User Manual for datatool bundle
version 2.22

Nicola L.C. Talbot

http://www.dickimaw-books.com/

2014-06-10

http://www.dickimaw-books.com/

The datatool bundle comes with the following documentation:

datatool-user.pdf This document is the main user guide for the datatool
bundle.

datatool-code.pdf Advanced users wishing to know more about
the inner workings of all the packages provided in the datatool
bundle should read “Documented Code for datatool v2.22”

INSTALL Installation instructions.
CHANGES Change log.

README Package summary.

There’s an old adage, “use the right tool for the right job.” A
carpenter’s fine chisel is the right tool for delicate carving, but if you
try to use it to hack off a tree branch it will take a long time. That
doesn’t mean there’s something wrong with the chisel. It just means
you're using the wrong tool for the job.

The datatool bundle is provided to help perform repetitive
commands, such as mail merging, but since TgX is designed as a
typesetting language, don’t expect this bundle to perform as
efficiently as custom database systems or a dedicated mathematical or
scripting language. If the provided packages take a frustratingly
long time to compile your document, use another language to
perform your calculations or data manipulation and save the results
in a file that can be input into your document. For large amounts of
data that need to be sorted or filtered or joined, consider storing your
data in an SQL database and use datatooltk” to import the data,
using SQL syntax to filter, sort and otherwise manipulate the values.

Thttp://www.dickimaw-books.com/apps/datatooltk/

This bundle consists of the following packages:

datatool Main package providing database support. Automatically loads
datatool-base.

datatool-base Provides the main library code for numerical and string
functions. Automatically loads datatool-fp or datatool-pgfmath
depending on package options.

datagidx Package for generating indexes and glossaries. Automatically
loads datatool.

databar Package for drawing bar charts. Automatically loads datatool.

datatool-code.pdf
http://www.dickimaw-books.com/apps/datatooltk/

datapie Package for drawing pie charts. Automatically loads datatool.

dataplot Package for drawing simple line graphs. Automatically loads
datatool.

databib Package for loading a bibliography into a database.
Automatically loads datatool.

person Package for referencing people by the appropriate gender
pronouns. Automatically loads datatool.

In addition, there are two mutually exclusive packages datatool-fp and
datatool-pgfmath that provide mathematical related commands that are just
wrapper functions for fp or pgfmath commands. These can be loaded
individually without loading datatool. For example, the following
documents produce the same results, but the first uses the fp package and
the second uses the pgfmath package:

1. Using fp macros:

\documentclass{article}
\usepackage{datatool-fp}
\begin{document}

1=2: \dtlifnumeqg{1l}{2}{true}{false}.
\end{document}

2. Using pgfmath macros:

\documentclass{article}
\usepackage{datatool-pgfmath}
\begin{document}

1=2: \dtlifnumeqg{1l}{2}{true}{false}.
\end{document }

ii

Contents

1

Introduction

Data Types
21 Conditionals
2.2 ifthenconditionals

Fixed Point Arithmetic
Strings

Databases
51 CreatingaNew Database
5.2 Loading a Database from an External ASCII File
5.3 Displaying the Contents of a Database
5.4 Iterating Through a Database
55 NullValues.
5.6 Editing DatabaseRows
5.7 Arithmetical Computations on Database Entries
58 SortingaDatabase
59 Saving a Database to an External File
5.10 Deleting or Clearing a Database
5.11 Advanced Database Commands
5.11.1 Operatingon CurrentRow

Creating an index, glossary or list of acronyms (datagidx package)
6.1 Defining Index/Glossary Databases
6.2 Locations
6.3 DefiningTerms
6.3.1 Commands to Assist Sorting
6.4 ReferencingTerms
6.4.1 ShortcutCommands
6.5 Adding ExtraFields.
6.6 Acronyms
6.6.1 Using Acronyms
6.6.2 Unsetting and Resetting Acronyms
6.7 Conditionals L.

ii

10

11

6.8 Displaying the Index or Glossary
6.8.1 Index or Glossary Styles
6.8.2 Sorting the Index or Glossary Database
6.9 PackageOptions.

Pie Charts (datapie package)

71 PieChartVariables,
7.2 Pie Chart Label Formatting
73 PieChartColours,
74 Adding Extra Commands Before and After the Pie Chart . .

Scatter and Line Plots (dataplot package)

8.1 Adding InformationtothePlot

8.2 Global PlotSettings
821 Lengths
822 Counters e
823 Macros e

83 AddingtoaPlotStream

Bar Charts (databar package)
9.1 Changing the Appearance of a Bar Chart

Converting a BIBTEX database into a datatool database (databib
package)
10.1 BIBIgX: AnOverview
10.1.1 BiBIgXdatabase
10.2 Loading a databib database
10.3 Displaying a databib database
10.4 Changing the bibliographystyle
10.4.1 Modifying an existingstyle
10.5 Iterating through a databib database
10.6 Multiple Bibliographies

Referencing People (person package)

11.1 Defining and Undefining People

11.2 Displaying Information.

11.3 Advanced Commands
11.3.1 Conditionals
11.3.2 Iterating Through Defined People
11.3.3 Accessing Individual Information

Bibliography

Acknowledgements

iv

Index 209

List of Examples

IO WIDN -~

W W W W WWWWNDNDNIDNDNDNDNDNNDNRE =R P2 =R = O
NV WODNPFP,POOVWONNNUTE WNNPFPRPOOVONOU B WN PO

Displaying the Contents of a Database
Balance Sheet
Studentscores
Student Scores—Labelling
FilteringRows
Checking for the First Row (booktabs)
Breaking Outofaloop
StripyTables o
Two Database Rows per Tabular Row
Iterating Through KeysinaRow
Nested \DTLforeach
Dynamically Allocating Field Name
Null Values.o o e
Editing Database Rows
Arithmetical Computations
Mail Merging
Sorting a Database—Dealing with Inversions
Sortinga Database
Influencing the sortorder
Two Database Rows Per Tabular Row (Column-Wise)
Joining Two Databases in a Single Table
CreatinganIndex
APieChart.
Separating Segments from the Pie Chart
Changing the Inner and Outer Labels
Changing the Inner and Outer Label Format
Pie Segment Colours
Adding Information to the PieChart
ABasicGraph
Plotting Multiple DataSets
Adding InformationtoaPlot
Addingtoa PlotStream
Plotting Multiple Keys in the Same Database
ABasicBarChart
A Labelled BarChart
Profit/LossBarChart
AMulti-BarChart L

vi

38
39
40
41
42
43
44
45
46

Creating a list of publications since a givenyear 182

Creating a list of my 10 most recent publications 183
Compact bibliography 187
Highlighting a givenauthor 187
Separate List of Journals and Conference Papers 191
Multiple Bibliographies 193
Order of Service Memorial) 199
Order of Service (Baptism) 201
Mail Merging Using Appropriate Gender 202

vii

List of Figures

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3
8.4
8.5
8.6
8.7

9.1
9.2
9.3
94
9.5

Apiechart o oo 134
A pie chart (outer labelsset) 134
A pie chart (rotation enabled) 135
A pie chart with cutaway segments 136
A pie chart with cutaway segments (cutaway={1-2}) . . . 136
A pie chart with cutaway segments (cutaway={1,2}) ... 137
A pie chart (changing thelabels) 138
A pie chart (changing the label format) 139
A pie chart (using segment colours and outline) 142
An annotated piechart oo 0oL 143
Ascatterplot. L o 148
Alineplot L o 149
A scatter plot (multiple datasets) 151
A scatter plot (withalegend) 151
A scatter plot (using the end plot hook to annotate the plot) 153
Adding toaplotstream 158
Time to growth data (plotting from the same database using

differentkeys) Lo 160
Abasicbarchart. 0 L. 164
Abarchart (labelled) 168
Profits for 2000-2003 (a horizontal bar chart) 170
Student marks (a multi-barchart) 172
Student marks (annotating abarchart) 174

viii

List of Tables

51
52
53
54
55
5.6
5.7

5.8
59
5.10
511

5.12
5.13

5.14
5.15

5.16

5.17

5.18
5.19
5.20
521
522
5.23
524
5.25
5.26
527
5.28
5.29

Special character mappings used by \DTLloadrawdb. . . .
Timeto GrowthData
BalanceSheet
Student scores (displaying a database in a table)
Student scores (labellingrows)
Top student scores (filtering rows using \DTLisgt)
Student scores (B) — filtering rows using
\DTLisopenbetween v v v v v v v v v v v e
Student scores (booktabs)
First Three Rows,
A stripy table (illustrating the use of \DTLifoddrow)
Two database rows per tabular row (illustrating the use of
ADTLIfOddrow) . . v v v v v i it e et
Student Scores (Iterating Through Keys)
Student Scores (Using \dt1foreachkey and
\DTLforeachkeyinrow)« v v v v v
Student Scores (Filtering Outa Column)
Temperature = 25, NaCl = 4.7, pH = 0.5 (illustrating nested
ADTLforeach) v v v v v it i e e
Temperature = 25, NaCl = 4.8, pH = 1.5 (illustrating nested
ADTLforeach) . . . o oo v v v it i e e e
Temperature = 30, NaCl = 5.12, pH = 4.5 (illustrating nested
\DTLforeach) ittt
ClubMembership
Student marks (with averages)
Student scores (using arithmetic computations)
Student scores (sorted by score) L
Student scores (sorted by name) L.
Student scores (case sensitivesort)
Student scores (case ignored when sorting)
Student scores (influencing the sortorder)
Two database rows per tabular row (column-wise)
Student Marks (Joining Databases)
Student Marks (Joining Databases)
Student Marks (Joining Databases)

1 Introduction

The datatool bundle consists of the following packages: datatool (which
loads datatool-base and either datatool-fp or datatool-pgfmath), datagidx,
datapie, dataplot, databar, databib and person.

¢ The datatool package can be used to:
— Create or load databases.

— Sort rows of a database (either numerically or alphabetically,
ascending or descending).

— Perform repetitive operations on each row of a database (e.g.
mail merging). Conditions may be imposed to exclude rows.

Package Options:

verbose Boolean key. If true, prints informational messages in
transcript.

math May take one of two values: fp (load datatool-fp) or pgfmath
(load datatool-pgfmath). Default is: fp.

delimiter Delimiter used in CSV files. Default is a double quote (").

separator Delimiter used in CSV files. Default is a comma (,).

¢ The datatool-base package can be used to:

— Determine whether an argument is an integer, a real number,
currency or a string. (Scientific notation is currently not
supported.) Locale dependent number settings are supported
(such as a comma as a decimal character and a full stop as a
number group character).

- Convert locale dependent numbers/currency to the decimal
format required by the fp or pgfmath packages, enabling fixed
point arithmetic to be performed on elements of the database.

— Names can be converted to initials.
— Determine if strings are all upper or lower case.

— Perform string comparisons (both case sensitive and case
insensitive).

Package Options:

verbose Boolean key. If true, prints informational messages in
transcript.

math May take one of two values: fp (load datatool-fp) or pgfmath
(load datatool-pgfmath). Default is: fp.

The datagidx package (see chapter 6) can be used to generate indexes
or glossaries as an alternative to packages such as glossaries.

The datapie package (see chapter 7) can be used to convert a
database into a pie chart:

— Segments can be separated from the rest of the chart to make
them stand out.

- Colour/grey scale options.
- Predefined segment colours can be changed.

- Hooks provided to add extra information to the chart

The databar package (see chapter 9) can be used to convert a
database into a bar chart:

— Colour/grey scale options.
— Predefined bar colours can be changed.
- Hooks provided to add extra information to the chart

(The datapie and databar packages do not support the creation of 3D
charts, and I have no plans to implement them at any later date.
The use of 3D charts should be discouraged. They may look pretty,
but the purpose of a chart is to be informative. Three dimensional
graphics cause distortion, which can result in misleading
impressions. The pgf manual provides a more in-depth discussion
on the matter.)

The dataplot package (see chapter 8) can be used to convert a
database into a two dimensional plot using markers and/or lines.
Three dimensional plots are currently not supported.

The databib package (see chapter 10) can be used to convert a BIBTX
database into a datatool database.

The person package (see chapter 11) can be used for gender-specific
mail-merging and similar uses to avoid the cumbersome use of the
impersonal “he/she”.

2

Data Types

The datatool-base package recognises four data types: integers, real
numbers, currency and strings.

Integers An integer is a sequence of digits, optionally groups of three

digits may be separated by the number group character. The
default number group character is a comma (,) but may be changed
using \DTLsetnumberchars (see below).

Real Numbers A real number is an integer followed by the decimal

\DTLsetnumberchars

character followed by one or more digits. The decimal character is a

full stop (.) by default. The number group and decimal characters
may be changed using

\DTLsetnumberchars { (number group character)} { (decimal
character) }

Note that scientific notation is not supported, and the number
group character may not be used after the decimal character.

Currency A currency symbol followed by an integer or real number is

\DTLnewcurrencysymbol

considered to be the currency data type. There are two predefined
currency symbols, \ $ and \pounds. In addition, if any of the
following commands are defined at the start of the document, they
are also considered to be a currency symbol: \texteuro,
\textdollar, \textstirling, \textyen, \textwon,

\textcurrency, \euro and \yen. Additional currency symbols
can be defined using

\DTLnewcurrencysymbol { (symbol) }

Strings Anything that doesn’t belong to the above three types is

considered to be a string.

2.1 Conditionals
The following conditionals are provided by the datatool-base package:

\DTLifint

\DTLifint {(text)} { (true part)} { (false part)}

If (text) is an integer then do (true part), otherwise do (false part). For
example

\DTLifint {2536} {integer}{not an integer}

produces: integer.
The number group character may appear in the number, for example:

\DTLifint{2,536}{integer}{not an integer}

produces: integer. However, the number group character may only be
followed by a group of three digits. For example:

\DTLifint{2,5,3,6}{integer}{not an integer}

produces: not an integer. The number group character may be changed.
For example:

\DTLsetnumberchars{.}{,}%
\DTLifint{2,536}{integer}{not an integer}

this now produces: not an integer, since 2,536 is now a real number.
Note that nothing else can be appended or prepended to the number.
For example:

\DTLsetnumberchars{, }{.}%
\DTLifint{2,536m}{integer}{not an integer}

produces: not an integer.

\DTLifreal

\DTLifreal{(text)} { (true part)} { (false part) }

If (text) is a real number then do (true part), otherwise do (false part). For
example

\DTLifreal{1000.0}{real}{not real}

produces: real.
Note that an integer is not considered a real number:

\DTLifreal{1l,000}{real}{not real}

produces: not real.
Whereas

\DTLifreal{1l,000.0}{real}{not real}

produces: real.
However

\DTLsetnumberchars{.}{, }%
\DTLifreal{1l,000}{real}{not real}

produces: real since the comma is now the decimal character.
Currency is not considered to be real:

\DTLsetnumberchars{, }{.}%
\DTLifreal{\$1.00}{real}{not real}

produces: not real.

\DTLifcurrency

\DTLifcurrency {(fext)} { (true part)} { (false part)}

If (text) is currency, then do (true part), otherwise do false part. For
example:

\DTLifcurrency{\$5.99}{currency}{not currency}
produces: currency. Similarly:
\DTLifcurrency{\pounds5.99}{currency} {not currency}
produces: currency. Note, however, that
\DTLifcurrency{US\$5.99}{currency}{not currency}

produces: not currency. If you want this to be considered currency, you
will have to add the sequence US\ $ to the set of currency symbols:

\DTLnewcurrencysymbol {US\$}%
\DTLifcurrency{US\$5.99} {currency}{not currency}

this now produces: currency.
This document has used the textcomp package which defines
\texteuro, so this is also considered to be currency. For example:

\DTLifcurrency{\texteuro5.99}{currency}{not currency}

produces: currency.
The preferred method is to display the euro symbol in a sans-serif font,
but

\DTLifcurrency{\textsf{\texteuro}5.99}{currency}{not currency}

will produce: not currency.
It is better to define a new command, for example:

\DeclareRobustCommand*{\euro} {\textsf{\texteuro}}

and add that command to the list of currency symbols. In fact, in this
case, if you define the command \euro in the preamble, it will
automatically be added to the list of known currency symbols. If
however you define \euro in the document, you will have to add it
using \DTLnewcurrencysymbol. For example:

\newcommandx {\euro} {\textsf{\texteuro}}%
\DTLnewcurrencysymbol{\euro}%
\DTLifcurrency{\euro5.99}{currency}{not currency}

produces: currency.

\DTLifcurrencyunit

\DTLifnumerical

\DTLifcurrencyunit {(text)} { (symbol)} { (true part)} { (false part)}

If (text) is currency, and uses (symbol) as the unit of currency, then do
(true part) otherwise do (false part). For example:

\DTLifcurrencyunit {\$6.99}{\$}{dollars}{not dollars}
produces: dollars. Another example:

\def\cost {\eurol0.50}%
\DTLifcurrencyunit{\cost}{\euro}{euros}{not euros}

produces: euros.

\DTLifnumerical {(fext)} { (true part)} { (false part)}

If (text) is numerical (either an integer, real number or currency) then do
(true part) otherwise do (false part). For example:

\DTLifnumerical{1l,000.0}{number}{string}.

produces: number. Whereas

\DTLsetnumberchars{.}{, }%
\DTLifnumerical{1l,000.0}{number}{string}.

produces: string. Since the number group character is now a full stop,
and the decimal character is now a comma. (The number group character
may only appear before the decimal character, not after it.)

Currency is also considered to be numerical:

\DTLsetnumberchars{, }{.1}%
\DTLifnumerical{\$1,000.0}{number}{string}.

\DTLifstring

produces: number.

\DTLifstring{(text)} { (true part)} { (false part)}

This is the opposite of \DTLifnumerical. If (text) is not numerical, do
(true part), otherwise do (false part).

\DTLifcasedatatype

\dtlifnumeq

\DTLifnumeq

\DTLifcasedatatype {(text)} { (string case)} { (int case) } { (real
case) } { (currency case) }

If (text) is a string do (string case), if (text) is an integer do (int case), if
(text) is a real number do (real case), if (text) is currency do (currency
case). For example:

\DTLifcasedatatype{1l,000}{string}{integer}{real}{currency}

produces: integer.

