-04-04}{Vienna},death={1870-04-04}{Vienna},
marriage={1839-04-04}{Vienna}, comment={Blacksmith}}
p{female}
}
parent{ g{female} insert{gtrparenti} }
}
parent{ g{female} insert{gtrparent2} }
}
\end{genealogypicture}

238

N

(Ernest SMITH

% 2 Feb 1870 in London

@ 2 Feb 1899 in
London

T 2 Feb 1940 in London

Milkman

(Frederik SMiTH

% 1 Jan 1900 in New
York

@ 1 Jan 1929 in New
York

1t 1 Jan 1970 in New
York

Used Cars Salesman

[Dominik SCHMIDT

% 3 Mar 1840 in Berlin

@ 3 Mar 1869 in
Berlin

T 3 Mar 1910 in
London

Baker

Christian SCHMIED

% 4 Apr 1810 in Vienna
@ 4 Apr 1839 in Vienna
1t 4 Apr 1870 in Vienna

Blacksmith

12.12 Template 'ahnentafel 4’

template=ahnentafel 4

This style is based on /gtr/processing " 19=database and sets /gtr/timeflow ' ¥=left.

Note that this style is very restrictive and its sole intended use is to easily set up predefined
ancestor tables with four generations of ancestors. One should apply only parent, p, and g
constructs which gives a binary tree. Since the first parent generation is shifted, the diagram
should always contain mother and father of the proband to avoid overlapping.

\begin{genealogypicture} [template=ahnentafel 4,empty name text={},
date format=d mon yyyy
]
parent{
g{male,name=\pref{Frederik} \surn{Smith},
birth={1900-01-01}{New York},death={1970-01-01}{New York},
marriage={1929-01-01}{New York},comment={Used Cars Salesman}}
parentq{
g{male,name=\pref{Ernest} \surn{Smith},
birth={1870-02-02}{London},death={1940-02-02}{London},
marriage={1899-02-02}{London}, comment={Milkman}}
parentq{
g{male,name=\pref{Dominik} \surn{Schmidt},
birth={1840-03-03}{Berlin},death={1910-03-03}{London},
marriage={1869-03-03}{Berlin}, comment={Baker}}
parentq{
g{male,name=\pref{Christian} \surn{Schmied},
birth={1810-04-04}{Vienna},death={1870-04-04}{Vienna},
marriage={1839-04-04}{Vienna}, comment={Blacksmith}}
p{male,name=\pref{Bartholom\"aus} \surn{Schmid},
birth={1780-05-05}{Eger},death={1840-05-05}{Eger},
marriage={1809-05-05}{Eger}, comment={Blacksmith}}
p{female}
}
parent{ g{female} insert{gtrparenti} }
}
parent{ g{female} insert{gtrparent2} }
}
parent{ g{female} insert{gtrparent3} }
}
\end{genealogypicture}

240

Bartholomdus SCHMID
* 5 May 1780 in Eger
@ 5 May 1809 in Eger

Christian SCHIIVIIED. t 5 May 1840 in Eger
'Domim'k SCHMIDT) :Diippfr 11881if9l?r1\</1ieennnnaa Blacksmith
* 3 Mar 1840 in Berlin | |+ 4 Apr 1870 in Vienna
@ 3 Mar 1869 in Blacksmith
Berlin
1 3 Mar 1910 in
London
Baker
(Ernest SMiTH)
% 2 Feb 1870 in London
@ 2 Feb 1899 in L)
London
T 2 Feb 1940 in London
Milkman

(Frederik SmiTH

% 1 Jan 1900 in New
York .

@ 1 Jan 1929 in New
York

t 1 Jan 1970 in New

York
Used Cars Salesman

12.13 Template 'ahnentafel 5’

template=ahnentafel 5

This style is based on /gtr/processing " 19=database and sets /gtr/timeflow ' ¥=left.

Note that this style is very restrictive and its sole intended use is to easily set up predefined
ancestor tables with five generations of ancestors. One should apply only parent, p, and g
constructs which gives a binary tree. Since the first parent generation is shifted, the diagram
should always contain mother and father of the proband to avoid overlapping.

\begin{genealogypicture}[template=ahnentafel 5,empty name text={},
date format=d mon yyyy
]
parent{
g{male,name=\pref{Frederik} \surn{Smith},
birth={1900-01-01}{New York},death={1970-01-01}{New York},
marriage={1929-01-01}{New York},comment={Used Cars Salesman}}
parent{
g{male,name=\pref{Ernest} \surn{Smith},
birth={1870-02-02}{London},death={1940-02-02}{London},
marriage={1899-02-02}{London}, comment={Milkman}}
parentq{
g{male,name=\pref{Dominik} \surn{Schmidt},
birth={1840-03-03}{Berlin},death={1910-03-03}{London},
marriage={1869-03-03}{Berlin}, comment={Baker}}
parentq{
g{male,name=\pref{Christian} \surn{Schmied},
birth={1810-04-04}{Vienna},death={1870-04-04}{Vienna},
marriage={1839-04-04}{Vienna}, comment={Blacksmith}}
parent{
g{male,name=\pref{Bartholom\"aus} \surn{Schmid},
birth={1780-05-05}{Eger},death={1840-05-05}{Eger},
marriage={1809-05-05}{Eger}, comment={Blacksmith}}
p{male,name=\pref{Abraham} \surn{Schmid},
birth={1750-06-06}{St. Joachimsthall},death={1810-06-06}{Eger},
marriage={1779-06-06}{Eger}, comment={Miner}}
p{female}
}
parent{ g{female} insert{gtrparenti} }
}
parent{ g{female} insert{gtrparent2} }
}
parent{ g{female} insert{gtrparent3} }
}
parent{ g{female} insert{gtrparent4} }
}
\end{genealogypicture}

242

(Ernest SMiTH

% 2 Feb 1870 in
London

@ 2 Feb 1899 in
London

1 2 Feb 1940 in
London

Milkman

(Dominik SCHMIDT

% 3 Mar 1840 in
Berlin

@ 3 Mar 1869 in
Berlin

1t 3 Mar 1910 in
London

Baker

(Prederik SMiTH

% 1 Jan 1900 in New
York

@ 1 Jan 1929 in New
York

1t 1 Jan 1970 in New
York

Used Cars Salesman

\

Christian SCHMIED

* 4 Apr 1810 in
Vienna

@ 4 Apr 1839 in
Vienna

1t 4 Apr 1870 in
Vienna

Blacksmith

Bartholomdus SCHMID

* 5 May 1780 in Eger,
@ 5 May 1809 in Eger,
t 5 May 1840 in Eger.

Blacksmith

Abraham SCHMID, * 6 Jun 1750 in
St. Joachimsthal, @ 6 Jun 1779
in Eger, T 6 Jun 1810 in Eger.

12.14 Predefined Colors of the Library

The following colors are predefined. They are used as default colors in some templates.