\dtlifnumeq{(numl)} {(num2)} { (true part)} { (false paty) }

If (num1) is equal to (num2), then do (true part), otherwise to (false part)
where (num1) and (num2) are plain numbers using a full stop as the
decimal point and no number group separator. For currency or locale
dependent numbers use \DTLi fnumeq.

\DTLifnumeq{ (numl)} { (num2)} { (true part) } { (false part) }

If (num1) is equal to (num2), then do (true part), otherwise do (false part).
Note that both (num1) and (num2) must be numerical (either integers,
real numbers or currency). The currency symbol is ignored when
determining equality. For example

\DTLifnumeg{\pounds10.50}{10.5}{true}{false}

produces: true, since they are considered to be numerically equivalent.
Likewise:

\DTLifnumeq{\poundsl0.50}{\$10.50}{true}{false}

produces: true.

\DTLifstringeq

\DTLifstringeqgx

\DTLifeq

\DTLifeqgx

\DTLifstringeq{(stringl)} { (string2) } { (true part) } { (false part)}

\DTLifstringeqx {(stringl)} { (string2) } { (true part) } { (false part) }

If (stringl) and (string2) are the same, then do (true part), otherwise do
(false part). The starred version ignores the case, the unstarred version is
case sensitive. Both (stringl) and (string2) are considered to be strings, so
for example:

\DTLifstringeq{10.50}{10.5}{true}{false}

produces: false.
Note that

\DTLifstringeqg{Text}{text}{true}{false}
produces: false, whereas
\DTLifstringeqgx*{Text}{text}{true}{false}

produces: true, however it should also be noted that many commands
will be ignored, so:

\DTLifstringeqg{\uppercase{t}lext}{text}{true}{false}

produces: false.
Spaces are considered to be equivalent to \ space and ~. For example:

\DTLifstringeg{an apple}{an~apple}{true}{false}
produces: true. Consecutive spaces are treated as the same, for example:

\DTLifstringeg{an apple}{an apple}{true}{false}

produces: true.

\DTLifeq{(argl)} {{(arg2)} { (true part) } { (false part)}

\DTLifeqx {(argl)} {(arg2)} { (true part)} { {false part)}

If both (argl) and (arg2) are numerical, then this is equivalent to
\DTLifnumeq, otherwise it is equivalent to \DTLifstringeq (when
using \DTLifeq)or \DTLifstringeqgx (When using \DTLifeqx).

\dtlifnumlt

\DTLifnumlt

\DTLifstringlt

\DTLifstringlt=«

\dt1lifnumlt {(numl)} {(num2)} {(true part)} {{false paty)}

If (num1) is less than (num?2), then do (true part), otherwise to (false part)
where (numl) and (num2) are plain numbers using a full stop as the
decimal point and no number group separator. For currency or locale
dependent numbers use \DTLifnumlt.

\DTLifnumlt { (numl)} { (num2)} { (true part)} { {false part)}

If (num1) is less than (num?2), then do (true part), otherwise do (false
part). Note that both (num1) and (num2) must be numerical (either
integers, real numbers or currency).

\DTLifstringlt {(stringl)} { (string2)} { (true part)} { (false part)}

\DTLifstringltx{(stringl)} {(string2)} {(true part)} { (false part)}

If (string1) is alphabetically less than (string2), then do (true part),
otherwise do (false part). The starred version ignores the case, the
unstarred version is case sensitive. For example:

\DTLifstringlt{aardvark}{zebra}{less}{not less}

produces: less.
Note that both (stringl) and (string2) are considered to be strings, so
for example:

\DTLifstringlt{2}{10}{less}{not less}

produces: not less, since the string 2 comes after the string 10 when
arranged alphabetically.

The case sensitive (unstarred) version considers uppercase characters
to be less than lowercase characters, so

\DTLifstringlt{B}{a}{less}{not less}

produces: less, whereas

\DTLifstringlt*{B}{a}{less}{not less}

10

\DTLiflt

\DTLiflt«

\DTLifnumgt

\DTLifstringgt

\DTLifstringgt«

produces: not less.

\DTLiflt {{argl)} {{arg2)} { (true part)} { {false part)}

\DTLiflt«{(argl)} {(arg2)} { (true part)} {{false part)}

If (arg1) and (arg2) are both numerical, then this is equivalent to
\DTLifnumlt, otherwise it is equivalent to \DTLstringlt (when
using \DTLiflt)or \DTLstringlt (when using \DTLifltx).

\DTLifnumgt { (numl)} { (num2)} { (true part)} { {false part) }

If (num1) is greater than (num?2), then do (true part), otherwise do (false
part). Note that both (num1) and (num2) must be numerical (either
integers, real numbers or currency).

\DTLifstringgt {(stringl)} { (string2) } { (true part) } { (false part)}

\DTLifstringgtx{(stringl)} {(string2)} { (true part)} { (false part)}

If (string1) is alphabetically greater than (string2), then do (true part),
otherwise do (false part). The starred version ignores the case, the
unstarred version is case sensitive. For example:

\DTLifstringgt{aardvark}{zebra}{greater}{not greater}

produces: not greater.
Note that both (stringl) and (string2) are considered to be strings, so
for example:

\DTLifstringgt{2}{10}{greater}{not greater}

produces: greater, since the string 2 comes after the string 10 when
arranged alphabetically.

As with \DTLifstringlt, uppercase characters are considered to be
less than lower case characters when performing a case sensitive
comparison so:

\DTLifstringgt{B}{a}{greater}{not greater}

11

\DTLifgt

\DTLifgt«

\DTLifnumclosedbe

\DTLifstringclose

\DTLifstringclose

produces: not greater, whereas

\DTLifstringgt*{B}{a}{greater}{not greater}

produces: greater.

\DTLifqgt {(argl)} {{arg2)} { (true part) } { {false part) }

\DTLifqgt«{(argl)} {(arg2)} { (true part)} { (false part)}

If (arg1) and (arg2) are both numerical, then this is equivalent to
\DTLifnumgt, otherwise it is equivalent to \DTLstringgt (wWhen
using \DTLifgt) or \DTLstringgt+ (when using \DTLifgtx).

tween

\DTLifnumclosedbetween { {num)} { (min)} { (max)} { (true
part) } { (false part) }

If (min) < (num) < (max) then do (true part), otherwise do (false part).
Note that (num), (min) and (max) must be numerical (either integers, real
numbers or currency). The currency symbol is ignored when
determining equality. For example:

\DTLifnumclosedbetween{5.4}{5}{7}{inside} {outside}
produces: inside. Note that the closed range includes end points:
\DTLifnumclosedbetween{5}{5}{7}{inside} {outside}

produces: inside.

dbetween

\DTLifstringclosedbetween{(string)} {(min)} { (max)} { (true
part) } { (false part) }

dbetweenx

\DTLifstringclosedbetweenx {(string)} { (min)} { (max)} { (true
part) } { (false part) }

This determines if (string) is between (min) and (max) in the alphabetical
sense, or is equal to either (min) or (max). The starred version ignores the
case, the unstarred version is case sensitive.

12

\DTLifclosedbetween

\DTLifclosedbetween{{(arg)} {(min)} { (max)} { (true part) } { (false
part) }

\DTLifclosedbetweenx*

\DTLifclosedbetweenx {{(arg)} { (min)} { (max)} { (true part)} { (false
part) }

If (arg), (min) and (max) are numerical, then this is equivalent to
\DTLifnumclosedbetween

otherwise it is equivalent to

\DTLifstringclosedbetween

(when using \DTLifclosedbetween) or
\DTLifstringclosedbetweenx

(when using \DTLifclosedbetweenx).

\DTLifnumopenbetween

\DTLi fnumopenbetween { (num) } { (min) } { (max)} { (true
part) } { (false part) }

If (min) (num) (max) then do (true part), otherwise do (false part). Note
that (numy), (min) and (max) must be numerical (either integers, real
numbers or currency). Again, the currency symbol is ignored when
determining equality. For example:

\DTLifnumopenbetween{5.4}{5}{7}{inside} {outside}
produces: inside. Note that end points are not included. For example:
\DTLifnumopenbetween{5}{5}{7}{inside}{outside}

produces: outside.

\DTLifstringopenbetween

\DTLifstringopenbetween{(string)} { (min)} { (max)} { (true
part) } { (false part) }

\DTLifstringopenbetweenx

\DTLifstringopenbetweenx { (string)} { (min)} { (max)} { (true
part) } { (false part) }

This determines if (string) is between (min) and (max) in the alphabetical
sense. The starred version ignores the case, the unstarred version is case
sensitive.

13

\DTLifopenbetween

\DTLifopenbetween{(arg)} { (min)} { (max)} { {true part)} { (false
part) }

\DTLifopenbetweenx

\DTLifopenbetweenx {{arg)} { (min)} { (max)} { (true part)} { (false
part) }

If (arg), (min) and (max) are numerical, then this is equivalent to
\DTLifnumopenbetween otherwise it is equivalent to
\DTLifstringopenbetween (when using \DTLifopenbetween) or
\DTLifstringopenbetweenx (When using \DTLifopenbetweenx).

\DTLifFPclosedbetween

\DTLifFPclosedbetween {(num)} {(min)} { (max)} { (true
part) } { (false part) }

If (min) < (num) < (max) then do (true part), otherwise do (false part)
where (num), (min) and (max) are all in standard fixed point notation
(i.e. no number group separator, no currency symbols and a full stop as a
decimal point).

\DTLifFPopenbetween

\DTLifFPopenbetween { {(num)} { (min) } { (max)} { (true part)} { (false
part) }

If (min) (num) (max) then do (true part), otherwise do (false part) where
(num), (min) and (max) are all in standard fixed point notation (i.e. no
number group separator, no currency symbols and a full stop as a
decimal point).

\DTLifAllUpperCase

\DTLifAllUpperCase{(string)} { (true part)} { {false part)}

Tests if (string) is all upper case. For example:
\DTLifAllUpperCase{WORD}{all upper}{not all upper}
produces: all upper, whereas
\DTLifAllUpperCase{Word}{all upper}{not all upper}

produces: not all upper. Note also that:

\DTLifAllUpperCase{\MakeUppercase{word}}{all upper}{not all upper}

14

also produces: all upper. \MakeTextUppercase (defined in David
Carlisle’s textcase package) and \uppercase are also detected,
otherwise, if a command is encountered, the case of the command is
considered. For example:

\DTLifAllUpperCase{MAN{\OE}UVRE}{all upper}{not all upper}
produces: all upper.

\DTLifAllLowerCase

\DTLifAllLowerCase{(string)} { (true part)} { (false part) }

Tests if (string) is all lower case. For example:

\DTLifAllLowerCase{word}{all lower}{not all lower}

produces: all lower, whereas

\DTLifAllLowerCase{Word}{all lower}{not all lower}

produces: not all lower. Note also that:
\DTLifAllLowerCase{\MakeLowercase{WORD}}{all lower}{not all lower}

also produces: all lower. \MakeTextLowercase (defined in David
Carlisle’s textcase package) and \ lowercase are also detected,
otherwise, if a command is encountered, the case of the command is
considered. For example:

\DTLifAllLowerCase{man{\oe}uvre}{all lower}{not all lower}

produces: all lower.

\DTLifSubString

\DTLifSubString{(string)} { (substring)} { (true part)} { (false part)}

This tests if (substring) is a sub-string of (string). This command
performs a case sensitive match. For example:

\DTLifSubString{An apple}{app}{is substring}{isn’t substring}

produces: is substring. Note that spaces are considered to be equivalent
to \space or ~, so

\DTLifSubString{An apple}{n~a}{is substring}{isn’t substring}
produces: is substring, but other commands are skipped, so

\DTLifSubString{An \uppercase{alpple}{app}{is substring}{isn’t
substring}

15

produces: is substring, since the \uppercase command is ignored. Note
also that grouping is ignored, so:

\DTLifSubString{An {ap}ple}{app}{is substring}{isn’t substring}

produces: is substring.
\DTLifSubString is case sensitive, so:

\DTLifSubString{An Apple}{app}{is substring}{isn’t substring}

produces: isn’t substring.

\DTLifStartsWith

\DTLifStartsWith{(string)} { (substring)} { (true part)} { (false part)}

This is like \DTLifSubString, except that (substring) must occur at the
start of (string). This command performs a case sensitive match. For
example,

\DTLifStartsWith{An apple}{app}{prefix}{not a prefix}

produces: not a prefix. All the above remarks for \DTLifSubString
also applies to \DTLifStartsWith. For example:

\DTLifStartsWith{\uppercase{aln apple}{an~}{prefix}{not a prefix}

produces: not a prefix, since \uppercase is ignored, and ~ is considered
to be the same as a space, whereas

\DTLifStartsWith{An apple}{an~}{prefix}{not a prefix}

produces: not a prefix.

2.2 ifthen conditionals

The commands described in the previous section can not be used as the
conditional part of the \ifthenelse or \whiledo commands provided
by the ifthen package. This section describes analogous commands which
may only be used in the conditional argument of \ifthenelse and
\whiledo. These may be used with the boolean operations \not, \and
and \or provided by the ifthen package. See the ifthen documentation for
further details.

\DTLisstring

\DTLisstring{ (text)}

Tests if (text) is a string. For example:

\ifthenelse{\DTLisstring{some text}}{string}{not a string}

16

produces: string.

\DTLisnumerical

\DTLisnumerical {(fext)}

Tests if (text) is numerical (i.e. not a string). For example:
\ifthenelse{\DTLisnumerical{\$10.95}}{numerical}{not numerical}

produces: numerical.

Note however that \DTLisnumerical requires more care than
\DTLifnumerical when used with some of the other currency
symbols. Consider:

\DTLifnumerical{\poundsl0.95}{numerical}{not numerical}
This produces: numerical. However
\ifthenelse{\DTLisnumerical{\poundsl10.95}}{numerical}{not numerical}

produces: not numerical. This is due to the expansion that occurs within
\ifthenelse. This can be prevented using \noexpand, for example:

\ifthenelse{\DTLisnumerical {\noexpand\poundsl10.95}}{numerical}{not numerical}

produces: numerical.
Likewise:

\def\cost {\poundsl10.95}%
\ifthenelse{\DTLisnumerical{\noexpand\cost}}{numerical} {not numerical}

produces: numerical.

\DTLiscurrency

\DTLiscurrency{ (text)}

Tests if (fext) is currency. For example:
\ifthenelse{\DTLiscurrency{\$10.95}}{currency}{not currency}

produces: currency.
The same warning given above for \DTLisnumerical also applies
here.

\DTLiscurrencyunit

\DTLiscurrencyunit { (text)} { (symbol) }

Tests if (text) is currency and that currency uses (symbol) as the unit of
currency. For example:

\ifthenelse{\DTLiscurrencyunit{\$6.99}{\$}}{dollars}{not dollars}

17

\DTLisreal

\DTLisint

\DTLislt

\DTLisilt

\DTLisgt

produces: dollars. Another example:

\def\cost {\eurol0.50}%
\ifthenelse{\DTLiscurrencyunit{\noexpand\cost} {\noexpand\euro}}%
{euros} {not euros}

produces: euros. Again note the use of \noexpand.

\DTLisreal {(text)}

Tests if (text) is a fixed point number (again, an integer is not considered
to be a fixed point number). For example:

\ifthenelse{\DTLisreal{l.5}}{real}{not real}

produces: real.

\DTLisint { (text)}

Tests if (text) is an integer. For example:
\ifthenelse{\DTLisint{153}}{integer}{not an integer}

produces: integer.

\DTLislt {{argl)} {(arg2)}

This checks if (arg1) is less than (arg2). As with \DTLif1t, if (arg¢l) and
(arg2) are numerical, a numerical comparison is used, otherwise a case
sensitive alphabetical comparison is used. (Note that there is no starred
version of this command, but you can instead use \DTLisilt to ignore
the case.)

\DTLisilt {(argl)} {(arg2)}

This checks if (arg1) is less than (arg2). As with \DTLif1lt*, if (argl)
and (arg2) are numerical, a numerical comparison is used, otherwise a
case insensitive alphabetical comparison is used.

\DTLisgt {{argl)} {(arg2)}

18

This checks if (arg1) is greater than (arg2). As with \DTLi fqt, if (argl)
and (arg2) are numerical, a numerical comparison is used, otherwise a
case sensitive alphabetical comparison is used. (Note that there is no
starred version of this command, instead use \DTLisigt to ignore the
case.)

\DTLisigt

\DTLisigt {(argl)} { {arg2)}

This checks if (arg1) is greater than (arg2). As with \DTLifgt«, if (argl)
and (arg2) are numerical, a numerical comparison is used, otherwise a
case insensitive alphabetical comparison is used.

\DTLiseq

\DTLiseq{{argl)} {{arg2)}

This checks if (arg1) is equal to (arg2). As with \DTLifegq, if (argl) and
(arg2) are numerical, a numerical comparison is used, otherwise a case
sensitive alphabetical comparison is used. (Note that there is no starred
version of this command, instead use \DTLisieq.)

\DTLisieq

\DTLisieq{(argl)} {(arg2)}

This checks if (arg1) is equal to (arg2). As with \DTLifeqx, if (arg1) and
(arg2) are numerical, a numerical comparison is used, otherwise a case
insensitive alphabetical comparison is used.

\DTLisclosedbetween

\DTLisclosedbetween{{(arg)} {(min)} { (max)}

This checks if (arg) lies between (min) and (max) (end points included).
As with \DTLifclosedbetween, if the arguments are numerical, a
numerical comparison is used, otherwise a case sensitive alphabetical
comparison is used. (Note that there is no starred version of this
command, instead use \DTLisiclosedbetween.)

\DTLisiclosedbetween

\DTLisiclosedbetween{{(arg)} {(min)} { (max)}

This checks if (arg) lies between (min) and (max) (end points included).
As with \DTLifclosedbetweenx, if the arguments are numerical, a

19

\DTLisopenbetween

\DTLisiopenbetwee

\DTLisFP1lt

\DTLisFPlteq

\DTLisFPgt

\DTLisFPgteq

numerical comparison is used, otherwise a case insensitive alphabetical
comparison is used.

\DTLisopenbetween{(arg)} { (min)} { (max)}

This checks if (arg) lies between (min) and (max) (end points excluded).
As with \DTLifopenbetween, if the arguments are numerical, a
numerical comparison is used, otherwise a case sensitive alphabetical
comparison is used. (Note that there is no starred version of this
command, instead use \DTLisiopenbetween.)

n

\DTLisiopenbetween{(arg)} {(min)} { (max)}

This checks if (arg) lies between (min) and (max) (end points excluded).
As with \DTLifopenbetweenx, if the arguments are numerical, a
numerical comparison is used, otherwise a case insensitive alphabetical
comparison is used.

\DTLisFP1t { (numl)} { (num2)}

This checks if (num1) is less than (num?2), where both numbers are in
standard fixed point format (i.e. no number group separators, no
currency and a full stop as a decimal point).

\DTLisFPlteq{(numl)} { (num2)}

This checks if (num1) is less than or equal to (num2), where both
numbers are in standard fixed point format (i.e. no number group
separators, no currency and a full stop as a decimal point).

\DTLisFPgt { (numl)} { (num2)}

This checks if (num1) is greater than (num2), where both numbers are in
standard fixed point format (i.e. no number group separators, no
currency and a full stop as a decimal point).

\DTLisFPgteq{ (numl)} { (num2)}

20

\DTLisFPeq

This checks if (num1) is greater than or equal to (num2), where both
numbers are in standard fixed point format (i.e. no number group
separators, no currency and a full stop as a decimal point).

\DTLisFPeq{ (numl)} { (num2)}

This checks if (num1) is equal to (num2), where both numbers are in
standard fixed point format (i.e. no number group separators, no
currency and a full stop as a decimal point).

\DTLisFPclosedbetween

\DTLisFPclosedbetween {{num)} {(min)} { (max)}

This checks if (num) lies between (min) and (max) (end points included).
All arguments must be numbers in standard fixed point format (i.e. no
number group separators, no currency and a full stop as a decimal point).

\DTLisFPopenbetween

\DTLisSubString

\DTLisPrefix

\DTLisFPopenbetween { (num)} { (min) } { (max) }

This checks if (num) lies between (min) and (max) (end points excluded).
All arguments must be numbers in standard fixed point format (i.e. no
number group separators, no currency and a full stop as a decimal point).

\DTLisSubString{(string) } { (substring)}

This checks if (substring) is contained in (string). The remarks about
\DTLifSubString also apply to \DTLisSubString. This command
performs a case sensitive match.

\DTLisPrefix{(string)} { (prefix)}

This checks if (string) starts with (prefix). The remarks about
\DTLifStartsWith also apply to \DTLisPrefix. This command
performs a case sensitive match.

21

3 Fixed Point Arithmetic

The datatool bundle doesn’t support scientific notation.

The datatool-base package uses either the fp or the pgfmath package to
perform fixed point arithmetic, however all numbers must be converted
from the locale dependent format into the format required by the fp or
pgfmath packages. A numerical value (i.e. an integer, a real or currency)
can be converted into a plain decimal number using

\DTLconverttodecimal

\DTLconverttodecimal { (num)} { (cmd)}

The decimal number will be stored in (cmd) which must be a control
sequence. For example:

\DTLconverttodecimal{l,563.54}{\mynum}
will define \mynum to be 1563 . 54. The command \mynum can then be

used in any of the arithmetic macros provided by the fp or pgfmath
packages.

The arguments to \DTLconverttodecimal don’t get fully expanded
so, for example,

\def\myval{1l.23}
\DTLconverttodecimal {\myval} {\mynum}

will work, but the following won’t work:

\def\myval{1l.23}
\def\myotherval {\myval}
\DTLconverttodecimal {\myotherval} {\mynum}

Nor will the following work:

\def\myval{9}
\DTLconverttodecimal{\myval 9} {\mynum}

There are two commands provided to perform the reverse:

\DTLdecimaltolocale

22

\DTLdecimaltolocale{(number)} {(cmd)}

This converts a plain decimal number (number) (that uses a full stop as
the decimal character and has no number group characters) into a locale
dependent format. The resulting number is stored in (cmd), which must
be a control sequence. For example:

\DTLdecimaltolocale{6795.3} {\mynum}

will define \mynum to be 6, 795. 3.

\DTLdecimaltocurrency

\DTLdecimaltocurrency { (number)} { (cmd)}

This will convert a plain decimal number (number) into a locale
dependent currency format. For example:

\DTLdecimaltocurrency{267.5}{\price}\price

will produce: £267.50.
The currency symbol used by \DTLdecimaltocurrency is initially
\'$, but it will use the currency last encountered. So, for example

\DTLifcurrency{\texteuro45.00}{}{}%
\DTLdecimaltocurrency{267.5}{\price}\price

will produce: €267.50. This is because the last currency symbol to be
encountered was \texteuro. You can reset the currency symbol using
the command:

\DTLsetdefaultcurrency

\DTLsetdefaultcurrency { (symbol)}

For example:

\DTLsetdefaultcurrency{\textyen}$%
\DTLdecimaltocurrency{267.5}{\price}\price

will produce: ¥267.50

The datatool-base package provides convenience commands which use
\DTLconverttodecimal, and then use the basic macros provided by
the fp/pgfmath package. The resulting value is then converted back into
the locale format using \DTLdecimaltolocale or
\DTLdecimaltocurrency. Note that since these commands use
\DTLconverttodecimal the caveat above regarding expansion also
applies to all the commands.

23

\DTLadd

\DTLgadd

\DTLaddall

\DTLgaddall

If you don’t require currency or locale conversion, you can reduce the
package overheads by using the commands defined in the datatool-fp
or datatool-pgfmath packages which provide interface commands to fp

or pgfmath, respectively. (See sections 2 and 3 of the documented code,
datatool-code.pdf.) Alternatively, you can just use the fp or
pgfmath commands explicitly. (See the fp or pgf manuals for further
details.)

\DTLadd{{cmd)} { (num1)} { (num2)}

\DTLgadd{{cmd)} { (num1)} { (num2)}

This sets the control sequence (cmd) to (numl)+(num2). \DLTadd sets
(cmd) locally, while \DTLgadd sets (cmd) globally.
For example:

\DTLadd{\result}{3,562.65}{412.2}\result

will produce: 3,974.850000000. Since \DTLconverttodecimal can
convert currency to a real number, you can also add prices. For example:

\DTLadd{\result} {\pounds3,562.65}{\pounds452.2}\result

produces: £4,014.850000000.
Note that datatool isn’t aware of exchange rates! If you use different
currency symbols, the last symbol will be used. For example

\DTLadd{\result} {\pounds3,562.65}{\euro452.2}\result

produces: €4,014.850000000.
Likewise, if one value is a number and the other is a currency, the type
of the last value, (num2), will be used for the result. For example:

\DTLadd{\result}{3,562.65}{\$452.2}\result

produces: $4,014.850000000.

\DTLaddall{(cmd)} { (number list) }

\DTLgaddall{(cmd)} { (number list)}

24

\DTLsub

\DTLgsub

\DTLmul

\DTLgmul

This sets the control sequence (cmd) to the sum of all the numbers in
(number list). \DLTaddall sets (cmd) locally, while \DTLgaddall sets
(cmd) globally. Example:

\DTLaddall{\total}{25.1,45.2,35.6}\total

produces: 105.900000000. Note that if any of the numbers in (number list)
contain a comma, you must group the number. Example:

\DTLaddall{\total}{{1,525},{2,340},500}\total

produces: 4,365.

\DTLsub{ {cmd)} { (num1)} { (num2)}

\DTLgsub {(cmd)} { (numl)} { (num2)}

This sets the control sequence (cmd) to (numl)—(num2). \DLTsub sets
(cmd) locally, while \DTLgsub sets (cmd) globally.
For example:

\DTLsub{\result}{3,562.65}{412.2}\result

will produce: 3,150.450000000. As with \DTLadd, (numl) and (num?2)
may be currency.

\DTLmul {(cmd)} { {(numl)} { (num2)}

\DTLgmul { (cmd) } { (num1)} { (num2)}

This sets the control sequence (cmd) to (numil) x (num2). \DLTmul sets
(cmd) locally, while \DTLgmul sets (cmd) globally.
For example:

\DTLmul {\result}{568.95}{2}\result

will produce: 1,137.900000000. Again, (numl) or (num2) may be
currency, but unlike \DTLadd and \DTLsub, currency overrides
integer/real. For example:

\DTLmul {\result} {\pounds568.95}{2}\result

25

\DTLdiv

\DTLgdiv

\DTLabs

\DTLgabs

will produce: £1,137.900000000. Likewise,

\DTLmul {\result} {2} {\pounds568.95}\result

will produce: £1,137.900000000. Although it doesn’t make sense to
multiply two currencies, datatool will allow

\DTLmul {\result}{\$2}{\pounds568.95}\result

which will produce: £1,137.900000000.

\DTLdiv{{cmd)} {{(numl)} { (num2)}

\DTLgdiv{{cmd)} { (numl)} { (num2)}

This sets the control sequence (cmd) to (numil)-(num2). \DLTd1iv sets
(cmd) locally, while \DTLgdiv sets (cmd) globally.
For example:

\DTLdiv{\result} {501} {2}\result

will produce: 250.500000000. Again, (numl) or (num2) may be currency,
but the resulting type will be not be a currency if both (num1) and
(num?2) use the same currency symbol. For example:

\DTLdiv{\result}{\$501}{\$2}\result
will produce: 250.500000000. Whereas
\DTLdiv{\result}{\$501}{2}\result

will produce: $250.500000000.

\DTLabs {(cmd)} { (num)}

\DTLgabs { (cmd) } { (num) }

This sets (cmd) to the absolute value of (num). \DLTabs sets (cmd)
locally, while \DTLgabs sets (cmd) globally. Example:

\DTLabs{\result}{-\pounds2.50}\result

26

produces: £2.500000000.

\DTLneg
\DTLneg {{cmd) } { (num)}
\DTLgneg
\DTLgneg {(cmd) } { (num) }
This sets (cmd) to the negative of (num). \DLTneg sets (cmd) locally,
while \DTLgneg sets (cmd) globally. Example:
\DTLneg{\result}{\pounds2.50}\result
produces: -£2.500000000.
\DTLsqgrt
\DTLsqrt {(cmd) } { (num)}
\DTLgsqgrt
\DTLgsqrt { (cmd) } { (num) }
This sets (cmd) to the sqrt root of (num). \DLTsqrt sets (cmd) locally,
while \DTLgsqrt sets (cmd) globally. Example:
\DTLsqgrt {\result}{2}\result
produces: 1.414213562.
\DTLmin
\DTLmin {{cmd)} { (numl)} { (num2)}
\DTLgmin

\DTLgmin {{cmd)} { (numl)} { (num2)}

This sets the control sequence (cmd) to the minimum of (num1) and
(num2). \DLTmin sets (cmd) locally, while \DTLgmin sets (cmd) globally.
For example:

\DTLmin{\result} {256} {32} \result

produces: 32. Again, (numl) and (num2) may be currency. For example:

\DTLmin{\result} {256} {\pounds32}\result

27

\DTLminall

\DTLgminall

\DTLmax

\DTLgmax

\DTLmaxall

produces: £32, whereas
\DTLmin{\result} {\pounds256}{32}\result

produces: 32. As mentioned above, datatool doesn’t know about exchange
rates, so be careful about mixing currencies. For example:

\DTLmin{\result} {\pounds5}{\$6}\result

produces: £5, which may not necessarily be true!

\DTLminall{(cmd)} { (number list) }

\DTLgminall{(cmd)} { (number list)}

This sets the control sequence (cmd) to the minimum of all the numbers
in (number list). \DLTminall sets (cmd) locally, while \DTLgminall
sets (cmd) globally. Example:

\DTLminall{\theMin}{25.1,45.2,35.6}\theMin

produces: 25.1. Note that if any of the numbers in (number list) contain a
comma, you must group the number. Example:

\DTLminall{\theMin}{{1,525},{2,340},500}\theMin

produces: 500.

\DTLmax {(cmd)} { {(num1)} { (num2)}

\DTLgmax { (cmd) } { (num1)} { (num2)}

This sets the control sequence (cmd) to the maximum of (numl) and
(num?2). \DLTmax sets (cmd) locally, while \DTLgmax sets (cmd) globally.
For example:

\DTLmax{\result} {256} {32} \result

produces: 256. Again, (numl) and (num2) may be currency, but the same
warnings for \DTLmin apply.

28

\DTLmaxall{(cmd)} { (number list) }

\DTLgmaxall

\DTLgmaxall{(cmd)} { (number list)}

This sets the control sequence (cmd) to the maximum of all the numbers
in (number list). \DLTmaxall sets (cmd) locally, while \DTLgmaxall
sets (cmd) globally. Example:

\DTLmaxall{\theMax}{25.1,45.2,35.6}\theMax

produces: 45.2. Note that if any of the numbers in (number list) contain a
comma, you must group the number. Example:

\DTLmaxall{\theMax}{{1,525},{2,340},500}\theMax

produces: 2,340.

\DTLmeanforall

\DTLmeanforall {{(cmd)} { (number list) }

\DTLgmeanall

\DTLgmeanforall{(cmd)} { (number list)}

This sets the control sequence (cmd) to the arithmetic mean of all the
numbers in (number list). \DLTmeanforall sets (cmd) locally, while
\DTLgmeanforall sets (cmd) globally. Example:

\DTLmeanforall{\theMean}{25.1,45.2,35.6}\theMean

produces: 35.300000000. Note that if any of the numbers in (number list)
contain a comma, you must group the number. Example:

\DTLmeanforall{\theMean}{{1,525}, {2,340},500}\theMean
produces: 1,455.

\DTLvarianceforall

\DTLvarianceforall {{cmd)} { (number list)}

\DTLgvarianceforall

\DTLgvarianceforall {{cmd)} { (number list)}

This sets the control sequence (cmd) to the variance of all the numbers in
(number list). \DLTvarianceforall sets (cmd) locally, while
\DTLgvarianceforall sets (cmd) globally. Example:

\DTLvarianceforall{\theVar}{25.1,45.2,35.6}\thevVar

29

produces: 67.380000000. Again note that if any of the numbers in (number
list) contain a comma, you must group the number.

\DTLsdforall

\DTLsdforall{(cmd)} { (number list) }

30

\DTLgsdforall

\DTLround

\DTLground

\DTLtrunc

\DTLgtrunc

\DTLgsdforall{{cmd)} { (number list)}

This sets the control sequence (cmd) to the standard deviation of all the
numbers in (number list). \DLTsdforall sets (cmd) locally, while
\DTLgsdforall sets (cmd) globally. Example:

\DTLsdforall{\theSD}{25.1,45.2,35.6}\theSD

produces: 8.208532146. Note that if any of the numbers in (number list)
contain a comma, you must group the number. Example:

\DTLsdforall{\theSD}{{1,525}, {2,340},500}\theSD

produces: 752.805862534.

\DTLround{(cmd) } { (num)} { (num digits) }

\DTLground{(cmd)} { (num) } { (num digits) }

This sets (cmd) to (num) rounded to (num digits) after the decimal
character. \DLTround sets (cmd) locally, while \DTLground sets (cmd)
globally. Example:

\DTLround{\result}{3.135276}{2}\result

produces: 3.14.

\DTLtrunc{(cmd)} { (num)} { (num digits) }

\DTLgtrunc{(cmd)} { (num)} { (num digits) }

This sets (cmd) to (num) truncated to (num digits) after the decimal
character. \DLTtrunc sets (cmd) locally, while \DTLgtrunc sets (cmd)
globally. Example:

\DTLtrunc{\result}{3.135276}{2}\result

produces: 3.13.

31

\DTLclip

\DTLclip{{(cmd)} {(num)}

\DTLgclip

\DTLgclip{(cmd)} {(num)}

This sets (cmd) to (num) with all unnecessary 0’s removed. \DLTclip
sets (cmd) locally, while \DTLgclip sets (cmd) globally.

32

\DTLsubstitute

\DTLsubstituteall

\DTLsplitstring

4 Strings

Strings are considered to be anything non-numerical. The datatool
package loads the substr package, so you can use the commands defined
in that package to determine if one string is contained in another string.
In addition, the datatool provides the following macros:

\DTLsubstitute{(cmd)} { (original) } { (replacement) }

This replaces the first occurrence of (original) in (cmd) with (replacement).
Note that (cmd) must be the name of a command. For example:

\def\mystr{abcdce}\DTLsubstitute{\mystr}{c}{z}\mystr

produces: abzdce.

\DTLsubstituteall{(cmd)} { (original)} { (replacement) }

This replaces all occurrences of (original) in (cmd) with (replacement),
where again, (cmd) must be the name of a command. For example:

\def\mystr{abcdce}\DTLsubstituteall{\mystr}{c}{z}\mystr

produces: abzdze.

\DTLsplitstring{(string)} {(split text)} { (before cmd)} { (after cmd)}

This splits (string) at the first occurrence of (split text) and stores the
before part in the command (before cmd) and the after part in the
command (after cmd). For example:

\DTLsplitstring{abcdce}{c}{\beforepart}{\afterpart}$%
Before part: ‘‘\beforepart’’. After part: ‘“\afterpart’’

produces: Before part: “ab”. After part: “dce”. Note that for
\DTLsplitstring, (string) is not expanded, so

\def\mystr{abcdce}%
\DTLsplitstring{\mystr}{c}{\beforepart}{\afterpart}%
Before part: ‘‘\beforepart’’. After part: ‘“\afterpart’’

33

produces: Before part: “abcdce”. After part: “”. If you want the string
expanded, you will need to use \expandafter:

\def\mystr{abcdce}%
\expandafter\DTLsplitstring\expandafter
{\mystr}{c}{\beforepart}{\afterpart}%

Before part: ‘‘\beforepart’’. After part: ‘“\afterpart’’

which produces: Before part: “ab”. After part: “dce”.