- gtr_Blue_2 gtr_Blue_3
gtr_Blue_4 gtr_Blue_5 ‘ gtr_Blue_6
gtr_Bright_Red gtr_Peach_Back gtr_Peach_Frame

‘ gtr_Yellow_Back gtr_Yellow_Frame ’

gtr_Blue_1

12.15 Auxiliary Control Sequences

\gtrparent1l
This control sequence inserts a pair of parents with content male and female.

\begin{genealogypicture}

[template=symbol nodes]

parent{ m @
g{male}
insert{gtrparenti1}

) ke

\end{genealogypicture}

\gtrparent2
This control sequence inserts two generations of parents with content male and female.

\begin{genealogypicture} m @ m @

[template=symbol nodes]
parent{

g{male} E @

insert{gtrparent2}
}
\end{genealogypicture} E

\gtrparent3
This control sequence inserts three generations of parents with content male and female.

e — P9HQHOPP

[template=symbol nodes]
parent{ m @ ﬂ @

g{male}

insert{gtrparent3}
} i ©
\end{genealogypicture}

244

\gtrparent4
This control sequence inserts four generations of parents with content male and female.

\begin{genealogypicture}
[template=symbol nodes]
parent{

g{male}
insert{gtrparent4}
}
\end{genealogypicture}

R A R R

g @ g ® g ® ¢ @
& ©) el @

c P

\gtrparent5

This control sequence inserts five generations of parents with content male and female.

\gtrparent6
This control sequence inserts six generations of parents with content male and female.

\gtrparent7
This control sequence inserts seven generations of parents with content male and female.

\gtrDrawSymbolicPortrait
Inserts TikZ code to draw a symbolic portrait. The colors are frame and back color of a
tcolorbox. Therefore, the intended application is inside a tcolorbox.

\begin{tcolorbox} [enhanced,width=2.5cm,height=4cm,
title=Test,halign title=center,
colframe=green!25!black,colback=yellow!50,
underlay={\begin{tcbclipinterior}/

\path[fill overzoom picture=\gtrDrawSymbolicPortrait]
(interior.south west) rectangle (interior.north east);
\end{tcbclipinterior}}]
\end{tcolorbox}

Test

245

246

13

Auto-Layout Algorithm

13.1 Preliminaries

As discussed before in Chapter 1 on page 7 and Chapter 4 on page 51, genealogy trees can be
considered as rooted ordered trees of unbounded degree with annotations. Therefore, an auto-
layout algorithm for genealogy trees should be some extension of a known algorithm for tree
layout which considers the family-centric approach.

The basic ideas for aesthetic properties and implementation are taken from Reingold and Tilford
[2], Walker [5], and Buchheim, Jiinger, and Leipert [1]. To dampen expectations early, the
actual implementation is some extended Reingold and Tilford algorithm and does not consider
the aesthetic balancing of small subtrees as presented in more recent research. There are multi-
fold reasons for this ranging from performance and implementation complexity considerations
in pure ITEX to the simply question, if balancing is needed or even obstructive for this special
application. We will come back to this later.

13.1.1 Aesthetic Properties

First, let us consider aesthetic properties which are usually desired when drawing trees. The
following wording is intended for vertically (mainly top-down) oriented trees:

(A1) The y coordinate of a node is given by its level.

(A2) The edges do not cross each other and nodes on the same level have a minimal horizontal
distance.

(A3) Isomorphic subtrees are drawn identically up to translation.
(A4) The order of the children of a node is displayed in the drawing.
(A5) The drawing of the reflection of a tree is the reflected drawing of the original tree.

Some of these properties cannot be guaranteed by the implementation and some are even violated
deliberately.

247

13.1.2 Genealogy Trees

In supplement to typical graph theory notions, there is the additional family term for genealogy
trees:

(G1) A family is an ordered set of parent nodes and child nodes.

(G2) All parent nodes of a family are connected with edges to all child nodes of the same family.
(G3) A node is child to zero or none family and is parent to zero or arbitrary many families.

These three properties alone would allow to construct genealogy graphs since they do not restrict
to a tree-like structure.

A parent node of a family is called a leaf, if it is not child to another family. A child node of a
family is called a leaf, if it is not parent to another family.

For genealogy trees, the graph is required to be connected and to comply with exactly one of the
following requirements:

(G4a) All child nodes of a family are leaf nodes with exception of at most one (parent tree).

family 3 %

| 0 .

family 2 — —— family 4
0 0

famlly 1 (I'OOt) — \Wl

(G4b) All parent nodes of a family are leaf nodes with exception of at most one (child tree).

family 1 (root) — ﬁg ? . family 3
family 2 E—E H‘E‘?DD family 4
amily 2 — - lamily

Finally, we always consider rooted graphs. If (G4a) is fulfilled, there has to be a root family
where all child nodes of a family are leaf nodes. If (G4b) is fulfilled, there has to be a root family
where all parent nodes of a family are leaf nodes.

It is quite obvious that there are genealogy trees fulfilling (G1)—(G4) which cannot comply with
(A2). Edge crossing is quite likely, but should still be minimized. The minimal distance of nodes
on the same level may be deliberately different to emphasize different node affiliations.

13.1.3 Graph Grammar

Genealogy trees fulfilling (G1)—(G4) are described by the graph grammar of Chapter 4 on page 51.
This given grammar is certainly not without alternative. Also, there are child trees fulfilling
(G1)—(G4b) which cannot be represented in this grammar.

e parent constructs including g, c, and p represent parent trees fulfilling (G1)—(G4a).
e child constructs including g, c, p, and union represent child trees fulfilling (G1)—(G4b).

e sandclock constructs are an extension. They are a handy combination of a parent tree
and a child tree.

e Nodes which are parent to one family and child to another family are g-nodes.

e The root node of a parent tree or child tree is the g-node of the root family.

248

13.2 Requirements

The aesthetic properties (A1)—(A5) are generally desired for the implemented auto-layout algo-
rithm. While (A1), (A3), and (A4)! are considered to be fulfilled, (A2) cannot be guaranteed
for child tree. This was discussed before and can be seen explicitly in Section 13.2.2 on page 250.
Property (A5) is loosely considered in the following alignment requirements, but is not covered
by special algorithmic efforts. Besides the effects known from the Reingold and Tilford [2] algo-
rithm, there are additional violations of reflections for edge drawing; also see Section 13.2.2 on
page 250 for this.

13.2.1 Parent and Child Alignment

The following wording is intended for top-down oriented trees, but applied analogously for other
growing directions.

For a family, the parent nodes and the child nodes should be placed centered to each other. This
means that the center point of all parents should be vertically in congruence with the center
point of all children.

Here, every parent is parent of just one family. If a parent node is parent to more than one
family, see Section 13.2.2 on page 250.

The parent nodes (red) are placed centered above the child nodes
(blue).
oln The center points for children and parents are computed as the half

way between the center of the leftmost node and the center of the
O] rightmost node.