\DTLinitials

\DTLinitials{(string)}

This converts (string) (typically a name) into initials. For example:
\DTLinitials{Mary Ann}

produces: M.A. (including the final full stop). Note that
\DTLinitials{Mary-Ann}

produces: M.-A. (including the final full stop). Be careful if the initial
letter has an accent. The accented letter needs to be placed in a group, if
you want the initial to also have an accent, otherwise the accent
command will be ignored. For example:

\DTLinitials{{\’E}lise Adams}
produces: E.A., whereas
\DTLinitials{\’Elise Adams}

produces: E.A. In fact, any command which appears at the start of the
name that is not enclosed in a group will be ignored. For example:

\DTLinitials{\MakeUppercase{m}ary ann}
produces: m.a., whereas
\DTLinitials{{\MakeUppercase{m}}tary ann}
produces: M.a., but note that
\DTLinitials{\MakeUppercase{mary ann}}

produces: mary ann.

\DTLstoreinitials

\DTLstoreinitials{(string)} { (cmd)}

This converts (string) into initials and stores the result in (cmd) which
must be a command name. The remarks about \DTLinitials also
relate to \DTLstoreinitials. For example

\DTLstoreinitials{Marie-{\'"E}lise del~Rosario}{\theInitials}\theInitials

34

produces: M.-E.d.R.
Both the above commands rely on the following to format the initials:

\DTLafterinitials

\DTLafterinitials

This indicates what to do at the end of the initials. This simply does a full
stop by default.

\DTLbetweeninitials

\DTLbetweeninitials

This indicates what to do between initials. This does a full stop by
default.

\DTLinitialhyphen

\DTLinitialhyphen

This indicates what to do at a hyphen. This simply does a hyphen by
default, but can be redefined to do nothing to prevent the hyphen
appearing in the initials.

\DTLafterinitialbeforehyphen

\DTLafterinitialbeforehyphen

This indicates what to do between an initial and a hyphen. This simply
does a full stop by default.
For example

\renewcommand* {\DTLafterinitialbeforehyphen}{}%
\DTLinitials{Marie—-{\’E}lise del~Rosario}

produces: M-E.d.R. whereas

\renewcommand~*{\DTLafterinitialbeforehyphen}{}%
\renewcommandx {\DTLafterinitials}{}%
\renewcommand* { \DTLbetweeninitials}{}%
\renewcommand* {\DTLinitialhyphen}{}%
\DTLinitials{Marie-{\'E}lise del~Rosario}

produces: MEdR

35

\DTLnewdb

\DTLgnewdb

5 Databases

The datatool package provides a means of creating and loading databases.
Once a database has been created (or loaded), it is possible to iterate
through each row of data, to make it easier to perform repetitive actions,
such as mail merging.

Whilst TgX is an excellent typesetting language, it is not designed as a
database management system, and attempting to use it as such is like
trying to fasten a screw with a knife instead of a screwdriver: it can be
done, but requires great care and is more time consuming. Version 2.0
of the datatool package uses a completely different method of storing
the data to previous versions.” As a result, the code is much more

efficient, however, large databases and complex operations will still
slow the time taken to process your document. Therefore, if you can, it
is better to do the complex operations using whatever system created
the data in the first place.

?Many thanks to Morten Hegholm for providing the new code.

Some advanced commands for accessing database information are
described in section 5.11, but using TgX is nowhere near as efficient as,
say, using a SQL database, so don’t expect too much from this package.

I've written a Java helper application to accompany datatool called
datatooltk. The installer is available on CTAN at http://mirrors.
ctan.org/support/datatooltk/datatooltk-installer. jar.
The application will allow you to edit files saved using \DTLsaverawdb
or \DTLprotectedsaverawdb in a graphical interface or import data
from a SQL database, a CSV file or a probsoln dataset.

5.1 Creating a New Database

\DTLnewdb { (db name) }

\DTLgnewdb { (db name) }

36

http://mirrors.ctan.org/support/datatooltk/datatooltk-installer.jar
http://mirrors.ctan.org/support/datatooltk/datatooltk-installer.jar

\DTLifdbempty

\DTLrowcount

\DTLcolumncount

\DTLnewrow

This command creates a new empty database called (db name). The
second form is for global definitions. You can test if a database is empty
using:

\DTLifdbempty { (db name)} { (true part) } { {false part) }

If the database called (db name) is empty, do (true part), otherwise do
(false part).

\DTLrowcount { (db name) }

This command displays the number of rows in the database called (db
name).

\DTLcolumncount { (db name) }

This command displays the number of columns (or keys) in the database
called (db name).

\DTLnewrow { (db name) }

This command starts a new row in the database called (db name). This
new row becomes the current row when adding new entries.
For example, the following creates an empty database called mydata:

\DTLnewdb {mydata}
The following tests if the database is empty:
\DTLifdbempty{mydata}{empty}{not empty}!

This produces: empty!
The following adds an empty row to the database, this is the first row
of the database:

\DTLnewrow{mydata}

Note that even though the only row in the database is currently empty,
the database is no longer considered to be empty:

\DTLifdbempty{mydata}{empty}{not empty}!
This now produces: not empty! The row count is given by

\DTLrowcount {mydata}

37

which produces: 1. The column count is given by

\DTLcolumncount {mydata}
which produces: 0.

\DTLnewdbentry

\DTLnewdbentry { (db name)} { (key) } { (value) }

This creates a new entry with the identifier (key) whose value is (value)
and adds it to the last row of the database called (db name). For example:

\DTLnewdbentry{mydata}{Surname}{Smith}
\DTLnewdbentry{mydata} {FirstName} {John}

Adds an entry with identifier Surname and value Smith to the last row
of the database named mydata, and then adds an entry with identifier
FirstName and value John. Note that the key should not contain any
fragile commands. It is generally best to only use non-active characters in
the key.

The value isn’t expanded by default, but you can change this using the
declaration:

\dtlexpandnewvalue

\dtlexpandnewvalue

This can be localised by placing it in a group, or you can switch back
using:

\dt lnoexpandnewvalue

\dt lnoexpandnewvalue

Note that database entries can’t contain paragraph breaks as many
of the macros used by datatool are short commands. If you do need
a paragraph break in an entry, you can instead use the command:

\DTLpar
\DTLpar
For example:
\DTLnewdbentry{mydata}{Description}{First paragraph.\DTLpar
Second paragraph.}
\DTLaddentryforrow

38

\DTLsetheader

\DTLaddcolumn

\DTLaddentryforrow{(db)} { (assign
list) } { (condition) } { (key) } { (value) }

This adds the entry with the key given by (key) and value given by
(value) to the first row in the database (db) which satisfies the condition
given by (condition). The (assign list) argument is the same as for
\DTLforeach (described in section 5.4) and may be used to set the
values which are to be tested in (condition) (where, again, (condition) is
the same as for \DTLforeach). For example:

\DTLaddentryforrow{mydata} {\firstname=FirstName, \surname=Surname}$%
{\DTLiseg{\firstname} {John}\and\DTLiseqg{\surname} {Smith}}%
{Score} {75}

Note that unlike \DTLnewdbent ry, the value is always expanded when
adding an entry using \DTLaddentryforrow.

\DTLsetheader{(db)} { (key)} { (header)}

This assigns a header for a given key in the database named (db). This is
used by \DTLdisplaydb and \DTLdisplaylongdb in the header row
(see section 5.3). If you don’t assign a header, the header will be given by
the key. For example:

\DTLsetheader{mydata} {Price}{Price (\$)}

\DTLaddcolumn{(db)} { (key)}

Adds a new column with the given key to the database (db). This doesn’t
add any data to the column, just identifies it as an available column. The
starred version doesn’t check if the database exists.

5.2 Loading a Database from an External ASCII File

\DTLloaddb and \DTLloadrawdb, described in this section, can’t
parse files that have newline characters within entries. The
datatooltk application (see page 36) can parse them, so if you have

multilined entries in a CSV file, you can convert it to datatool’s internal
database format using datatooltk and the input it using \input or
\DTLloaddbtex. See the datatooltk documentation for further
details.

39

\DTLloaddb

Instead of using the commands described in section 5.1 to create a new
database, you can load a database from an external ASCII file using:

\DTLloaddb [(options)] { (db name) } { {filename) }

Make sure your document uses the same encoding as (filename). For
example, if (filename) is UTF-8, then include the following in your

document:

\usepackage [utf8] {inputenc}

By default, \DTL1loaddb creates a new database called (db name) before
it loads the data given in the file (filename). If you want to append the
data, use

\DTLnewdbonloadfalse

before you use \DTLloaddb. You can reverse this using

\DTLnewdbonloadtrue

The file ({filename)) may have a header row at the start of the file, which
provides the (key) when creating a new database entry using
\DTLnewdbentry. The optional argument (options) is a (key)=(value)
list of options.

Some of the keys may take a comma-separated list as a value. Note
that spaces count in the default TgX way within these lists. Remember
that TgX considers an end-of-line character as a space. If you have a

long list, consider using the comment character (%) to suppress
unwanted space caused by line breaks in the code.

Available options are:

noheader This is a boolean value and indicates if the file does not contain
a header. If no value is supplied, t rue is assumed (i.e. the file
doesn’t contain a header row). If this option is omitted, it is
assumed that the file contains a header row.

keys This is a comma-separated list of keys to use, where the keys are
listed in the same order as the columns. If the file has a header,

40

these keys will override the values given in the header row. If the
file has no header row and no keys are supplied in (options), then
the keys will be given by \dtldefaultkey(n), where (n) is the

\dtldefaultkey column number and \dtldefaultkey defaults to “Column”.
Note that the list of keys must be delimited by braces since they
contain commas. For example:

\DTLloaddb [noheader, keys={Temperature, Time, T2G}] {data} {data.csv}

autokeys This is a boolean option that will automatically assign default
keys (\dtldefaultkey(n), as above) for all columns, regardless
of whether the file has a header row. If true, this option overrides
the keys option. You may want to use this if you have a header row
with many fields containing active characters but you only want to
use commands like \DTLdisplaydb. (In which case, you may
want to consider using \DTLloadrawdb to load the data.)

headers This is a comma-separated list of headers. If not supplied, the
header will be the same as that given in the header row, or the key
if there is no header row. Note that the list of headers must be
delimited by braces since they contain commas. For example:

\DTLloaddb[noheader, keys={Temperature, Time, T2G}, %
headers={\shortstack{Incubation\\Temperature}, %
\shortstack{Incubation\\Time}, %

\shortstack{Time to\\Growth}}]{data}{data.csv}

omitlines This should be a non-negative integer that specifies how many
rows to skip at the start of the file.

By default, the entries in the database must be separated by a comma,
and optionally delimited by the double quote character ("). The
separator can be changed to a tab separator using the command:

\DTLsettabseparator

\DTLsettabseparator

To set the separator to a character other than a tab, you need to use

\DTLsetseparator

\DTLsetseparator{(character)}

The delimiter can be changed using

\DTLsetdelimiter

41

\DTLsetdelimiter {(character)}

Note that spaces count in the default TEX manner (unless you specify a
whitespace character as the delimiter).

For example, suppose you have a file called mydata.csv which
contains the following:

FirstName, Surname, Score
John, "Smith, Jr", 68
Jane, Brown, 75
Andy,Brown, 42

Z\"oe, Adams, 52

then

\DTLloaddb{mydata} {mydata.csv}

is equivalent to:

\DTLnewdb{mydata}

\DTLnewrow{mydata}$%
\DTLnewdbentry{mydata} {FirstName} {John}%
\DTLnewdbentry{mydata} {Surname} {Smith, Jr}%
\DTLnewdbentry{mydata} {Score} {68}%
\DTLnewrow{mydata}$%
\DTLnewdbentry{mydata} {FirstName} {Jane}%
\DTLnewdbentry{mydata} {Surname} {Brown}%
\DTLnewdbentry{mydata} {Score}{75}%
\DTLnewrow{mydata}$%
\DTLnewdbentry{mydata} {FirstName} {Andy}%
\DTLnewdbentry{mydata} {Surname} {Brown}$%
\DTLnewdbentry{mydata} {Score} {42}%
\DTLnewrow{mydata}$%
\DTLnewdbentry{mydata} {FirstName} {Z\"oe}%
\DTLnewdbentry{mydata} {Score}{52}%
\DTLnewdbentry{mydata} {Surname} {Adams}$%

Note that the entry Smith, Jr had to be delimited inmydata.csv
using the double quote character since it contained a comma which is
used as the separator. The percent symbol % can be used as a comment
character within the file.

The file used in the above example contained a IXIEX command,
namely \". When using \DTL1loaddb all the special characters that
appear in the command retain their I£IEX meaning when the file is
loaded. It is likely however that the data file may have been created by
another application that is not TgX-aware, such as a spreadsheet

42

\DTLloadrawdb

application. For example, suppose you have a file called, say,
products . csv which looks like:

Product, Cost
Fruit & Veg, $1.25
Stationary, $0.80

This file contains two of TgX's special characters, namely & and $. In this
case, if you try to load the file using \DTL1loaddb, you will encounter
errors. Instead you can use:

\DTLloadrawdb [(options)] { (db name) } { (filename) }

This is the same as \DTL1oaddb except that it maps nine of the ten
special characters onto commands which produce that symbol. The only
character that retains its active state is the backslash character, so you will
still need to check the file for backslash characters. The mappings used
are listed in Table 5.1. So using the file products. csv, as described
above,

\DTLloadrawdb{mydata} {products.csv}

is equivalent to:

\DTLnewdb {mydata}

\DTLnewrow{mydata}$%

\DTLnewdbentry{mydata} {Product}{Fruit \& Veg}%
\DTLnewdbentry{mydata} {Cost}{\$1.25}%
\DTLnewrow{mydata}$%

\DTLnewdbentry{mydata} {Product}{Stationary}%
\DTLnewdbentry{mydata}{Cost}{\$0.80}%

As with \DTLloaddb, you can govern whether or not a new database
should be created with \DTLnewdbonloadtrue and
\DTLnewdbonloadfalse.

It may be that there are other characters that require mapping. For
example, the file products. csv may instead look like:

Product, Cost
Fruit & Veg,£1.25
Stationary,£0.80

The pound character is not an internationally standard keyboard
character, and does not generally achieve the desired effect when used in
a IEX document. It may therefore be necessary to convert this symbol to
an appropriate control sequence. This can be done using the command:

43

\DTLrawmap

\DTLdisplaydb

Table 5.1: Special character mappings used by \DTL1loadrawdb (note that
the backslash retains its active state)

Character Mapping

\%

\S$

\&

\#

_

\ |

\}
\textasciitilde
\textasciicircum

o\

H 2 U

> 2 - —~ |

\DTLrawmap { (string) } { (replacement) }

For example:
\DTLrawmap{£} {\pounds}

will replace all occurrences! of £ with \pounds. Naturally, the mappings
must be set prior to loading the data with \DTLloadrawdb.

Note that the warning in the previous section about no paragraph
breaks in an entry also applies to entries loaded from a database. If

you do need a paragraph break, use \DTLpar instead of \par, but
remember that each row of data in an external data file must not have
a line break.

5.3 Displaying the Contents of a Database

Once you have created a database, either loading it from an external file,
as described in section 5.2, or using the commands described in

section 5.1, you can display the entire database in a tabular or longtable
environment.

\DTLdisplaydb [{omit list)] {{db)}

Iwhen it is loaded into the IATEX database, it does not modify the data file!

44

\DTLdisplaylongdb

This displays the database given by (db) in a tabular environment. The
tirst row displays the headers for the database in bold, the subsequent
rows display the values for each key in each row of the database. The
optional argument (omit list) is a comma-separated list of column keys to
omit. (All columns displayed by default.)

\DTLdisplaylongdb [(options)] {(db)}

This is like \DTLdisplaydb except that it uses the longtable environment
instead of the tabular environment. Note that if you use this command,
you must load the longtable package, as it is not loaded by datatool. The
optional argument (options) is a comma-separated list of key=value pairs.
The following keys are available:

caption The caption for the longtable.

contcaption The continuation caption.

shortcaption The caption to be used in the list of tables.
label The label for this table.

omit Comma-separated list of column keys to omit.
foot The longtable’s foot.

lastfoot The foot for the last page of the longtable.

For example, suppose I have a database called iris, then I can display
the contents in a longtable using;:

\DTLdisplaylongdb[%

caption={Iris Data}, %
label={tab:iris}, %

contcaption={Iris Data (continued)},%
foot={\em Continued overleaf},$%
lastfoot={}%

]{iris}

I can then reference the table using \ref {tab:iris}.

See the longtable documentation for details on how to change the
longtable settings, such as how to change the table so that it is left aligned
instead of centred on the page.

Note that if you want more control over the way the data is displayed,
for example, you want to filter rows or columns, you will need to use
\DTLforeach, described in section 5.4.

45

Example 1 (Displaying the Contents of a Database)

Suppose I have a file called t 2g. csv that contains the following:

40,120,40
40,90, 60
35,180, 20
55,190, 40

This represents time to growth data, where the first column is the
incubation temperature, the second column is the incubation time and the
third column is the time to growth. This file has no header row, so when
it is loaded, the noheaders option is required. Note that \DTLdisplaydb
only puts the data in a tabular environment, so \DTLdisplaydb needs to
be put in a table environment with a caption to make it a float.

First load the data base, setting the keys and headers:

\DTLloaddb [noheader, %

keys={Temperature, Time, T2G}, %
headers={\shortstack{Incubation\\Temperature}, %
\shortstack{Incubation\\Time}, \shortstack{Time to\\Growth}}%
]{t2g}{t2g.csv}

Now display the data in a table:

\begin{table} [htbp]
\caption{Time to Growth Data}
\centering

\DTLdisplaydb{t2g}
\end{table}

The result is shown in Table 5.2.
Table 5.2: Time to Growth Data

Incubation Incubation Time to

Temperature Time Growth
40 120 40
40 90 60
35 180 20
55 190 40

Each column in the database has an associated data type which
indicates what type of data is in that column. This may be one of: string,
integer, real number or currency. If a column contains more than one
type, the data type is determined as follows:

46

e If the column contains at least one string, then the column data type
is string.
¢ If the column doesn’t contain a string, but contains at least one

currency, then the column data type is currency.