Even, if a node is member of another family, only the center of the
node itself is considered for alignment.

Even, if a node is member of another family, only the center of the
node itself is considered for alignment.

Even, if a node is member of another family, only the center of the

node itself is considered for alignment.

!One can argue about fulfillment of (A4). The graph grammar restricts children of union constructs to be
grouped together while the children of the embedding child can be placed freely. The algorithm displays the
order of the children as far as it is described by the grammar, but one could construct trees fulfilling (G1)—(G4b)
which cannot by described by the grammar.

249

13.2.2 Patchwork Families

If a parent node is parent to more than one family, this is described by a child construct which
embeds one or more union constructs. The g-node of the child family is also the implicit
g-node of all union families. In this case, the combination of the child family with all directly
embedded union families is called the patchwork family of the g-node which is parent to all
children of the patchwork family.

The parent and child alignment considered in Section 13.2.1 on page 249 is now done for the
whole patchwork family. This means that the center point of all parents should be vertically in
congruence with the center point of all children of the patchwork family.

While node placement is a straightforward extension to Section 13.2.1 on page 249, edge place-
ment is more difficult since edge crossing is quite likely. Therefore, the interconnections are to
be separated vertically. This does not hinder crosspoints, but reduces the probability for lines
lying on other lines.

The fulfillment of this requirement results in a best-effort algorithm. The following still small
example gives a highlight on the vast amount of possible edge configurations for complex patch-
work families.

Edge Varieties for Families with Unions
Consider a child family with three children together with a union with two children, e.g.
child{
g-p-c-c-Cc—

union{p-c-c-}

}

Depending on the order of the nodes, here, there are 16 different edge configurations:

T

L,
0

g
§3054
SLoba
ST ba

i
ﬂ%
Slabd
Py
STibd
Tabd

250

S5 bd
S84 5d
Seabd
52053
Seba
s&aba

sEEh]

13.2.3 Graph Growing Direction

The wording used in this chapter applies to top-down oriented trees, but the auto-layout algo-
rithm should consider all four standard directions for graph growing.

é%
00

top—down bottom-up

iy @@?

éééé

right to left left to right
hH —J
(O . . —
oo [=
o 210
- —

The graph growing direction can be selected by setting the /gtr/timeflow "% option appro-
priately.

251

13.3 Algorithmic Steps

The following steps use the notations for child trees which grow top-down.

13.3.1 Recursive Family and Node Placement

The tree is constructed recursively in a bottom-up flow. The y-coordinate of a family is given
by the current level while the z-coordinate is computed as relative offset to the enclosing family.
This offset is initially Opt.

During processing for a child family, every enclosed child and union is worked on recursively to
construct their corresponding subtrees independently. This results in a list of children subtrees
where the direct children of the original child family are the root g-nodes. This list also contains
leaf child nodes and all direct leaf child nodes and child subtrees for all enclosed union families.

After the construction of this children list with all their subtrees, each leaf or subtree is placed
step by step as close as possible to the right of the already placed last leaf or subtree. The
placement is stored into the offset value of a subtree or directly for a leaf node.

The same procedure applies to the parent nodes of the original child family but with reduced
complexity since all parents are leaf nodes.

Finally, the center points (pivot points) of all placed children and analogously of all placed
parents are computed. All parents are shifted to get both points to congruence?.

This concludes the computation for the current child family.

13.3.2 Contours

The core of the algorithm is to place one subtree (or leaf node) as close as possible to the right
of another subtree (or leaf node). This is done following the ideas of Reingold and Tilford [2]
by housekeeping contours for subtrees. Every child family keeps an anchor to a starting node
for its west contour and its east contour. The west contour is the sequence of all leftmost nodes
in the whole subtree, while the east contour is the sequence of all rightmost nodes in the whole
subtree.

Every node itself has a west contour value and an east contour value describing the relative
z-coordinate of the left and right border of this node in relation to its enclosing family.

When a west contour is followed starting from its anchor, the next node in the west contour
after the current contour node is the leftmost leaf (patchwork) child or the parent node of the
very first (patchwork) child, if the current node is no leaf node. Otherwise, a thread is used to
note the next node plus a thread gap which is saved for housekeeping.

anchor of the west contour, anchor of the east contour

5

thread ™, ' thread

fhread
A

2As described in detail in this document, this algorithm can be adapted with various option settings, e.g. to
change the pivot alignment procedure

252

Analogously, when an east contour is followed starting from its anchor, the next node in the
east contour after the current contour node is the rightmost leaf (patchwork) child or the parent
node of the very last (patchwork) child, if the current node is no leaf node. Otherwise, a thread
is used to note the next node plus a thread gap.

For direct children or child families, the relative position is known or computed by the family
offset values and the stored contour values. For nodes on a thread, this cannot be done and,
therefore, the thread gap is needed.

The library documented in Chapter 11 on page 209, provides the
\gtrprocessordebug " 2!'? command which displays the offset value and the different contour

values. Also, \gtrdebugdrawcontour ~??! depicts the contours.

i

13.3.3 Combining Subtrees

The combining or sewing of two adjacent subtrees traverses the east contour of the left subtree
and the west contour of the right subtree. The distance comparisons of every two contour nodes
on the same level gives the required offset value for the right subtree. The combined forest of the
two trees inherits the west contour of the left subtree and the east contour of the right subtree.
If one of them is shorter than the other, it is prolonged by a thread as required.

Sewing Subtrees

This is a shortened depiction of combining two leaf children step by step, followed by the
rightmost subtree. Also, the two parent nodes of the new root family are added which
are the new anchors for the east contour and the west contour.

253

13.4 Known Problems

As was already mentioned before, the aesthetic property (A5) is not guaranteed by the auto-
layout algorithm. The classic example for this is depicted below using the implemented auto-
layout algorithm. Note that the small inner subtrees are not evenly spread but are crowded on

the left-hand side.

original tree reflected tree

AL, A

Next, the classic example is translated to genealogy trees. The effect is the same but arguable
may be seen more negligible or at least acceptable. The avoid this automatically, some technique

from [2, 5] would be needed.

original tree reflected tree

ééé%é?? %% %?%é;}ééé

Luckily, the algorithm is implemented in IATEX with a lot of intervention points using op-
tions. If (A5) is really needed for aesthetic reasons, one can simply cheat by adding some
/gtr/distance "T 3 options at the crucial small subtrees:

original tree reﬂected tree

ééééé?% %?ééééé

254

Another known problem is edge crossing which violates (A2), but this is for some patchwork
families sheer unavoidable as even the small examples from Section 13.2.2 on page 250 show.
Edge crossing can also happen for childless families, if the usual perpendicular edge drawing is
used.

The edge between the two parent nodes (red) of the childless family
is overlapped with the edge of the sibling family.

—0

To solve the problem manually, a child with /gtr/phantom =110

childless family:

option can be added to the

The childless family (red) was given a child with the phantom option.
This invisible child reserves the space needed for edge drawing.

255

256

14

Example Graph Files

The following example graph files are used for various examples inside this document.

14.1 example.option.graph

File «example.option.graphn

parent [id=SmithDoe] {
g[id=Arth2008,male] {Arthur\\\gtrsymBorn\, 2008}
c[id=Bert2010,female]{Berta\\\gtrsymBorn\,2010}
c[id=Char2014,male]{Charles\\\gtrsymBorn\,2014}
parent [id=Smith]{
g[id=John1980,male] {John Smith\\\gtrsymBorn\,1980}
p[id=GpSm1949,male] {Grandpa Smith\\\gtrsymBorn\,b 1949}
p[id=GmSm1952,female] {Grandma Smith\\\gtrsymBorn\,1952}
}
parent [id=Doe]{
glid=Jane1982,female] {Jane Doe\\\gtrsymBorn\, 1982}
c[id=Harr1987,male]{Uncle Harry\\\gtrsymBorn\, 1987}
p[id=GpDo1955,male] {Grandpa Doe\\\gtrsymBorn\, 1955}
p[id=GmDo1956,female] {Grandma Doe\\\gtrsymBorn\, 1956}
}
}

257

14.2 example.database.graph

Also see Section 7.2 on page 141.

File «example.database.graphn

child[id=SmitBowd1742]{
glid=SmitChar1722]{

male,
name = {\pref{Charles} \surn{Smith}},
birth = {(caAD)1722}{London},
baptism = {1722-04-13}{London},
death+ = {1764-10-12}{}{killed},
comment = {Copper smith, soldier},

}

plid=BowdJane1724]{
female,
name = {\pref{Jane} \surn{Bowdenl}},
birth- = {(caAD)1724},
marriage = {1742-03-02}{London},
death = {1802-07-07}{New York},

}

c[id=BowdAbra1740]{
male,
name = {\pref{Abraham} \surn{Bowden}},
birth+ = {1740-01-04}{London}{out of wedlock},
death = {1740-02-23}{London}

}

c[id=SmitEliz1744]{
female,
name = {\pref{Elizabeth} \nick{Liz} \surn{Smith}},
birth = {1744-02-02}{London},
death = {1812-04-12}{Boston},

comment = {Had a store in Boston},

}

c[1d=SmitMich1758]1{
male,
name = {\pref{Michaell} \surn{Smithl}},
birth+ = {1758-03-01}{}{died},

}

}

258

14.3 example.formal.graph

File «example.formal.graphn

child[id=fam_A]{
glid=nal,male]{a_1}
plid=na2,female]{a_2}
child[id=fam_B]{
plid=nbl,malel{b_1}
glid=na3,female]{a_3}
c[id=nb2,male]l{b_2}
child[id=fam_E]{
plid=nel,male]{e_1}
glid=nb3,female]l{b_3}
c[id=ne2,male]{e_2}
c[id=ne3,female]l{e_3}
}
}
child[id=fam_C]{
glid=nad,malel{a_4}
plid=ncl,femalel{c_1}
child[id=fam_F]{
glid=nc2,malel{c_2}
plid=nf1,female]{f_1}
c[id=nf2,male]{f_2}
c[id=nf3,female] {f_3}
c[id=nf4,male]{f_4}
}
union[id=fam_D]{
plid=ndl,female]l{d_1}
child[id=fam_G]{
plid=ngl,malel{g_1}
glid=nd2,female]{d_2}
c[id=ng2,malel{g_2}
c[id=ng3,femalel{g_3}
union[id=fam_H]{
plid=nhl,male]l{h_1}
c[id=nh2,male]{h_2}
}
}
c[id=nd3,malel{d_3}
child[id=fam_I]{
glid=nd4,male]{d_4}
plid=ni1,female]l{i_1}
c[id=ni2,female]l{i_2}
c[id=ni3,female]{i_3}
c[id=ni4,female]{i_4}
}
}
¥
c[id=nab,female]l{a_5}
}

259

260

15

Stack Macros

The genealogytree package provides an elementary stack mechanism which is used internally,
but may also be applied elsewhere. This elementary stack stores and retrieves expanded text
first-in-last-out (FILO). There are no safe-guarding mechanisms implemented.

15.1 Creating a Stack

\gtrnewstack{(name)}
Creates a new empty stack (name).

\gtrnewstack{foo} % new empty stack
Stack size: \gtrstacksize{foo}

Stack size: 0

\gtrstacksize{(name)}
Returns the current stack size.

\gtrnewstack{foo}

Stack size: \gtrstacksize{foo}
\gtrstackpush{foo}{a}\par
Stack size: \gtrstacksize{foo}

Stack size: 0
Stack size: 1

15.2 Push to a Stack

\gtrstackpush{(name)}{(content)}
Pushes (content) to a stack (name). The (content) is expanded during pushing.

\def\myx{X}
\gtrnewstack{foo}
\gtrstackpush{foo}{\myx}
\gtrstackpop{foo}

X

261

15.3 Pop from a Stack

\gtrstackpop{(name)}
Pops content from a stack (name). The last pushed content is popped first.

\gtrnewstack{foo}

\gtrstackpush{foo}{This}

\gtrstackpush{foo}{is}

\gtrstackpush{foo}{a}

\gtrstackpush{foo}{hello}

\gtrstackpush{foo}{world}

\gtrstackpop{foo} \gtrstackpop{foo} \gtrstackpop{fool}
\gtrstackpop{foo} \gtrstackpop{fool}

world hello a is This

\gtrstackpopto{{name)}{(macro)}
Pops content from a stack (name) into a (macro).

\gtrnewstack{foo}
\gtrstackpush{foo}{My}
\gtrstackpush{foo}{test}
\gtrstackpopto{foo}{\myA}
\gtrstackpopto{foo}{\myB}
’\myA’ and ’\myB’.

'test” and "My,

15.4 Peek into a Stack

\gtrstackpeek{(name)}
Reads from a stack (name) without reducing the stack content.

\gtrnewstack{foo}

\gtrstackpush{foo}{First entry}
’\gtrstackpeek{fool}’, ’\gtrstackpeek{fool}’;
\gtrstackpush{foo}{Second entry}
>\gtrstackpeek{foo}’, ’\gtrstackpeek{fool}’;

"First entry’, 'First entry’; ’Second entry’, ’Second entry’;

\gtrstackpeekto{{name)}{(macro)}
Peeks content from a stack (name) into a (macro).

\gtrnewstack{foo}
\gtrstackpush{foo}{My}
\gtrstackpush{foo}{test}
\gtrstackpeekto{foo}{\myA}
\gtrstackpeekto{foo}{\myB}
’\myA’ and ’\myB’.

‘test’ and ’test’.