¢ If the column contains only real numbers and integers, the column
data type is real number.

¢ The column data type is integer if the column only contains
integers.

The column data type is updated whenever a new entry is added to the
database. Note that the column data type is not adjusted when an entry
is removed from the database.

The column alignments used by \DTLdisplaydb are given by:

\dtlstringalign

\dtlstringalign

The string alignment defaults to 1 (left aligned).

\dtlintalign

\dtlintalign

The integer alignment defaults to r (right aligned).

\dtlrealalign

\dtlrealalign

The alignment for real numbers defaults to r (right aligned).

\dtlcurrencyalign

\dtlcurrencyalign

The currency alignment defaults to r (right aligned).

You can redefine these to change the column alignments. For example,
if you want columns containing strings to have the alignment p{2in},
then you can redefine \dt 1stringalign as follows:

\renewcommand{\dtlstringalign}{p{2in}}

You can’t use siunitx’s S column alignment with either
\DTLdisplaydb or \DTLdisplaylongdb. Instead, you will need to

use \DTLforeach. The siunitx documentation provides an example.

47

\dtlbeforecols
\dtlbetweencols
\dtlaftercols

\dtlheaderformat

\dtlstringformat

\dtlintformat

\dtlrealformat

In addition to the \dt 1(type)align commands above, you can also
modify the tabular column styles by redefining \dt 1lbeforecols,
\dtlbetweencols and \dtlaftercols. For example, to place a
vertical line before the start of the first column and after the last column,
do:

\renewcommand{\dtlbeforecols}{]}
\renewcommand{\dtlaftercols}{|}

If you additionally want vertical lines between columns, do:

\renewcommand{\dtlbetweencols}{|}

Limited modifications can be made to the way the data is displayed
with \DTLdisplaydb and \DTLdisplaylongdb. The commands
controlling the formatting are described below. If a more complicated
layout is required, you will need to use \DTLforeach described in
section 5.4.

\dtlheaderformat { (header) }

This indicates how to format a column header, where the header is given
by (header). This defaults to
\null\hfil\textbf {(header)}\hfil\null.

\dtlstringformat { (text)}

This specifies how to format each entry in the columns that contain
strings. This defaults to just displaying (text).

\dtlintformat { (text)}

This specifies how to format each entry in the columns that contain only
integers. This defaults to just displaying (text).

\dtlrealformat { (text)}

This specifies how to format each entry in the columns that contain only
real numbers or a mixture of real numbers and integers. This defaults to
just displaying (fext).

\dtlcurrencyformat

48

\dtldisplayvalign

\dtldisplaycr

\dtldisplaystartt

\dtldisplayendtab

\dtlcurrencyformat { (text)}

This specifies how to format each entry in the columns that contain only
currency or currency mixed with real numbers and/or integers. This
defaults to just displaying (text).

\dtldisplayvalign

Specifies the vertical alignment of the tabular environment used by
\DTLdisplaydb. Defaults to c (centred). May be redefined to t (top) or
b (bottom).

\dtldisplaycr

Specifies how to separate rows. Defaults to just \tabularnewline.

ab

\dtldisplaystarttab

This is a hook to add something at the beginning of the tabular
environment. This defaults to nothing. In the case of
\DTLdisplaylongdb, this hook is done before the header row on each
page of the longtable.

\dtldisplayendtab

This is a hook to add something at the end of the tabular environment.
This defaults to nothing. In the case of \DTLdisplaylongdb, this hook
is only done on the last page of the longtable. You have to use the foot
option to specify some code to do at the end of each page.

\dtldisplayafterhead

\dtldisplayafterhead

This is a hook to add something after the header row, before the first row
of data. This defaults to nothing. In the case of \DTLdisplaylongdb,
this hook is done after the header row on each page of the longtable.

\dtldisplaystartrow

\dtldisplaystartrow

49

This is a hook to add something at the start of each row, but not including
the header row or the first row of data. This defaults to nothing.

If you want to use the booktabs package, you can redefine the above
three commands to use \toprule, \midrule and \bottomrule:

\renewcommand{\dtldisplaystarttab}{\toprule}
\renewcommand{\dtldisplayafterhead}{\midrule}
\renewcommand{\dtldisplayendtab} {\\\bottomrule}

Example 2 (Balance Sheet)

Suppose you have a file called balance.csv that contains the
following:

Description, In,Out,Balance
Travel expenses,,230,-230
Conference fees,,400,-630
Grant, 700, ,70

Train fare,, 70,0

The data can be loaded using;:

\DTLloaddb [headers={Description, In (\pounds),Out (\pounds),Balance
(\pounds) }] {balance} {balance.csv}

Suppose I want negative numbers to be displayed in red. I can do this
by redefining \dt 1realformat to check if the entry is negative. For
example:

\begin{table} [htbp]

\caption{Balance Sheet}

\renewcommand* {\dtlrealformat} [1] {\DTLiflt{#1}{0}{\color{red}}{}#1}
\centering

\DTLdisplaydb{balance}

\end{table}

This produces Table 5.3.
Table 5.3: Balance Sheet
Description In(£) Out(£) Balance (£)
Travel expenses 230.00 -230.00
Conference fees 400.00 -630.00
Grant 700.00 70.00
Train Fare 70.00 0.00

50

\DTLforeach

\DTLforeachx*

5.4 Iterating Through a Database

Once you have created a database, either loading it from an external file,
as described in section 5.2, or using the commands described in

section 5.1, you can then iterate through each row of the database and
access elements in that row.

\DTLforeach [(condition)] { (db name) } { (assign list) } { (text)}

\DTLforeachx [(condition)] {(db name) } { (assign list)} { (text)}

This will iterate through each row of the database called (db name),
applying (text) to each row of the database where (condition) is met. The
argument (assign list) is a comma separated list of (cmd)=(key) pairs. At
the start of each row, each command (cmd) in (assign list) will be set to
the value of the entry given by (key). These commands may then be used
in (text).

Note that this assignment is done globally to ensure that
\DLTforeach works correctly in a tabular environment. Since you
may want to use the same set of commands in a later \DTLforeach,

the commands are not checked to determine if they already exist. It is
therefore important that you check you are not using an existing
command whose value should not be changed.

The optional argument (condition) is a condition in the form allowed
by \ifthenelse. This includes the commands provided by the ifthen
package (such as \not, \and, \or), as well as the commands described
in section 2.2. The default value of (condition) is \boolean{true}.

The starred version \DTLforeach is a read-only version. If you want
to modify the database using any of the commands described in
section 5.6, you must use the unstarred version. The starred version is
faster.

As is generally the case with command arguments, verbatim (for
example, using \verb or the verbatim environment) can’t be used in

any of the arguments of \DTLforeach, specifically verbatim can’t be
used in (fext).

There are also environment alternatives:

51

DTLenvforeach

DTLenvforeachx

\begin{DTLenvforeach} [(condition)] { (db name)} { (assign list) }

\begin{DTLenvforeachx} [(condition)] { (db name)} { (assign list) }

However, note that since these environments gather the contents of their
body, they also suffer from the above limitation.

Verbatim can’t be used in the body of DTLenvforeach or DTLenvforeach*.

Example 3 (Student scores)

Suppose you have a data file called studentscores.csv that
contains the following:

FirstName, Surname, StudentNo, Score
John, "Smith, Jr",102689, 68

Jane, Brown, 102647, 75

Andy,Brown, 103569, 42

Z\"oe, Adams, 105987, 52
Roger,Brady, 106872, 58
Clare,Verdon, 104356, 45

and you load the data into a database called scores using:

\DTLloaddb{scores} {studentscores.csv}

you can then display the database in a table as follows:

\begin{table} [htbp]
\caption{Student scores}
\centering

\begin{tabular}{1llr}

\bfseries First Name &
\bfseries Surname &

\bfseries Score (\%)%
\DTLforeach{scores}{%
\firstname=FirstName, \surname=Surname, \score=Score}{%
AN\

\firstname & \surname & \score}
\end{tabular}

\end{table}

This produces Table 5.4. (Note that since I didn’t need the student
registration number, I didn’t bother to assign a command to the key
StudentNo.)

52

DTLrowi
DTLrowii
DTLrowiii

\DTLcurrentindex

\DTLiffirstrow

\DTLiflastrow

Table 5.4: Student scores

First Name Surname Score (%)

John Smith, Jr 68
Jane Brown 75
Andy Brown 42
Zoe Adams 52
Roger Brady 58
Clare Verdon 45

The macro \DTLforeach may be nested up to three times. Each level
uses the corresponding counters: DTLrowi, DTLrowiiand DTLrowiiwhich
keep track of the current row.

Note that these counters are only incremented when (condition) is
satisfied, therefore they will not have the correct value in (condition).
These counters are incremented using \refstepcounter before the
start of (text), so they may be referenced using \ label, however

remember that \ 1abel references the last counter to be incremented
using \refstepcounter in the current scope. The \1abel should
therefore be the first command in (fext) to ensure that it references the
current row counter.

\DTLcurrentindex

At the start of each iteration in \DTLforeach, \DTLcurrentindex is
set to the arabic value of the current row counter. Note that this is only
set after the condition is tested, so it should only be used in the body of
\DTLforeach not in the condition. It is also only set locally, so if you use
it in a tabular environment, it can only be used before the first instance of
\\ or & in the current iteration.

Within the body of \DTLforeach (i.e. within (text)) the following
conditionals may be used:

\DTLiffirstrow{(true part)} {(false part)}

If the current row is the first row, then do (true part), otherwise do (false
part).

53

\DTLifoddrow

\DTLiflastrow{ (true part)} {{false part)}

If the current row is the last row, then do (true part), otherwise do (false
part).

\DTLifoddrow{ (true part)} { (false part)}

If the current row number is an odd number, then do (true part),
otherwise do (false part).

\DTLsavelastrowcount

\DTLsavelastrowcount { {cmd)}

This command will store the value of the row counter used in the last
occurrence of \DTLforeach in the control sequence (cmd).

\DTLforeachkeyinrow

\dtlbreak

\DTLforeachkeyinrow{(cmd)} { (text)}

This iterates through each key in the current row, (globally) assigns (cmd)
to the value of that key, and does (text) ({cmd) must be a control sequence
and may be used in (text)). This command may only be used in the body
of \DTLforeach. At each iteration, \DTLforeachkeyinrow sets
\dtlkey to the current key, \dt1col to the current column index,

\dt ltype to the data type for the current column, and \dt lheader to
the header for the current column. Note that \dt 1t ype corresponds to
the column type but if the entries in the column have mixed types, it may
not correspond to the type of the current entry.

\dtlbreak

You can break out of most of the loops provided by datatool using
\dtlbreak. Note, however, that it doesn’t break the loop until the end
of the current iteration. There is no provision for a next or continue
style command.

Additional loop commands provided by datatool are described in the
documented code (datatool-code.pdf).

Example 4 (Student Scores—Labelling)

In the previous example, the student scores, stored in the database
scores were placed in a table. In this example the table will be modified

54

slightly to number each student according to the row. Suppose I also
want to identify which row Jane Brown is in, and reference it in the text.
The easiest way to do this is to construct a label on each row which
uniquely identifies that student. The label can’t simply be constructed
from the surname, as there are two students with the same surname. In
order to create a unique label, I can either construct a label from both the
surname and the first name, or I can use the student’s registration
number, or I can use the student’s score, since all the scores are unique.
The former method will cause a problem since one of the names (Zoe)
contains an accent command. Although the registration numbers are all
unique, they are not particularly memorable, so I shall instead use the
scores.

\begin{table} [htbp]
\caption{Student scores}
\centering

\begin{tabular}{cllc}

\bfseries Row &

\bfseries First Name &

\bfseries Surname &

\bfseries Score (\%)%
\DTLforeachx*{scores}{%
\firstname=FirstName, \surname=Surname, \score=Score} {%
\label{row:\score}\\\theDTLrowi &
\firstname & \surname & \score}l$%
\end{tabular}

\end{table}

Jane Brown scored the highest (75\%), her score can be seen on
row~\ref{row:75}.

This produces Table 5.5 and the following text: Jane Brown scored the
highest (75%), her score can be seen on row 2.
Notes:

¢ the \label command is placed before \\ to ensure that it is in the
same scope as the command \refstepcounter{DTLrowi}.

¢ To avoid unwanted spaces the end of line characters are
commented out with the percent (%) symbol.

Example 5 (Filtering Rows)

As mentioned earlier, the optional argument (condition) of
\DTLforeach provides a means to exclude certain rows. This example

55

Table 5.5: Student scores

Row First Name Surname Score (%)

1 John Smith, Jr 68
2 Jane Brown 75
3 Andy Brown 42
4 Zoe Adams 52
5 Roger Brady 58
6 Clare Verdon 45

uses the database defined in example 3, but only displays the information
for students whose marks are above 60. At the end of the table,
\DTLsavelastrowcount is used to store the number of rows in the
table. (Note that \DTLsavelastrowcount is outside of \DTLforeach.)

\begin{table} [htbp]
\caption{Top student scores}
\centering
\begin{tabular}{llr}
\bfseries First Name &
\bfseries Surname &
\bfseries Score (\%)%

\DTLforeach* [\DTLisgt{\score}{60}] {scores}{%
\firstname=FirstName, \surname=Surname, \score=Score} {%
AR

\firstname & \surname & \score}

\end{tabular}

\DTLsavelastrowcount {\n}%
\n\ students scored above 60\%.
\end{table}

This produces Table 5.6. Note that in this example, I could have specified
the condition as \ score>60 since all the scores are integers, however, as
it’s possible that an entry may feasibly have a decimal score I have used
\DTLisgt instead.

Table 5.6: Top student scores

First Name Surname Score (%)

John Smith, Jr 68

Jane Brown 75
2 students scored above 60%.

Suppose now, I only want to display the scores for students whose
surname begins with ‘B". I can do this as follows:

56

\begin{table} [htbp]
\caption{Student scores (B)}
\centering
\begin{tabular}{llr}
\bfseries First Name &
\bfseries Surname &
\bfseries Score (\%)%
\DTLforeach* [\DTLisopenbetween{\surname}{B}{C}]{scores}{$%
\firstname=FirstName, \surname=Surname, \score=Score}{%

AR

\firstname & \surname & \score}

\end{tabular}

\end{table}

This produces Table 5.7.
Table 5.7: Student scores (B)

First Name Surname Score (%)

Jane Brown 75
Andy Brown 42
Roger Brady 58

Example 6 (Checking for the First Row (booktabs))

Suppose I want to use the booktabs package and I want to use
\midrule after the header row. I can use \DTLiffirstrow to check if
the loop is on the first row of the iteration. (Remember that you need to
load the booktabs package in the preamble with \usepackage.) Using
the same database as before:

\begin{table} [htbp]
\caption{Student scores (booktabs)}
\centering
\begin{tabular}{llc}
\toprule
\bfseries First Name &
\bfseries Surname &
\bfseries Score (\%)%
\DTLforeach*{scores}%
{\firstname=FirstName, \surname=Surname, \score=Score}$%
{%
\DTLiffirstrow{\\\midrule} {\\}%
\firstname & \surname & \score
}% end of loop

57

\\\bottomrule
\end{tabular}$%
\end{table}

(The commands \toprule, \midrule and \bottomrule are all
provided by booktabs.) This produces Table 5.8.

Table 5.8: Student scores (booktabs)

First Name Surname Score (%)

John Smith, Jr 68
Jane Brown 75
Andy Brown 42
Zoe Adams 52
Roger Brady 58
Clare Verdon 45

Example 7 (Breaking Out of a Loop)

Suppose I only want to display the first three rows of a database. I
could do:?

\DTLforeach=*[\value{DTLrowi}<3] {scores}%
{\firstname=FirstName, \surname=Surname, \score=Score} {%
\\\firstname & \surname & \score

}

However, this isn’t very efficient, as it still has to iterate through the
entire database, checking if the condition is met. If the database has over
100 entries, this will slow the time taken to create the table. It would
therefore be much more efficient to break out of the loop when row count
exceeds 3:

\begin{table} [htbp]

\caption{First Three Rows}

\centering

\begin{tabular}{1llr}

\bfseries First Name & \bfseries Surname & \bfseries Score (\%)%
\DTLforeachx*{scores}%

{\firstname=FirstName, \surname=Surname, \score=Score}{$%
\ifthenelse{\DTLcurrentindex=3}{\dtlbreak}{}%

2Recall that DTLrowi is incremented after the condition is tested, so it will be out by 1
when the condition is tested which is why <3 is used instead of <4.

58

\\\firstname & \surname & \score
}%

\end{tabular}

\end{table}

This produces Table 5.9. Note that the loop is not broken until the end of
the current iteration, so even though \dt 1break occurs at the start of
the third row, the loop isn’t finished until the third row is completed.
(Recall that \DTLcurrentindex must be used before the first instance
of \\ or &.) Alternatively, you can use DTLrowi instead:

\DTLforeach{scores}$%

{\firstname=FirstName, \surname=Surname, \score=Score} {%
\\\firstname & \surname & \score
\ifthenelse{\value{DTLrowi}=3}{\dtlbreak}{}%

1%

Table 5.9: First Three Rows

First Name Surname Score (%)

John Smith, Jr 68
Jane Brown 75
Andy Brown 42

Example 8 (Stripy Tables)

This example uses the same database as in the previous examples. It
requires the colortbl package, which provides the command \rowcolor.
The command \DTLifoddrow is used to produce a striped table.

\begin{table} [htbp]

\caption{A stripy table}\label{tab:stripy}
\centering

\begin{tabular}{llc}

\bfseries First Name &

\bfseries Surname &

\bfseries Score (\%)%

\DTLforeachx{scores}{%

\firstname=FirstName, \surname=Surname, \score=Score}{%
\\\DTLifoddrow{\rowcolor{blue}}{\rowcolor{green}}$%
\firstname & \surname & \score}%

\end{tabular}

\end{table}

This produces Table 5.10.

59

Table 5.10: A stripy table

First Name Surname Score (%)

Example 9 (Two Database Rows per Tabular Row)

In order to save space, you may want two database rows per tabular
row, when displaying a database in a tabular environment. This can be
accomplished using \DTLifoddrow. For example

\begin{table} [htbp]

\caption{Two database rows per tabular row}
\centering

\begin{tabular}{llcllc}

\bfseries First Name &

\bfseries Surname &

\bfseries Score (\%) &

\bfseries First Name &

\bfseries Surname &

\bfseries Score (\%)%
\DTLforeach«*{scores}{\firstname=FirstName, \surname=Surname, \score=Score}{%
\DTLifoddrow{\\}{&}%

\firstname & \surname & \score}l$%
\end{tabular}

\end{table}

produces Table 5.11
Table 5.11: Two database rows per tabular row

First Name Surname Score (%) First Name Surname Score (%)

John Smith, Jr 68 Jane Brown 75
Andy Brown 42 Zoe Adams 52
Roger Brady 58 Clare Verdon 45

(To order column-wise, instead of row-wise, see example 20.)

60

Example 10 (Iterating Through Keys in a Row)

Suppose you have lots of columns in your database, and you want to
display them all without having to set a variable for each column. You
can leave the assignment list in \DTLforeach blank, and iterate through
the keys using \DTLforeachkeyinrow. For example:

\begin{table} [htbp]

\caption{Student Scores (Iterating Through Keys) }
\centering

\begin{tabular} {1111}

\bfseries First Name & \bfseries Surname &
\bfseries Registration No. &

\bfseries Score (\%)%

\DTLforeach=*{scores}{}{%
\\\gdef\doamp{\gdef\doamp{&}}%
\DTLforeachkeyinrow{\thisvValue}{\doamp\thisValue}}%
\end{tabular}

\end{table}

This produces Table 5.12.
Table 5.12: Student Scores (Iterating Through Keys)

First Name Surname Registration No. Score (%)

John Smith, Jr 102689 68
Jane Brown 102647 75
Andy Brown 103569 42
Zoe Adams 105987 52
Roger Brady 106872 58
Clare Verdon 104356 45

Note that the & must be between columns, so I have defined a
command called \ doamp that on first use redefines itself to do &. So, for
each row, at the start of the key iteration, \doamp does nothing, and on
subsequent iterations it does &. This ensures that the correct number of
&s are used. Since each cell in the tabular environment is scoped, \gdef is
needed instead of \def.

In the above, I needed to know how many columns are in the database,
and the order that the headings should appear. If you are unsure, you can
use \dt1lforeachkey to determine the number of columns and to
display the header row. For example:

\begin{table} [htbp]
\caption{Student Scores}
\centering

% Work out the column alignments.
\def\colalign{}%

61

\dtlforeachkey (\theKey, \theCol, \theType, \theHead) \in{scores}\do
{\edef\colalign{\colalign 1}}%

% Begin the tabular environment.
\edef\dobegintabular{\noexpand\begin{tabular}{\colalign}}%
\dobegintabular

% Do the header row.

\gdef\doamp{\gdef\doamp{&}}%

\dt1lforeachkey (\theKey, \theCol, \theType, \theHead) \in{scores}\do
{\doamp\bfseries \theHead}%

% Iterate through the data.

\DTLforeachx*{scores}{}{%

\\\gdef\doamp{\gdef\doamp{&}}%
\DTLforeachkeyinrow{\thisValue}{\doamp\thisValue}}%
\end{tabular}

\end{table}

Table 5.13: Student Scores (Using \dtlforeachkey and
\DTLforeachkeyinrow)

FirstName Surname StudentNo Score

John Smith, Jr 102689 68
Jane Brown 102647 75
Andy Brown 103569 42
Zoe Adams 105987 52
Roger Brady 106872 58
Clare Verdon 104356 45

Notes:

¢ In order to determine the column alignment for the tabular
environment, I first define \colalign to nothing, and then I
iterate through the keys appending 1 to \colalign. Since
\colalign only contains alphabetical characters, I can just use
\edef for this. I could modify this to check the data type and, say,
use 1 (left alignment) for columns containing strings and c
(centred) for the other columns:

\dtlforeachkey (\theKey, \theCol, \theType, \theHead) \in{scores}\do
{\ifnum\theType=0\relax
\edef\colalign{\colalign 1}% column contains strings

\else
\edef\colalign{\colalign c}% column contains numerical values
\fi

1%

¢ To ensure \colalign gets correct expanded when passed to the
tabular environment I temporarily define \dobegintabular to the

62

code required to start the tabular environment:
\edef\dobegintabular{\noexpand\begin{tabular}{\colalign}}$%

This sets \dobegintabular to \begin{tabular}{1111}. After

defining \dobegintabular, I then need to use it.
* Asbefore, I use \doamp to put the ampersands between columns.

¢ Recall that I can set the headers using \DTLsetheader or using
the headers key when loading the data from an external file. For
example:

\DTLsetheaders{scores}{FirstName} {First Name}
\DTLsetheaders{scores}{Score}{Score (\%)}

Recall that \DTLforeachkeyinrow sets \dt 1key to the current key.
This can be used to filter out columns. Alternatively, if you know the
column index, you can test \dt 1col instead. The following code
modifies the above example so that it filters out the column whose key is
StudentNo:

\begin{table} [htbp]

\caption{Student Scores (Filtering Out a Column) }
\centering

\def\colalign{}%

\dt1lforeachkey (\theKey, \theCol, \theType, \theHead) \in{scores}\do
{\DTLifeqg{\theKey}{StudentNo}{}{\edef\colalign{\colalign 1}}}%

\edef\dobegintabular{\noexpand\begin{tabular}{\colalign}}$%
\dobegintabular
\gdef\doamp{\gdef\doamp{&}}$%

\dt1lforeachkey (\theKey, \theCol, \theType, \theHead) \in{scores}\do

{\DTLifeg{\theKey}{StudentNo}{} {\doamp\bfseries \theHead}}%

\DTLforeach*{scores}{}{%

\\\gdef\doamp{\gdef\doamp{&}}%

\DTLforeachkeyinrow{\thisValue} {%
\DTLifeg{\dtlkey}{StudentNo}{}{\doamp\thisValue}}}%

\end{tabular}

\end{table}

The result is shown in Table 5.14.

Example 11 (Nested \DTLforeach)

In this example I have a CSV file called index.csv which contains:

63

Table 5.14: Student Scores (Filtering Out a Column)

FirstName Surname Score

John Smith, Jr 68
Jane Brown 75
Andy Brown 42
Zoe Adams 52
Roger Brady 58
Clare Verdon 45

File, Temperature,NaCl, pH
exp2b5a.csv,25,4.7,0.5
exp25b.csv,25,4.8,1.5
exp30a.csv,30,5.12,4.5

The first column of this file contains the name of another CSV file which
has the results of a time to growth experiment performed at the given
incubation temperature, salt concentration and pH. The file exp25a.csv
contains the following:

Time, Log Count
0,3.75
23,3.9
45,4.0

The file exp25b . csv contains the following:

Time, Log Count
0,3.6

60,3.8

120,4.0

The file exp30a. csv contains the following:

Time, Log Count
0,3.73
23,3.67
60,4.9

Suppose I now want to iterate through index. csv, load the given file,
and create a table for that data. I can do this using nested \DTLforeach
as follows:

[)

% load index data file

\DTLloaddb{index} {index.csv}

% iterate through index database

\DTLforeach{index} {\theFile=File, \theTemp=Temperature, %
\theNaCl=NaCl, \thepH=pH} {$%

64

% load results file into database of the same name
\DTLloaddb{\theFile} {\theFile}$%

% Create a table
\begin{table} [htbp]
\caption{Temperature =

\theTemp,

NaCl = \theNacCl,

pH = \thepH}\label{tab:\theFile}

\centering
\begin{tabular}{rl}

\bfseries Time & \bfseries Log Count
\DTLforeach{\theFile}{\theTime=Time, \theLogCount=Log Count}{%

\\\theTime & \theLogCount}%

\end{tabular}
\end{table}
}

This creates Table 5.15 to Table 5.17. (Note that each table is given a label
that is based on the database name, to ensure that it is unique.)

Table 5.15: Temperature = 25, NaCl = 4.7, pH = 0.5

Time
0

23

45

Log Count
3.75

3.9

4.0

Table 5.16: Temperature = 25, NaCl =4.8, pH =1.5

Time
0

60
120

Log Count
3.6
3.8
4.0

Table 5.17: Temperature = 30, NaCl = 5.12, pH = 4.5

Time
0

23

60

Log Count
3.73

3.67

49

Example 12 (Dynamically Allocating Field Name)

(This example was suggested by Bill Hobbs.) Suppose you have a

65

directory containing members of multiple clubs. The CSV file (say,
clubs.csv) may look something like:

First Name, Surname,Rockin, Single
John, "Smith, Jr",member,

Jane, Brown, , friend

Andy,Brown, friend, member

Z\"oe, Adams, member, member
Roger,Brady, friend, friend
Clare,Verdon, member,

(Blank entries indicate that the person is not a member of that club.) The
data can be loaded as follows:

\DTLloaddb{clubs} {clubs.csv}

Suppose at the beginning of your document you have specified which
club you are interested in (Rockin or Single) and store it in \DIdent:

\newcommand{\DIdent} {Rockin}

You can now display the members for this particular club as follows:

\begin{table} [htbp]

\caption{Club Membership}

\centering

\begin{tabular} {111}

\bfseries First Name & \bfseries Surname & \bfseries Status
\DTLforeach* [\not\DTLiseqg{\status}{}]{clubs}
{\firstname=First Name, \surname=Surname, \status=\DIdent}{%
\\\firstname & \surname & \status

}%

\end{tabular}

\end{table}

The result is shown in Table 5.18.

Table 5.18: Club Membership

First Name Surname Status

John Smith, Jr member
Andy Brown friend
Zoe Adams member
Roger Brady friend
Clare Verdon member

66

\DTLstringnull

\DTLnumbernull

\DTLifnull

\DTLifnullorempty

5.5 Null Values

If a database is created using \DTLnewdb, \DTLnewrow and
\DTLnewdbentry (rather than loading it from an ASCII file), it is
possible for some of the entries to have null values when a value is not
assigned to a given key for a given row. (Note that a null value is not the
same as an empty value. Empty values can be tested using etoolbox’s
\ifdefempty or similar.)

When you iterate through the database using \DTLforeach
(described in section 5.4), if an entry is missing for a given row, the
associated command given in the (values) argument will be set to a null
value. This value depends on the data type associated with the given key.

\DTLstringnull

This is the null value for a string.

\DTLnumbernull

This is the null value for a number.

\DTLifnull{(cmd)} {(true part)} { (false part)}

This checks if (cmd) is null where (cmd) is a control sequence, if it is, then
(true part) is done, otherwise (false part) is done. This macro is illustrated
in example 13 below.

\DTLifnullorempty {(cmd)} { (true part)} { (false part) }

This checks if (cmd) is null or empty, where (cmd) is a control sequence.
If it is it does (true part), otherwise (false part).

Example 13 (Null Values)

Consider the following (which creates a database called emai1DB):

\DTLnewdb{emailDB}

\DTLnewrow{emailDB}
\DTLnewdbentry{emailDB} {Surname} {Jones}
\DTLnewdbentry{emailDB} {FirstName} {Mary}
\DTLnewdbentry{emailDB} {Emaill}{mj@my.uni.ac.uk}
\DTLnewdbentry{emailDB}{Email2}{mj@somewhere.com}

67

\DTLnewrow{emailDB}
\DTLnewdbentry{emailDB} {Surname} {Smith}
\DTLnewdbentry{emailDB} {FirstName} {Adam}
\DTLnewdbentry{emailDB}{Emaill}{as@my.uni.ac.uk}
\DTLnewdbentry{emailDB} {RegNum} {12345}

In the above example, the first row of the database contains an entry with
the key Email2, but the second row doesn’t. Whereas the second row
contains an entry with the key RegNum, but the first row doesn’t.

The following code puts the information in a tabular environment:

\begin{tabular} {11111}

\bfseries First Name &

\bfseries Surname &

\bfseries Email 1 &

\bfseries Email 2 &

\bfseries Reg Num$%

\DTLforeach{emailDB} {\firstname=FirstName, \surname=Surname, %
\emailI=Emaill, \emailII=Email2, \regnum=RegNum} {%
\\\firstname & \surname & \emaill & \emailII & \regnum}%
\end{tabular}

This produces the following;:

First Name Surname Emaill Email 2 Reg Num
Mary Jones mj@my.uni.ac.uk mj@somewhere.com 0
Adam Smith as@my.uni.acuk NULL 12345

Note that on the first row of data, the registration number appears as 0,
while on the next row, the second email address appears as NULL. The
datatool package has identified the key RegNum for this database as a
numerical key, since all elements in the database with that key are
numerical, whereas it has identified the key Email2 as a string, since
there is at least one element in this database with that key that is a string.
Null numerical values are set to \DTLnumbernull (0), and null strings
are set to \DTLstringnull (NULL).

The following code checks each value to determine whether it is null
using \DTLifnull. If it is, the text Missing is inserted, otherwise the
value itself is used:

\begin{tabular} {11111}

\bfseries First Name &

\bfseries Surname &

\bfseries Email 1 &

\bfseries Email 2 &

\bfseries Reg Num$%

\DTLforeach{emailDB} {\firstname=FirstName, \surname=Surname, %
\emailI=Emaill, \emailII=Email2, \regnum=RegNum} {%

68

\\\DTLifnull{\firstname} {\emph{Missing}}{\firstname} &
\DTLifnull{\surname}{\emph{Missing}}{\surname} &
\DTLifnull{\emailI}{\emph{Missing}}{\emaill} &
\DTLifnull{\emailII}{\emph{Missing}}{\emailIl} &
\DTLifnull{\regnum} {\emph{Missing}}{\regnum}}%
\end{tabular}

This produces the following;:

First Name Surname Emaill Email 2 Reg Num
Mary Jones mj@my.uni.ac.uk mj@somewhere.com Missing
Adam Smith as@my.uni.ac.uk Missing 12345

If you want to do this, you may find it easier to define a convenience
command that will display some appropriate text if an entry is missing,
for example:

\newcommandx {\checkmissing} [1] {\DTLifnull {#1}{-———}{#1}}
Then instead of typing, say,
\DTLifnull{\regnum} {———}{\regnum}

you can instead type:

\checkmissing{\regnum}

Now suppose that instead of defining the database using \DTLnewdb,
\DTLnewrow and \DTLnewdbentry, you have a file with the contents:

Surname, FirstName, RegNum, Emaill, Email?2
Jones,Mary,mj@my.uni.ac.uk,mj@somewhere.com
Smith,Adam, 12345, as@my.uni.ac.uk,

and you load the data from this file using \DTL1loaddb (defined in
section 5.2). Now the database has no null values, but has an empty
value for the key RegNum on the first row of the database, and an empty
value for the key Email2 on the second row of the database. Now, the
following code

\begin{tabular} {11111}

\bfseries First Name &

\bfseries Surname &

\bfseries Email 1 &

\bfseries Email 2 &

\bfseries Reg Number%

\DTLforeach{emailDB} {\firstname=FirstName, \surname=Surname, %
\emailI=Emaill, \emailII=Email2, \regnum=RegNum} {%
\\A\DTLifnull{\firstname} {\emph{Missing}}{\firstname} &

69

\DTLremoverow

\DTLappendtorow

\DTLifnull{\surname} {\emph{Missing}}{\surname} &
\DTLifnull{\emailI}{\emph{Missing}}{\emaill} &
\DTLifnull{\emailII}{\emph{Missing}}{\emailIl} &
\DTLifnull{\regnum} {\emph{Missing}}{\regnum}}%
\end{tabular}

produces:
First Name Surname Emaill Email 2
Mary Jones mj@my.uni.ac.uk mj@somewhere.com
Adam Smith as@my.uni.ac.uk

5.6 Editing Database Rows

A row can be removed from a data base using:

Reg Number

12345

\DTLremoverow{ (db name) } { (row index) }

where (row index) is the index of the unwanted row. For example:

\DTLremoverow{scores} {2}

will delete the second row in the database labelled “scores”. There is also

a starred version that doesn’t check for the existence of the database.

The following commands may be used in the body of the
\DTLforeach loop,’ to edit the current row of the loop. (See also
subsection 5.11.1.)

\DTLappendtorow{ (key)} { (value)}

This appends a new entry with the given (key) and (value) to the current

row. ((value) is expanded.)

\DTLreplaceentryforrow

\DTLreplaceentryforrow{ (key)} { (value)}

This replaces the entry for (key) with (value). ((value) is expanded.)

\DTLremoveentryfromrow

\DTLremoveentryfromrow { (key) }

3Only the unstarred version of \DTLforeach; the starred version is read-only.

70

This removes the entry for (key) from the current row.