262

15.5 Creating Stack Shortcuts

\gtrmakestack{(name)}
Creates a new empty stack (name) and creates new macros (name)size, (name)push,
(name)popto, (name)pop, (name)peekto, and (name)peek. These macros serve as short-
cuts to the corresponding stack macros from above.

\gtrmakestack{foo}

\foopush{First}

\foopush{Second}

\foopush{Third}

The stack contains \foosize\ entries. The last one is ’\foopeek’.

\foopopto\myA
The stack contains \foosize\ entries after ’\myA’ was removed.

The remaining entries are ’\foopop’ and ’\foopop’.
Now, the stack contains \foosize\ entries.

Never pop an empty stack: \foopop \foosize

The stack contains 3 entries. The last one is *Third’.

The stack contains 2 entries after "Third’ was removed.

The remaining entries are ’Second’” and ’First’. Now, the stack contains 0 entries.
Never pop an empty stack: -1

\gtrmakestack{foo}
\foopush{Mary}\foopush{had}\foopush{a}\foopush{little}\foopush{lamb}
\loop\ifnum\foosize>0

\foopop,
\repeat

lamb, little, a, had, Mary,

263

264

16

Version History

v0.90 beta (2015/05/22)

e First functional beta release.

e Full genealogy tree customization, tree positioning, input insertion and deletion, edge
customization.

e Database processing.
e Genealogy symbols.

e Internationalization.
e Templates library.

e Tutorials.

v0.10 alpha (2015/01/12)

e Initial public release (alpha version).

e Grammar and Debugger as preview release.

v0.00 (2013-2014)

e Pre publication development.

265

266

Bibliography

Christoph Buchheim, Michael Jinger, and Sebastian Leipert. “Improving Walker’s Algo-
rithm to Run in Linear Time”. In: Graph Drawing. 10th International Symposium, GD
2002. Volume 2528. Lecture Notes in Computer Science. Springer, Nov. 8, 2002, pages 344—
353.

Edward M. Reingold and John S. Tilford. “Tidier drawings of trees”. In: IEEFE Transations
on Software Engineering 7.2 (Mar. 1981), pages 223-228.

Thomas F. Sturm. The tcolorboz package. Manual for version 3.60. May 7, 2015.
http://mirror.ctan.org/macros/latex/contrib /tcolorbox/tcolorbox.pdf.

Till Tantau. The TikZ and PGF Packages. Manual for version 3.0.0. Dec. 20, 2013.
http://sourceforge.net/projects/pgf/.

John Q. Walker II. “A Node-positioning Algorithm for General Trees”. In: Software. Practice
and Ezxperience 20.7 (July 1990), pages 685-705.

267

http://mirror.ctan.org/macros/latex/contrib/tcolorbox/tcolorbox.pdf
http://sourceforge.net/projects/pgf/

Index

above value, 98, 99

AD value, 147

add child key, 189

add parent key, 190
adjust node key, 99
adjust position key, 98
after parser key, 97
after tree key, 101
ahnentafel 3 value, 238
ahnentafel 4 value, 240
ahnentafel 5 value, 242
all key, 11

all value, 162

all but AD value, 147, 162
anchoring key, 182

background key, 182
baptism key, 145, 165
baptism+ key, 145
baptism- key, 145
Baptized key, 206

BC value, 147

below value, 98, 99
birth key, 145, 165
birth+ key, 145
birth- key, 145

Born key, 206
Bornoutofwedlock key, 206
both value, 84, 193, 223
box key, 85

box clear key, 85
burial key, 146, 166
burial+ key, 146
burial- key, 146
Buried key, 206

c grammar, 15, 17, 19, 45, 48, 49, 52, 61, 65, 66,
103, 237, 248

ca value, 147

caAD value, 147

caBC value, 147

calendar print key, 162

calendar text for key, 162

center value, 182

child grammar, 14, 23, 24, 32, 45, 49, 52, 55,
57, 59, 65-68, 75, 77, 91, 92, 94, 187, 221,
248-250, 252

child value, 84, 193

child distance key, 75

child distance in child graph key, 75

child distance in parent graph key, 74

code key, 113

268

Colors
gtr_Blue_1, 244
gtr_Blue_2, 244
gtr_Blue_3, 244
gtr_Blue_4, 244
gtr_Blue_5, 244
gtr_Blue_6, 244
gtr_Bright_Red, 244
gtr_Peach_Back, 244
gtr_Peach_Frame, 244
gtr_Yellow_Back, 244
gtr_Yellow_Frame, 244
gtrsymbol, 199, 200

comment key, 143

comment code key, 169

content interpreter key, 133

content interpreter code key, 134

content interpreter content key, 134

content interpreter id and content key,

137

contour key, 223

cremated key, 166

cremated value, 146

custom key, 179

d mon yyyy value, 161

d month yyyy value, 161

d.M.yyyy value, 161

d.m.yyyy value, 161

d.mon.yyyy value, 161

d.month yyyy value, 161

d/M/yyyy value, 161

d/m/yyyy value, 161

d/mon/yyyy value, 161

database value, 33, 116, 139, 233, 235, 237, 238,
240, 242

database content interpreter key, 136

database format key, 149

database pole value, 233

portrait value, 235

database traditional value, 237

database unknown key key, 146

date value, 166

date code key, 162

date format key, 161

date range after key, 163

date range before key, 163

date range full key, 162

date range separator key, 163

dd-mon-yyyy value, 161

dd.mm.yyyy value, 161

dd/mm/yyyy value, 161

database

dd/mon/yyyy value, 161
death key, 146, 166
death+ key, 146

death- key, 146

debug key, 11

deletion content interpreter key, 135
Died key, 206

died key, 165

died value, 145
Diedonbirthday key, 206
directory value, 232
disconnect key, 193
distance key, 83
divorce key, 145, 166
divorce+ key, 146
divorce- key, 146
Divorced key, 206

down value, 68, 179, 237

east value, 223

edges key, 172

edges for family key, 174

edges for subtree key, 174

empty value, 149

empty name text key, 160

Engaged key, 206

engagement key, 145, 165

engagement+ key, 145

engagement- key, 145

english value, 205, 207

Environments
genealogypicture, 46
gtreventlist, 167
gtrprintlist, 167
tcolorbox, 116, 121
tikzpicture, 45, 46

error value, 146

event code key, 166

event format key, 166

event text key, 166

extra edges key, 194

extra edges for families key, 195

extra edges for family key, 195

extra edges prepend key, 196

extra edges prepend for families key, 197

extra edges prepend for family key, 197

family key, 91

family box key, 86

family database key, 187
family edges key, 173
family extra edges key, 194
family extra edges prepend key, 196
family id key, 222

family label key, 186
family number key, 222
Female key, 206

female key, 88, 143

female value, 143, 169

fit value, 116, 117, 230

fit to family key, 102

fit to subtree key, 102
foreground key, 181

formal graph value, 229

full value, 149, 159

full marriage above value, 149, 233
full marriage below value, 149
full no marriage value, 149
Funeralurn key, 206

further distance key, 78

g grammar, 8, 15, 17, 23, 24, 32, 45, 48, 49, 52,
53, 55, 57, 59, 61, 65, 66, 103, 193, 227,
237, 238, 240, 242, 248, 250, 252
genealogypicture environment, 46
\genealogytree, 45
genealogytree edges scope key, 175
\genealogytreeinput, 46
german value, 206, 207
german-austrian value, 207
german-german value, 207
GR value, 147
Grammar
c, 15, 17, 19, 45, 48, 49, 52, 61, 65, 66, 103,
237, 248
child, 14, 23, 24, 32, 45, 49, 52, 55, 57,
59, 65-68, 75, 77, 91, 92, 94, 187, 221,
248-250, 252
g, 8, 15, 17, 23, 24, 32, 45, 48, 49, 52, 53,
55, 57, 59, 61, 65, 66, 103, 193, 227, 237,
238, 240, 242, 248, 250, 252
input, 27, 62
insert, 63
p, 15, 17, 19, 30, 45, 48, 49, 52, 61, 65, 66,
103, 237, 238, 240, 242, 248
parent, 14, 15, 17, 18, 32, 45, 49, 52, 53,
59, 62, 65-68, 74, 76, 91, 92, 94, 187, 238,
240, 242, 248
sandclock, 32, 37, 45, 49, 52, 59, 92, 248
union, 24, 25, 45, 52, 55, 57, 92, 193, 221,
227, 248-250, 252
gtr_Blue_1 color, 244
gtr_Blue_2 color, 244
gtr_Blue_3 color, 244
gtr_Blue_4 color, 244
gtr_Blue_5 color, 244
gtr_Blue_6 color, 244
gtr_Bright_Red color, 244
gtr_Peach_Back color, 244
gtr_Peach_Frame color, 244
gtr_Yellow_Back color, 244
gtr_Yellow_Frame color, 244
\gtrBoxContent, 132
\gtrDBcomment, 143
\gtrDBimage, 36, 144
\gtrDBkekule, 144
\gtrDBname, 143
\gtrDBrelationship, 144
\gtrDBsex, 34, 143, 169
\gtrDBshortname, 143

\gtrDBuuid, 144 gtrprintlist environment, 167

\gtrdebugdrawcontour, 221 \gtrPrintName, 159
\gtrDeclareDatabaseFormat, 157 \gtrPrintPlace, 164
\gtrDrawSymbolicPortrait, 245 \gtrPrintSex, 169
\gtredgeset, 175 \gtrprocessordebug, 212
gtreventlist environment, 167 \gtrprocessordebuginput, 215
\gtrifchild, 49 \gtrset, 47

\gtrifcnode, 48 \gtrsetoptionsforfamily, 90
\gtrifcommentdefined, 169 \gtrsetoptionsfornode, 82
\gtrifdatedefined, 161 \gtrsetoptionsforsubtree, 93
\gtrifeventdefined, 165 \gtrstackpeek, 262
\gtriffemale, 169 \gtrstackpeekto, 262
\gtrifgnode, 48 \gtrstackpop, 262
\gtrifimagedefined, 170 \gtrstackpopto, 262
\gtrifleaf, 49 \gtrstackpush, 261
\gtrifleafchild, 49 \gtrstacksize, 261
\gtrifleafparent, 49 \gtrsymBaptized, 201
\gtrifmale, 169 gtrsymbol color, 199, 200
\gtrifnodeid, 48 \gtrSymbolsFulllLegend, 204
\gtrifparent, 49 \gtrSymbolsLegend, 205
\gtrifplacedefined, 164 \gtrSymbolsRecordReset, 204
\gtrifpnode, 48 \gtrSymbolsSetCreate, 200
\gtrifroot, 49 \gtrSymbolsSetCreateSelected, 200

\gtrSymbolsSetDraw, 200
\gtrsymBorn, 201
\gtrsymBornoutofwedlock, 201
\gtrsymBuried, 203
\gtrsymDied, 202
\gtrsymDiedonbirthday, 201
\gtrsymDivorced, 202
\gtrsymEngaged, 202
\gtrsymFemale, 203
\gtrsymFuneralurn, 203

\gtrignorenode, 104
\gtrignoresubtree, 104
\gtrkeysappto, 47
\gtrkeysgappto, 47
\gtrlanguagename, 207
\gtrlistseparator, 167
\gtrloadlanguage, 208
\gtrmakestack, 263
\gtrnewstack, 261
\gtrNodeBoxOptions, 132]
gtrNodeDimensions key, 117, 121, 124, 127, 130 \gtrsymKilled, 202

gtrNodeDimensionsLandscape key, 117, 121, \gtrsymMa1e1203
124. 127. 130 \gtrsymMarrled, 202

\gtrsymNeuter, 203
\gtrsymPartnership, 202
\gtrsymStillborn, 201
\gtruselibrary, 11

\gtrnodefamily, 48
\gtrnodeid, 48
\gtrnodelevel, 48
\gtrNodeMaxHeight, 132
\gtrNodeMaxWidth, 132

hide single leg key, 183
\gtrNodeMinHeight, 132

\gtrNodeMinWidth, 132 id key, 80

\gtrnodenumber, 48 id content interpreter key, 136
\gtrnodetype, 48 if image defined key, 170
\gtrparent1, 244 ignore key, 103

\gtrparent2, 244 ignore value, 146

\gtrparent3, 244 ignore family database key, 187
\gtrparent4, 245 ignore level key, 105
\gtrparentb, 245 ignore node key, 104
\gtrparent6, 245 ignore subtree key, 104
\gtrparent?, 245 image key, 144

\gtrParseDate, 148 image prefix key, 170
\gtrparserdebug, 210 input grammar, 27, 62
\gtrparserdebuginput, 211 insert grammar, 63
\gtrPrintComment, 169 insert after family key, 107
\gtrPrintDate, 161 insert after node key, 106
\gtrPrintEvent, 165 insert at begin family key, 108
\gtrPrintEventPrefix, 165 insert at end family key, 109