\DTLremovecurrentrow

\DTLremovecurrentrow

This removes the current row from the database.
Example 14 (Editing Database Rows)

In this example I have a CSV file called marks. csv that contains
student marks for three assignments:
Surname, FirstName, StudentNo, Assignment 1,Assignment
2,Assignment 3
"Smith, Jr",John,102689,68,57,72
"Brown", Jane, 102647,75,84, 80
"Brown",Andy,103569,42,52, 54
"Adams", Z6e,105987,52,48,57
"Brady",Roger, 106872, 58, 60, 62
"Verdon",Clare,104356,45,50,48
First load this into a database called marks:

\DTLloaddb{marks} {marks.csv}

Suppose now I want to compute the average mark for each student, and
append this to the database. I can do this as follows:

\DTLforeach{marks}{%

\assignI=Assignment 1,%

\assignII=Assignment 2,%

\assignIII=Assignment 3}({%
\DTLmeanforall{\theMean} {\assignI, \assignII, \assignIII}%
\DTLappendtorow{Average} {\theMean}}

For each row in the marks database, I now have an extra key called
Average that contains the average mark over all three assignments for a
given student. I can now put this data into a table:

\begin{table} [htbp]

\caption{Student marks}

\centering

\begin{tabular}{llcccc}

\bfseries Surname & \bfseries First Name &

\bfseries Assign 1 &

\bfseries Assign 2 &

\bfseries Assign 3 &

\bfseries Average Mark$%

\DTLforeach{marks} {\surname=Surname, \firstname=FirstName, \average
=Average, \assignI=Assignment 1,\assignII=Assignment 2,\assignIII
=Assignment 3} {\\\surname

71

& \firstname & \assignI & \assignII & \assignIII &
\DTLround{\average} {\average} {2} \DTLclip{\average}\average}\relax
\end{tabular}

\end{table}

This produces Table 5.19.

Note that if I only wanted the averages for the table and nothing else, I
could simply have computed the average in each row of the table and
displayed it without adding the information to the database, however I
am going to reuse this information in example 37, so adding it to the
database means that I don’t need to recompute the mean.

Table 5.19: Student marks

Surname First Name Assign1l Assign2 Assign3 Average Mark

Smith, Jr John 68 57 72
Brown Jane 75 84 80
Brown Andy 42 52 54
Adams Zoe 52 48 57
Brady Roger 58 60 62
Verdon Clare 45 50 48

5.7 Arithmetical Computations on Database Entries

The commands used in chapter 3 can be used on database entries. You
can, of course, directly use the commands provided by the fp package if
you know that the values are in the correct format (i.e. no currency
symbols, no number group separators and a full stop as the decimal
point) but if this is not the case, then you should use the commands
described in chapter 3. If you want to use a command provided by the fp
package, that does not have a wrapper function in datatool, then you will
need to convert the value using \DTLconverttodecimal, and convert
it back using either \DTLdecimaltolocale or
\DTLdecimaltocurrency.

Example 15 (Arithmetical Computations)

In this example, I am going to produce a table similar to Table 5.4,
except that I want to add an extra row at the end which contains the
average score.

\begin{table} [htbp]
\caption{Student scores}\label{tab:mean}

72

\centering

\def\total{0}$%

\begin{tabular}{llr}

\bfseries First Name &

\bfseries Surname &

\bfseries Score (\%)%

\DTLforeach{scores}{%

\firstname=FirstName, \surname=Surname, \score=Score}{$%
AR

\firstname & \surname &

\DTLgadd{\total} {\score}{\total}$%

\score

NN

\multicolumn{2}{1l}{\bfseries Average Score} &
\DTLsavelastrowcount {\n}%
\DTLdiv{\average}{\total}{\n}%
\DTLround{\average} {\average}{2}%

\average

\end{tabular}

\end{table}

This produces Table 5.20. Notes:

¢ [had to use \DTLgadd rather than \DTLadd since it occurs within
a tabular environment which puts each entry in a local scope.

* JTused \DTLsavelastrowcount to store the number of rows
produced by \DTLforeach in the control sequence \n.

* JTused \DTLround to round the average score to 2 decimal places.

Table 5.20: Student scores

First Name Surname Score (%)

John Smith, Jr 68
Jane Brown 75
Andy Brown 42
Zoe Adams 52
Roger Brady 58
Clare Verdon 45
Average Score 56.67

\DTLsumforkeys

73

\DTLsumcolumn

\DTLmeanforkeys

\DTLmeanforcolumn

\DTLsumforkeys [(condition)] [(assign list)] { (db list)} { (key
list)} {{cmd)}

This command sums all the entries over all the databases listed in the
comma separated list of database names (db list) for each key in (key list)
where the condition given by (condition) is true. The second optional
argument (assign list) is the same as the assignment list used by
\DTLforeach, so that you can use the information in (condition). The
result is stored in (cmd) which must be a control sequence. For example:

\DTLsumforkeys{scores}{Score}{\total}

sets \total to the sum of all the scores in the database called scores.

\DTLsumcolumn{(db)} { (key)} { (cmd)}

This is a faster version of \DTLsumforkeys that only sums the entries in
a single column (specified by (key)) for a single database (specified by
(db)) and doesn’t provide any filtering. The result is stored in (cmd)
which must be a control sequence.

\DTLmeanforkeys [(condition)] [(assign list)] { (dD list)} { (key
list) } { (cmd) }

This command computes the arithmetic mean of all the entries over all
the databases listed in (db list) for all keys in (key list) where the
condition given by (condition) is true. The second optional argument
(assign list) is the same as the assignment list used by \DTLforeach, so
that you can use the information in (condition). The result is stored in
(cmd) which must be a control sequence. For example:

\DTLmeanforkeys{scores}{Score} {\average}

sets \average to the mean of all the scores in the database called
scores.

\DTLmeanforcolumn{(db)} {(key)} { (cmd)}

This is a faster version of \DTLmeanforkeys that only computes the
mean for a single column (specified by (key)) for a single database
(specified by (db)) and doesn’t provide any filtering. The result is stored
in (cmd) which must be a control sequence.

74

\DTLvarianceforkeys

\DTLvarianceforkeys [{condition)] [(assign list)] {(db list) } { (key
list)} { (cmd)}

This command computes the variance of all the entries over all the
databases listed in (db list) for all keys in (key list) where the condition
given by (condition) is true. The second optional argument (assign list) is
the same as the assignment list used by \DTLforeach, so that you can
use the information in (condition). The result is stored in (cmd) which
must be a control sequence.

\DTLvarianceforcolumn

\DTLsdforkeys

\DTLsdforcolumn

\DTLminforkeys

\DTLvarianceforcolumn{(db)} { (key)} { (cmd)}

This is a faster version of \DTLvarianceforkeys that only computes
the variance for a single column (specified by (key)) for a single database
(specified by (db)) and doesn’t provide any filtering. The result is stored
in (cmd) which must be a control sequence.

\DTLsdforkeys [{condition)] [(assign list)] {{db list) } { (key
list)} { {cmd)}

This command computes the standard deviation of all the entries over all
the databases listed in (db list) for all keys in (key list) where the
condition given by (condition) is true. The second optional argument
(assign list) is the same as the assignment list used by \DTLforeach, so
that you can use the information in (condition). The result is stored in
(cmd) which must be a control sequence.

\DTLsdforcolumn{(db)} { (key)} { (cmd)}

This is a faster version of \DTLsdforkeys that only computes the
standard deviation for a single column (specified by (key)) for a single
database (specified by (db)) and doesn’t provide any filtering. The result
is stored in (cmd) which must be a control sequence.

\DTLminforkeys [(condition)] [(assign list)] { (db list)} { (key
list)} {{cmd)}

75

\DTLminforcolumn

\DTLmaxforkeys

\DTLmaxforcolumn

\DTLcomputebounds

This command determines the minimum value over all entries for all
keys in (key list) over all the databases listed in (db list) where (condition)
is true. The second optional argument (assign list) is the same as the
assignment list used by \DTLforeach, so that you can use the
information in (condition). The result is stored in (cmd), which must be a
control sequence. For example

\DTLminforkeys{scores}{Score}{\theMin}

sets \theMin to the minimum score in the database.

\DTLminforcolumn{(db)} {{(key)} { {cmd)}

This is a faster version of \DTLminforkeys that only computes the
minimum for a single column (specified by (key)) for a single database
(specified by (db)) and doesn’t provide any filtering. The result is stored
in (cmd) which must be a control sequence.

\DTLmaxforkeys [(condition)] [(assign list)] { (db list)} { (key
list)} { {cmd)}

This command determines the maximum value over all entries for all
keys in (key list) over all the databases listed in (db list) where (condition)
is true. The second optional argument (assign list) is the same as the
assignment list used by \DTLforeach, so that you can use the
information in (condition). The result is stored in (cmd), which must be a
control sequence. For example

\DTLminforkeys{scores}{Score}{\theMax}

sets \theMax to the minimum score in the database.

\DTLmaxforcolumn{(db)} { (key)} { {(cmd)}

This is a faster version of \DTLmaxforkeys that only computes the
maximum for a single column (specified by (key)) for a single database
(specified by (db)) and doesn’t provide any filtering. The result is stored
in (cmd) which must be a control sequence.

\DTLcomputebounds { (db list) } { (x key) } { (y key) } { (minX
cmd) } { (minY cmd) } { (maxX cmd) } { (maxY cmd) }

76

Computes the maximum and minimum x and y values over all the
databases listed in (db list) where the x value is given by (x key) and the y
value is given by (y key). The results are stored in (minX cmd), (minY
cmd), (maxX cmd) and (maxY cmd).

Example 16 (Mail Merging)

This example uses the database given in example 3 and uses
\DTLmeanforkeys to determine the average score. A letter is then
created for each student to inform them of their score and the class
average.

\documentclass{letter}
\usepackage{datatool}

\begin{document}
% load database

\DTLloaddb{scores} {studentscores.csv}

% compute arithmetic mean for key ‘Score’
\DTLmeanforkeys{scores} {Score}{\average}

% Round the average to 2 decimal places
\DTLround{\average}{\average} {2}

% Save the highest score in \maxscore
\DTLmaxforkeys{scores} {Score}{\maxscore}

\DTLforeach{scores}{\firstname=FirstName, \surname=Surname, %
\score=Score}{%

\begin{letter}{}

\opening{Dear \firstname\ \surname}

\DTLifnumgt {\score} {60} {Congratulations you}{You} achieved a score
of \score\% which was \DTLifnumgt{\score}{\average} {above} {below}
the average of \average\%. \DTLifnumeqg{\score}{\maxscore} {You
achieved the highest score}{The top score was \maxscore}.

\closing{Yours Sincerely}
\end{letter}
}

\end{document}

To determine a person’s gender when mail merging, see chapter 11.

5.8 Sorting a Database

\dtlsort

77

\dt1lsort [(replacement key list)] { (sort criteria) } { (db
name) } { (handler) }

This will sort the database called (db name) according to the criteria given
by (sort criteria), which must be a comma separated list of keys and
optionally =(order), where (order) is either ascending or descending.
If the order is omitted, ascending is assumed. The database keeps track
of the data type for a given key, and uses this to determine whether an
alphabetical or numerical sort is required.

The final argument (handler) is the command used for the
comparisons. These handlers are described in more detail on page 46 of
the documented code (datatool-code.pdf). The following handlers are
provided:

\dtlcompare A case-sensitive comparison.
\dtlicompare A case-insensitive comparison.

\dtlwordindexcompare English word-ordering comparison for
indexes, as described by the Oxford Style Manual.

\dtlletterindexcompare English letter-ordering comparison for
indexes.

The last two handlers, \dt lwordindexcompare and
\dtlletterindexcompare, assume that inversion commas are
indicated using one of the following commands:

¢ To indicate name inversion:

\datatoolpersoncomma

\datatoolpersoncomma

Example: Knuth\datatoolpersoncomma Donald E.

¢ To indicate place inversion:

\datatoolplacecomma

\datatoolplacecomma

Example: New York\datatoolplacecomma USA

¢ To indicate subject inversion:

\datatoolsubjectcomma

78

\datatoolsubjectcomma

Example: New York\datatoolsubjectcomma population
In addition, the start of parenthetical material should be indicated with

\datatoolparenstart

\datatoolparenstart

Example: High Water\datatoolparenstart play

Following the guidelines of the Oxford Style Manual, when sorting
terms that have identical pre-inversion parts, the following ordering is
applied: people, places, subjects, no inversions and parenthetical.

Example 17 (Sorting a Database—Dealing with Inversions)

This uses the example given in Chapter 16 of the Oxford Style Manual.
Suppose I define my database as follows:

\DTLnewdb{inversiondata}

\DTLnewrow{inversiondata}
\DTLnewdbentry{inversiondata}{Term} {New York, New York}
\DTLnewrow{inversiondata}
\DTLnewdbentry{inversiondata}{Term} {New York\datatoolsubjectcomma
population}

\DTLnewrow{inversiondata}
\DTLnewdbentry{inversiondata}{Term} {New York\datatoolplacecomma
USA}

\DTLnewrow{inversiondata}
\DTLnewdbentry{inversiondata}{Term} {New York\datatoolpersoncomma
Earl of}

First of all, display the unsorted data:
\DTLdisplaydb{inversiondata}

This produces:
Term
New York, New York
New York, population
New York, USA
New York, Earl of
Now sort the data using the \dt lwordindexcompare handler:

\dtlsort{Term}{inversiondata}{\dtlwordindexcompare}
and display again:

\DTLdisplaydb{inversiondata}

79

\DTLsort

\DTLsortx*

which now produces:

Term

New York, Earl of

New York, USA

New York, population

New York, New York

here are three entries with pre-inversion text as simply New York.
Since each of these three entries has the same pre-inversion text, they
need to be sorted according to the type of inversion: person, place,
subject. The fourth entry (New York, New York) doesn’t have an
inversion since the comma is part of the title of the named work. It’s
therefore sorted according to New York, New York rather than just
New York and so comes after all the New York entries.

If you want to write your own comparison handler, see the
documented code for details on the syntax of the handler. (You may want
to consider uploading your handler as a separate package to CTAN if
you think it will be of general use.)

There are two shortcut commands:

\DTLsort [(replacement key list)] { (sort criteria) } { (db name) }

\DTLsort [(replacement key list)] { (sort criteria) } { (db name) }

these use the \dt lcompare and \dt1icompare handlers, respectively.

The optional argument (replacement key list) is a list of keys to use if the
current key given in (sort criteria) is null for a given entry. Null keys are
unlikely to occur if you have loaded the database from an external ASCII
file, but may occur if the database is created using \DTLnewdb,
\DTLnewrow and \DTLnewdbentry. For example:

\DTLsort [Editor,Organization] {Author} {mydata}

will sort according to the Author key, but if that key is missing for a
given row of the database, the Editor key will be used, and if the
Editor key is missing, it will use the Organization key. Note that this
is not the same as:

\DTLsort {Author,Editor,Organization} {mydata}

80

which will first compare the Author keys, but if the author names are
the same, it will then compare the Editor keys, and if the editor names
are also the same, it will then compare the Organization keys.

The unstarred version uses a case sensitive comparison for strings,
whereas the starred version ignores the case when comparing strings.
Note that the case sensitive comparison orders uppercase characters
before lowercase characters, so the letter B is considered to be lower than
the letter a.

Example 18 (Sorting a Database)

This example uses the database called scores defined in example 3.
First, I am going to sort the database according to the student scores in
descending order (highest to lowest) and display the database in a table

\begin{table} [htbp]

\caption{Student scores (sorted by score)}
\centering
\DTLsort{Score=descending}{scores}$%
\begin{tabular}{1llr}

\bfseries First Name &

\bfseries Surname &

\bfseries Score (\%)%
\DTLforeach{scores}{%
\firstname=FirstName, \surname=Surname, \score=Score}{$%
AN\

\firstname & \surname & \score}
\end{tabular}

\end{table}

This produces Table 5.21.
Table 5.21: Student scores (sorted by score)

First Name Surname Score (%)

Jane Brown 75
John Smith, Jr 68
Roger Brady 58
Zoe Adams 52
Clare Verdon 45
Andy Brown 42

Now I am going to sort the database according to surname and then
first name, and display it in a table. Note that since I want to sort in
ascending order, I can omit the =ascending part of the sort criteria. I
have also decided to reverse the first and second columns, so that the
surname is in the first column.

81

\begin{table} [htbp]

\caption{Student scores (sorted by name) }
\centering

\DTLsort {Surname,FirstName} {scores}$%
\begin{tabular}{llr}

\bfseries Surname &

\bfseries First Name &

\bfseries Score (\%)%
\DTLforeach{scores}{%
\firstname=FirstName, \surname=Surname, \score=Score} {%
AN

\surname & \firstname & \score}
\end{tabular}

\end{table}

This produces Table 5.22.
Table 5.22: Student scores (sorted by name)

Surname First Name Score (%)

Adams Zoe 52
Brady Roger 58
Brown Andy 42
Brown Jane 75
Smith, Jr John 68
Verdon Clare 45

Now suppose I add two new students to the database:

\DTLnewrow{scores}%
\DTLnewdbentry{scores}{Surname}{van der Mere}%
\DTLnewdbentry{scores}{FirstName} {Henk}%
\DTLnewdbentry{scores}{Score}{71}%
\DTLnewrow{scores}$%
\DTLnewdbentry{scores}{Surname}{de la Mere}%
\DTLnewdbentry{scores}{FirstName} {Jos}%
\DTLnewdbentry{scores}{Score}{58}%

and again I try sorting the database, and displaying the contents as a
table:

\begin{table} [htbp]

\caption{Student scores (case sensitive sort)}
\centering

\DTLsort {Surname,FirstName} {scores}$%
\begin{tabular}{llr}

\bfseries Surname &

\bfseries First Name &

oy o

\bfseries Score (\%)%

82

\DTLforeach{scores}{%
\firstname=FirstName, \surname=Surname, \score=Score} {%

AN\

\surname & \firstname & \score}
\end{tabular}
\end{table}

This produces Table 5.23. Notice that the surnames aren’t correctly
ordered. This is because a case-sensitive sort was used. Changing
\DTLsort to \DTLsort » in the above code produces Table 5.24.