270

JU value, 147 id, 80
id content interpreter, 136
kekule key, 144 ignore, 103

Keys ignore family database, 187

/gtr/
add child, 189
add parent, 190
adjust node, 99
adjust position, 98
after parser, 97
after tree, 101
box, 85
box clear, 85
calendar print, 162
calendar text for, 162
child distance, 75
child distance in child graph, 75
child distance in parent graph, 74
code, 113
comment code, 169
content interpreter, 133
content interpreter code, 134
content interpreter content, 134

content interpreter id and content,

137

database content interpreter, 136
database format, 149

database unknown key, 146

date code, 162

date format, 161

date range after, 163

date range before, 163

date range full, 162

date range separator, 163
deletion content interpreter, 135
disconnect, 193

distance, 83

edges, 172

edges for family, 174

edges for subtree, 174

empty name text, 160

event code, 166

event format, 166

event text, 166

extra edges, 194

extra edges for families, 195
extra edges for family, 195

extra edges prepend, 196

extra edges prepend for families,
197

extra edges prepend for family, 197
family, 91

family box, 86

family database, 187

family edges, 173

family extra edges, 194

family extra edges prepend, 196
family label, 186

female, 88

further distance, 78

271

ignore level, 105

ignore node, 104

ignore subtree, 104

insert after family, 107
insert after node, 106
insert at begin family, 108
insert at end family, 109
keysfrom, 113

label, 185

label database options, 187
label optioms, 185
language, 207

level, 95

level distance, 71

level n, 96

level size, 72

list separators, 168

list separators hang, 168
male, 88

name, 159

name code, 160

name font, 160

neuter, 88

nick code, 159

no content interpreter, 135
node, 83

node box, 85

node processor, 116

node size, 73

node size from, 74

options for family, 90
options for node, 82
options for subtree, 93
parent distance, 77

parent distance in child graph, 77
parent distance in parent graph, 76
phantom, 110

phantomx*, 112

pivot, 84

pivot shift, 92

place text, 164

pref code, 159

proband level, 97
processing, 116

remove child, 192

remove parent, 192

reset, 113

set position, 97
show, 225

show family, 227
show id, 225

show level, 226
show number, 226
show type, 227
subtree, 94

subtree box, 86
subtree edges, 174
subtree label, 186
surn code, 159
symbols record reset, 204
tcbset, 101
template, 229
tikzpicture, 100
tikzset, 100
timeflow, 68

tree offset, 97
turn, 87

use family database, 187
/gtr/database/
baptism, 145
baptism+, 145
baptism-, 145
birth, 145

birth+, 145
birth-, 145
burial, 146
burial+, 146
burial-, 146
comment, 143
death, 146

death+, 146
death-, 146
divorce, 145
divorce+, 146
divorce-, 146
engagement, 145
engagement+, 145
engagement-, 145
female, 143

image, 144

kekule, 144

male, 143
marriage, 145
marriage+, 145
marriage-, 145
name, 143

neuter, 143
relationship, 144
sex, 143
shortname, 143
uuid, 144
/gtr/debug/
contour, 223
family id, 222
family number, 222
/gtr/edge/
anchoring, 182
background, 182
custom, 179
foreground, 181
hide single leg, 183
mesh, 178

no background, 182
no foreground, 181

272

none, 180
perpendicular, 176
rounded, 176
swing, 177
xshift, 183
yshift, 184
/gtr/event prefix/
baptism, 165
birth, 165
burial, 166
death, 166
divorce, 166
engagement, 165
marriage, 165
/gtr/event prefix/birth/
died, 165
out of wedlock, 165
stillborn, 165
/gtr/event prefix/burial/
cremated, 166
/gtr/event prefix/death/
killed, 166
/gtr/event prefix/marriage/
other, 166
/gtr/library/
all, 11
debug, 11
templates, 11
/gtr/symlang/
Baptized, 206
Born, 206
Bornoutofwedlock, 206
Buried, 206
Died, 206
Diedonbirthday, 206
Divorced, 206
Engaged, 206
Female, 206
Funeralurn, 206
Killed, 206
Male, 206
Married, 206
Neuter, 206
Partnership, 206
Stillborn, 206
/tcb/
female, 88
gtrNodeDimensions, 117, 121, 124, 127
gtrNodeDimensionsLandscape, 117, 121,
124, 127
if image defined, 170
image prefix, 170
male, 88
neuter, 88
/tikz/
fit to family, 102
fit to subtree, 102
genealogytree edges scope, 175
gtrNodeDimensions, 130

gtrNodeDimensionsLandscape, 130 other key, 166

keysfrom key, 113 other value, 145
Killed key, 206 out of wedlock key, 165
killed key, 166 out of wedlock value, 145

killed value, 146
p grammar, 15, 17, 19, 30, 45, 48, 49, 52, 61, 65,

label key, 185 66, 103, 237, 238, 240, 242, 248
label database options key, 187 parent grammar, 14, 15, 17, 18, 32, 45, 49, 52,
label options key, 185 53, 59, 62, 6568, 74, 76, 91, 92, 94, 187,
language key, 207 238, 240, 242, 248
left value, 68, 87, 98, 99, 232, 238, 240, 242 parent value, 84, 193
level key, 95 parent distance key, 77
level distance key, 71 parent distance in child graph key, 77
level n key, 96 parent distance in parent graph key, 76
level size key, 72 Partnership key, 206
list separators key, 168 periphery value, 182
list separators hang key, 168 perpendicular key, 176
phantom key, 110
m/d/yyyy value, 161 phantomx key, 112
Male key, 206 pivot key, 84
male key, 88, 143 pivot shift key, 92
male value, 143, 169 place text key, 164
marriage key, 145, 165 \pref, 159
marriage value, 149, 187 pref code key, 159
marriage+ key, 145 prefix date value, 166
marriage- key, 145 prefix date place value, 166
Married key, 206 proband level key, 97
medium value, 149 processing key, 116
medium marriage above value, 149
medium marriage below value, 149 relationship key, 144
medium no marriage value, 149 remove child key, 192
mesh key, 178 remove parent key, 192
mm/dd/yyyy value, 161 reset key, 113
month d yyyy value, 161 right value, 68, 87, 98, 99
rounded key, 176
name key, 143, 159 rounded value, 39
name value, 149
name code key, 160 sandclock grammar, 32, 37, 45, 49, 52, 59, 92,
name font key, 160 248
Neuter key, 206 save value, 146
neuter key, 88, 143 set position key, 97
neuter value, 143 sex key, 143
\nick, 159 short value, 149, 159
nick code key, 159 short marriage above value, 149
no background key, 182 short marriage below value, 149
no content interpreter key, 135 short no marriage value, 149, 235, 237
no foreground key, 181 shortname key, 143
\node, 116, 130 show key, 225
node key, 83 show family key, 227
node box key, 85 show id key, 225
node processor key, 116 show level key, 226
node size key, 73 show number key, 226
node size from key, 74 show type key, 227
none key, 180 signpost value, 230
none value, 84, 162, 223 Stillborn key, 206
stillborn key, 165
off value, 87 stillborn value, 145
options for family key, 90 subtree key, 94
options for node key, 82 subtree box key, 86
options for subtree key, 93 subtree edges key, 174

273

subtree label key, 186

\surn, 159

surn code key, 159

swing key, 177

symbol value, 149

symbol nodes value, 230
symbols record reset key, 204

\tcbox, 116, 124, 127

tcbox value, 116, 124

tcbox* value, 116, 127, 229-232
\tcboxfit, 116, 117, 139
tcbset key, 101

tcolorbox environment, 116, 121
tcolorbox value, 116, 121
template key, 229

templates key, 11

tikznode value, 116, 130
tikzpicture environment, 45, 46
tikzpicture key, 100

tikzset key, 100

timeflow key, 68

tiny boxes value, 231

tiny circles value, 231

tree offset key, 97

turn key, 87

union grammar, 24, 25, 45, 52, 55, 57, 92, 193,
221, 227, 248-250, 252

up value, 68

upsidedown value, 87

use family database key, 187

uuid key, 144

Values
above, 98, 99
AD, 147
ahnentafel 3, 238
ahnentafel 4, 240
ahnentafel 5, 242
all, 162
all but AD, 147, 162
BC, 147
below, 98, 99
both, 84, 193, 223
ca, 147
caAD, 147
caBC, 147
center, 182
child, 84, 193
cremated, 146
d mon yyyy, 161
d month yyyy, 161
d.M.yyyy, 161
d.m.yyyy, 161
d.mon.yyyy, 161
d.month yyyy, 161
d/M/yyyy, 161
d/m/yyyy, 161
d/mon/yyyy, 161

274

database, 33, 116, 139, 233, 235, 237, 238,
240, 242

database pole, 233

database portrait, 235

database traditional, 237

date, 166

dd-mon-yyyy, 161

dd.mm.yyyy, 161

dd/mm/yyyy, 161

dd/mon/yyyy, 161

died, 145

directory, 232

down, 68, 179, 237

east, 223

empty, 149

english, 205, 207

error, 146

female, 143, 169

fit, 116, 117, 230

formal graph, 229

full, 149, 159

full marriage above, 149, 233

full marriage below, 149

full no marriage, 149

german, 206, 207

german-austrian, 207

german-german, 207

GR, 147

ignore, 146

Ju, 147

killed, 146

left, 68, 87, 98, 99, 232, 238, 240, 242

m/d/yyyy, 161

male, 143, 169

marriage, 149, 187

medium, 149

medium marriage above, 149

medium marriage below, 149

medium no marriage, 149

mm/dd/yyyy, 161

month d yyyy, 161

name, 149

neuter, 143

none, 84, 162, 223

off, 87

other, 145

out of wedlock, 145

parent, 84, 193

periphery, 182

prefix date, 166

prefix date place, 166

right, 68, 87, 98, 99

rounded, 39

save, 146

short, 149, 159

short marriage above, 149

short marriage below, 149

short no marriage, 149, 235, 237

signpost, 230

stillborn, 145
symbol, 149

symbol nodes, 230
tcbox, 116, 124
tcboxx, 116, 127, 229-232
tcolorbox, 116, 121
tikznode, 116, 130
tiny boxes, 231
tiny circles, 231
up, 68
upsidedown, 87
warn, 146

west, 223

yyyy, 161
yyyy-mm-dd, 161

warn value, 146
west value, 223

xshift key, 183

yshift key, 184
yyyy value, 161
yyyy-mm-dd value, 161

275

	Introduction
	Genealogy Trees
	Package Design Principles and Philosophy
	Comparison with Other Packages
	Installation
	Loading the Package
	Libraries
	How to Get Started

	Tutorials
	Tutorial: First Steps (Ancestor Tree)
	Document Setup
	Creation of a Basic Ancestor Diagram
	Applying options
	Growing the Tree
	Prioritize and Colorize a Path
	Changing the Timeflow

	Tutorial: Diagram Manipulation by ID values (Descendant Tree)
	Creation of a Basic Descendant Diagram
	Growing the Tree
	Separating Diagram Data and Diagram Drawing
	Emphasizing a Relationship Path
	Coloring Subtrees

	Tutorial: A Database Family Diagram (Sand Clock)
	Creation of a Basic Sand Clock Diagram
	Node Content in Database Format
	Formatting the Node Content
	Adding Images
	Full Example with Frame

	Tutorial: Descendants of the Grandparents (Connecting Trees)
	Descendants of the Two Grandparents
	Connected Diagram

	Genealogy Tree Macros
	Creating a Genealogy Tree
	Using Tree Options
	Accessing Information inside Nodes

	Graph Grammar
	Graph Structure
	Subgraph 'parent'
	Subgraph 'child'
	Subgraph 'union'
	Subgraph 'sandclock'
	Node 'c'
	Node 'p'
	Node 'g'
	Data 'input'
	Control Sequence 'insert'

	Option Setting
	Option Priorities
	Option Priorities for Nodes
	Option Priorities for Families

	Graph Growth Setting (Time Flow)
	Graph Geometry
	Identifiers
	Node Options
	Family Options
	Subtree Options
	Level Options
	Tree Positioning Options
	TikZ and Tcolorbox Options
	Ignoring Input
	Inserting Input
	Phantom Nodes and Subtrees
	Special and Auxiliary Options

	Node Data (Content) Processing
	Setting a Node Data Processing and Processor
	Predefined Non-Interpreting Processings
	fit
	tcolorbox
	tcbox
	tcbox*
	tikznode

	Creating a Customized Non-Interpreting Processor
	Content Interpreters

	Database Processing
	Database Concept
	Example Settings
	Data Keys
	Input Format for Dates
	Formatting the Node Data
	Formatting Names
	Formatting Dates
	Formatting Places
	Formatting Events
	Formatting Lists of Events
	Formatting Comments
	Formatting Sex
	Formatting Images

	Edges
	Edge Settings
	Edge Types
	Edge Parameters
	Edge Labels
	Edge Labels Database
	Adding and Removing Nodes from Edge Drawing
	Extra Edges

	Genealogy Symbols
	Symbol Color Settings
	Global Color Settings
	Local Color Settings

	List of Symbols
	Legend to Symbols
	Printing a Legend
	Description Texts and Language Settings

	Language and Text Settings
	Preamble Settings
	Document Settings

	Debugging: Library 'debug'
	Parser Debugging
	Processor Debugging
	Graphical Debugging
	Show Information

	Templates: Library 'templates'
	Using Templates
	Template 'formal graph'
	Template 'signpost'
	Template 'symbol nodes'
	Template 'tiny boxes'
	Template 'tiny circles'
	Template 'directory'
	Template 'database pole'
	Template 'database portrait'
	Template 'database traditional'
	Template 'ahnentafel 3'
	Template 'ahnentafel 4'
	Template 'ahnentafel 5'
	Predefined Colors of the Library
	Auxiliary Control Sequences

	Auto-Layout Algorithm
	Preliminaries
	Aesthetic Properties
	Genealogy Trees
	Graph Grammar

	Requirements
	Parent and Child Alignment
	Patchwork Families
	Graph Growing Direction

	Algorithmic Steps
	Recursive Family and Node Placement
	Contours
	Combining Subtrees

	Known Problems

	Example Graph Files
	example.option.graph
	example.database.graph
	example.formal.graph

	Stack Macros
	Creating a Stack
	Push to a Stack
	Pop from a Stack
	Peek into a Stack
	Creating Stack Shortcuts

	Version History
	Bibliography
	Index