Table 5.23: Student scores (case sensitive sort)

Surname First Name Score (%)
Adams Z0oe 52
Brady Roger 58
Brown Andy 42
Brown Jane 75
de la Mere Jos 58
Smith, Jr John 68
van der Mere Henk 71
Verdon Clare 45

Table 5.24: Student scores (case ignored when sorting)

Surname First Name Score (%)
Adams Zoe 52
Brady Roger 58
Brown Andy 42
Brown Jane 75
de la Mere Jos 58
Smith, Jr John 68
van der Mere Henk 71
Verdon Clare 45

Example 19 (Influencing the sort order)

Consider the data displayed in Table 5.24, suppose that you want the
names “van der Mere” and “de la Mere” sorted according to the actual
surname “Mere” rather than by the “von part”. There are two ways you
can do this: firstly, you could store the von part in a separate field, and

83

then sort by surname, then von part, then first name, or you could define
a command called, say, \switchargs, as follows:

\newcommandx {\switchargs} [2] {#2#1}

then store the data as:

FirstName, Surname, StudentNo, Score

John, "Smith, Jr",102689, 68

Jane, Brown, 102647, 75

Andy,Brown, 103569, 42

Z\"oe,Adams, 105987, 52

Roger,Brady, 106872, 58

Clare,Verdon, 104356,45

Henk, \switchargs{Mere}{van der },106789,71
Jos, \switchargs{Mere}{de la },104256,58

Now sort the data, and put it in table (this is the same code as in the
previous example:

\begin{table} [htbp]

\caption{Student scores (influencing the sort order)}
\centering

\DTLsort*{Surname,FirstName} {scores}%
\begin{tabular}{llr}

\bfseries Surname &

\bfseries First Name &

\bfseries Score (\%)%

\DTLforeach{scores}{%

\firstname=FirstName, \surname=Surname, \score=Score} {%
AN\

\surname & \firstname & \score}

\end{tabular}

\end{table}

This produces Table 5.25.

Table 5.25: Student scores (influencing the sort order)

Surname First Name Score (%)
de la Mere Jos 58
van der Mere Henk 71
Adams Zoe 52
Brady Roger 58
Brown Andy 42
Brown Jane 75
Smith, Jr John 68
Verdon Clare 45

84

5.9 Saving a Database to an External File

TEX’s write mechanism automatically inserts linebreaks every 80

characters. This may cause problems if you have long entries in your
database.

\DTLsavedb

\DTLsavedb { (db name) } { (filename) }

This writes the database called (db name) to a file called (filename). The
separator and delimiter characters used are as given by
\DTLsetseparator (or \DTLsettabseparator)and
\DTLsetdelimiter. For example:

\DTLsettabdelimiter
\DTLsavedb{scores} {scores.txt}

will create a file called scores. txt and will save the data in a tab
separated format. (The delimiters will only be used if a given entry
contains the separator character.)

\DTLsavetexdb

\DTLsavetexdb {(db name)} { {filename) }

This writes the database called (db name) to a KIgX file called (filename),
where the database is stored as a combination of \DTLnewdb,
\DTLnewrow and \DTLnewdbent ry commands. This means that the
file is in a user-friendly format, but may be so to load, particularly if the
database is large. If you are more concerned with speed rather than
readability you can use:

\DTLsaverawdb

\DTLsaverawdb { (db name) } { (filename) }

This saves the database to (filename) in its internal representation, which
makes it faster to load. Fragile commands cause a problem for
\DTLsaverawdb so if your database contains any use:

\DTLprotectedsaverawdb

\DTLprotectedsaverawdb { (db name) } { (filename) }

instead. The datatooltk application can read and write this raw
format. To load a file in this format you can just use \input or you can
use:

85

\DTLloaddbtex{({cs)} { (file) }

This checks for the file’s existence and assigns the database name to the
control sequence (cs).

If you find a problem caused by TgX’s automatic insertion of a line
break every 80 characters when writing to a file, try loading the

morewrites package before datatool.

Databases saved using \DTLsavetexdb, \DTLsaverawdb and
\DTLprotectedsaverawdb can be loaded using IXIEX’s standard
\input command. As from version 2.15, the last line of the database file

defines
\dtllastloadeddb
\dtllastloadeddb
to the name of the database, in case it’s required.
Databases saved using \DTLsaverawdb and
\DTLprotectedsaverawdb can also be loaded and edited by
datatooltk (see page 36).
5.10 Deleting or Clearing a Database
A database can be cleared or deleted when its contents are no longer
required.
\DTLcleardb
\DTLcleardb{(db name)}
\DTLgcleardb
\DTLgcleardb{(db name)}
Clears the database given by (db name). The database is emptied but
remains defined. The second form is required if you want a global effect.
\DTLdeletedb
\DTLdeletedb{(db name)}
\DTLgdeletedb

86

\DTLgetdatatype

\DTLunsettype
\DTLstringtype
\DTLinttype
\DTLrealtype

\DTLcurrencytype

\dt1lforeachkey

\DTLgdeletedb{(db name)}

Deletes (undefines) the database given by (db name). The second form is
required if you want a global effect.

Although \DTLdeletedb and \DTLgdeletedb undefine the macros
associated with the database, they don’t unassign the registers used.
(TeX doesn’t provide a command that performs the reverse of
commands such as \newcount.) If you want to keep making
temporary databases, it’s better to just define a single database (called,
say, temp) and then just clear it rather than delete it and define a new

database. For example, if you are iterating through a loop and want to
have a temporary database on each iteration. In that case, define the
database before the start of the loop and clear it on each iteration. If
you are loading data from an external file, remember to use
\DTLnewdbonloadfalse before \DTL1oaddb (or
\DTLloadrawdb).

5.11 Advanced Database Commands

This section describes more advanced commands. Further details can be
found in the documented code (datatool-code.pdf).

\DTLgetdatatype{({cs)} {(db)} { (key)}

Gets the data type for the given key (key) for the database given by (db).
The data type is stored in (cs) which must be a command name. The type
will be one of:

e \DTLunsettype (not set),
* \DTLstringtype (string),

* \DTLinttype (integer),

\DTLrealtype (real number) or

* \DTLcurrenttype (currency).

\dt1lforeachkey ((key cs), (col cs), (type cs), (header
cs)) \in{(db)}\do{(body)}

87

This iterates through all the keys in the database given by (db). In each
iteration, (key cs) is set to the key, (col cs) is set to the column index, (type
cs) is set to the data type (as for \DTLgetdatatype), (header cs) is set to
the header for that column, and then (body) is done. Note that (key cs),
(col ¢s), (type cs) and (header cs) must all be control sequences. No check
is performed to determine if that control sequence already exists, and the
control sequences are defined globally (since it’s likely that
\dt1lforeachkey may be used within a tabular environment), so you
need to make sure you don’t override an existing command of the same
name.

\dtlforcolumn
\dt1lforcolumn{{cs)} {(db)} { (key)} { (body)}
This iterates through the column given by (key) in the database given by
(db) and applies (body). In each iteration, (cs) (which must be a control
sequence) is set to the current element in the column and may be used in
(body). Alternatively, if you want to identify the column by its index
rather than its key, use:
\dtlforcolumnidx
\dt1lforcolumnidx{(cs)} {(db)} {{col index)} { (body)}
\DTLifdbexists
\DTLifdbexists{(dbname)} { (true part)} { (false part)}
Determines if the database given by (db name) exists.
\DTLifhaskey
\DTLifhaskey {(db name)} { (key)} { (true part)} { {false part) }
This determines if the database given by (db name) has any entries with
the key given by (key). If so, it does (true part) otherwise it does (false
part).
Each key has an associated column index. This can be obtained using;:
\DTLgetcolumnindex

\DTLgetcolumnindex{(cs)} {(db)} { (key)}

where (cs) is a command name, (db) is the database label and (key) is the
key. The column index is stored in (cs).

You can also do the reverse and find the key associated with a given
column index:

88

\DTLgetkeyforcolumn
\DTLgetkeyforcolumn{ (key cs)} {(db)} { (column index)}

The key is stored in (key cs) (which must be a command name).

There is also a full expandable way of obtaining the column index, but
note that no check is performed to determine if the database exists, or if it
contains the given key:

\dtlcolumnindex

\dtlcolumnindex {(db name)} { (key)}

\DTLgetkeydata

\DTLgetkeydata{(key)} {(db)} {{col cs)} { (type cs)} { (header cs) }

Gets data for given key in database (db): the column index is stored in
(col ¢s) (as \DTLgetcolumnindex), the type is stored in (type cs) (as
\DTLgetdatatype) and the header is stored in (header cs).

\DTLgetvalue

\DTLgetvalue{(cs)} {{db)} {{r)} {{c)}

This gets the value for row given by index (r) and column given by (c)
for the database (db) and stores it in (cs) which must be a command
name. If you want to get the value by key rather than column index you
can use \dtlcolumnindex. For example, the following gets the value
for row 3 with key Surname from the database data and stores in
\myval:

\DTLgetvalue{\myval}{data}{3}{\dtlcolumnindex{data}{Surname}}

\DTLgetlocation

\DTLgetlocation{(row cs)} { (column cs)} { (database) } { (value) }

Assigns (row cs) and (column cs) to the indices of the first entry in
(database) that matches (value).

\DTLgetvalueforkey

\DTLgetvalueforkey{(cmd)} {(key)} { (db name)} { (ref key) } { (ref
value) }

This (globally) sets (cmd) (a control sequence) to the value of the key
specified by (key) in the first row of the database called (db name) which
contains the key (ref key) which has the value (value).

89

\DTLfetch

\DTLassign

\DTLswaprows

\DTLfetch{(db name)} { (columnl name) } { (column1 value)} { (column?2
name) }

This fetches and displays the value for (column2 name) in the first row
where the value of (columnl name) is (columnl value). (Note that all
arguments are expanded.) So, for example, if you have a column labelled
“regnum” and a column labelled “tutor”, then to fetch and display the
value of the tutor in the row where “regnum” is “12345” from the
database called “students” you can do:

\DTLfetch{students} {regnum} {12345} {tutor}

See example 21 on page 95.

\DTLassign{(dbname)} { (row idx)} { (assign list) }

This (globally) assigns the list of commands in (assign list) for row (row
idx) in database (db name), where (assign list) has the same format as in
\DTLforeach.

\DTLassignfirstmatch{(dbname)} {{col key)} { (value)} { (assign
list) }

This is similar to \DTLassign except that it applies to the first row in the
given database where the column identified by the label (col key) has the
given value. Note that no expansion is performed in the match. The
value must be an exact match.

\xDTLassignfirstmatch{(dbname)} {{col key)} { (value)} { (assign
list) }

This is like \DTLassignfirstmatch but performs a one-level expansion
on (value).
Two rows can be swapped using;:

\DTLswaprows { (db name) } { (row] index) } { (row?2 index) }

where (row1 index) and (row?2 index) are the indices of the rows to be
swapped. For example:

90

\DTLswaprows {scores} {3}{5}
will swap the third and fifth rows.

\DTLifinlist

\DTLifinlist {(element)} {(list)} { (true part)} {(false part)}

If (element) is contained in the comma-separated list given by (list), then
do (true part) otherwise do false part. (Does a one level expansion on
(list), but no expansion on (element).)

\DTLnumitemsinlist

\DTLnumitemsinlist {(list)} { (cmd)}

Counts the number of non-empty elements in (list) and stores result in
(cmd), which must be a control sequence.

Example 20 (Two Database Rows Per Tabular Row
(Column-Wise))

This example adapts example 9 so that the list is ordered vertically
rather than horizontally.

\begin{table} [htbp]

\caption{Two database rows per tabular row (column-wise) }

\centering

% store half number of rows

\edef\maxrows {\DTLrowcount {scores}}%

\DTLdiv{\halfrowidx} {\maxrows} {2}

\begin{tabular}{llcllc}

\bfseries First Name &

\bfseries Surname &

\bfseries Score (\%) &

\bfseries First Name &

\bfseries Surname &

\bfseries Score (\%)%

\DTLforeachx* [\value{DTLrowi}<\halfrowidx] {scores}%

{\firstname=FirstName, \surname=Surname, \score=3Score}$%

{%
\\%
\firstname & \surname & \score
&
\edef\currentrowidx{\arabic{DTLrowi}}%
\DTLadd{\rowidxII}{\halfrowidx}{\currentrowidx}$%
\DTLassign{scores}{\rowidxII}$%

{\firstnameII=FirstName, \surnameII=Surname, \scoreII=Score}$%

\firstnameII & \surnameIIl & \scorell

—
o\

91

\end{tabular}
\end{table}

This produces Table 5.26.

Table 5.26: Two database rows per tabular row (column-wise)

First Name Surname Score (%) First Name Surname Score (%)
Zoe Adams 52 Jos de la Mere 58
Roger Brady 58 John Smith, Jr 68
Andy Brown 42 Henk van der Mere 71
Jane Brown 75 Clare Verdon 45

5.11.1 Operating on Current Row

If you want to select from or edit a particular row in a database without
having to iterate through the database using \DTLforeach, you can use
the commands described in this section.

\DTLgetrowindex

\DTLgetrowindex{(row cs)} { (db name)} { (col idx)} { (value)}

Gets the row index of the first row in database (db name) where the value
for column (col idx) matches (value) and stores the result in (row cs),
which must be a control sequence. An error message is given if not
found.

\dtlgetrowindex

\dtlgetrowindex{(row cs)} { (db name)} { (col idx)} { (value)}

Similar to \DTLget rowindex but doesn’t produce an error if no match
is found. You can test the result by using \ifx(row cs)\dtlnovalue.
For example:

\dtlgetrowindex{\myrowidx}{data}{\dtlcolumnindex{data}{Surname}}{Smith}
\ifx\myrowidx\dtlnovalue
Not Found
\else
Found in row \myrowidx.
\fi

\dtlgetrow

\dt lgetrow{ (db name)} { (row idx) }

92

Gets the row with index (row idx) from the database (db name). The
required row is stored in the token register

\dtlcurrentrow
\dtlcurrentrow
the preceding rows are stored in the token register
\dtlbeforerow
\dtlbeforerow
the following rows are stored in the token register
\dtlafterrow
\dtlafterrow
the row index, (row idx), is stored in the register
\dtlrownum
\dtlrownum
and the database name is stored in the control sequence
\dtldbname
\dt ldbname
No check is made in \dt 1get row to see if the database exists or if the
row index is valid. You will probably get a “Missing { inserted” error
if you misspell the database name and a “Runaway argument” error if
you specify a row index that is out of range.
\dtlgetrowforvalue

\dtlgetrowforvalue {(db name)} { (column index)} { (value)}

Like \dt 1get row, but this gets the row where the entry in column
(column index) matches (value). This command produces an error if no
match is found. Note that no expansion is performed when matching
(value). If you want (value) expanded before comparison, use:

\edtlgetrowforvalue

\edtlgetrowforvalue{(dbname)} { (column index)} { (value)}

93

You can use the commands below to access or edit \dtlcurrentrow,
but they won’t change the database. Instead, once you've finished
editing \dt lcurrentrow, you need to reconstruct the database token
by recombining \dt 1beforerow, \dtlcurrentrow and
\dtlafterrow using:

\dtlrecombine

\dtlrecombine

Alternatively, to recombine omitting the current row:

\dtlrecombineomitcurrent

\dtlrecombineomitcurrent

(This removes the current row from the database, shifting the row indices
in \dtlafterrow.) Note that these recombining commands assume that
you haven’t altered \dt 1rownum, \dt ldbname, \dt lbeforerow and
\dtlafterrow.

\dtlcurrentrow stores the row information using datatool’s internal
row syntax, described in the documented code (datatool-code.pdf).

Don’t explicitly modify \dt lcurrentrow unless you have a good
understanding of the syntax.

\dtlgetentryfromcurrentrow

\dtlgetentryfromcurrentrow{(cs)} {{col idx)}

Gets the value from \dt lcurrentrow for the column given by (col idx)
(an integer) and stores in (cs), which must be a control sequence.

\dtlreplaceentryincurrentrow

\dtlreplaceentryincurrentrow{(new value)} {(col idx)}

Replaces the value in \dt lcurrentrow for the column given by (col
idx) (an integer) with (new value).

The new value doesn’t get expanded.

\dtlremoveentryincurrentrow

\dtlremoveentryincurrentrow{{col idx)}

Removes the value in \dtlcurrentrow for the column given by (col
idx).

94

\dtlswapentriesincurrentrow

\dtlswapentriesincurrentrow{{coll idx)} { (col2 idx)}

Swaps entries in columns (col1 idx) and (col2 idx) in \dtlcurrentrow
(where (col1 idx) and (col2 idx) are the column indices).

\dtlappendentrytocurrentrow

\dtlappendentrytocurrentrow{ (key)} { (value)}

Appends (value) to the current row for column given by (key). (Produces
an error if there is already an entry for that column in the current row.)

\dtlupdateentryincurrentrow

\dtlupdateentryincurrentrow{ (key)} { (value)}

Behaves like \dt lappendentrytocurrentrow if the current row
doesn’t contain an entry for the column given by (key), otherwise
behaves like \dt l1replaceentryincurrentrow.

Example 21 (Joining Two Databases in a Single Table)

Suppose a lecturer has a CSV file for a particular course that contains
student registration numbers and marks for the Autumn and Spring
semesters. The file is called, say, cmp101 . csv and contains the
following:

regnum, Autumn Marks, Spring Marks
12345,80,85
12346,70,90
12347,75, 60

This only contains the student registration numbers, not their names,
but suppose there’s another CSV file that contains the registration
numbers and names for all students at the department (or university).
This file called, say, students. csv may look something like:

regnum, name
12344,Mary Brown
12345, Joe Bloggs
12346, Jane Doe
12347,John Smith
12348,Alice Jones

95

Now suppose the lecturer wants a table of all the students on course
CMP101 listing each student’s name and marks. Here’s the code:

\DTLloaddb{cmpl01l}{cmplO0l.csv}% load course data
\DTLloaddb{students} {students.csv}% load student data

\begin{table} [htbp]
\caption{Student Marks (Joining Databases) }
\centering
\begin{tabular}{lrr}
\bfseries Name & \bfseries Autumn Marks & \bfseries Spring Marks%
\DTLforeach*{cmpl01}%
{\RegNum=regnum, \Autumn=Autumn Marks, \Spring=Spring Marks}$%
{\\\DTLfetch{students}{regnum} {\RegNum} {name} & \Autumn & \Spring}$%
\end{tabular}
\end{table}

The result is shown in Table 5.27.

Table 5.27: Student Marks (Joining Databases)

Name Autumn Marks Spring Marks
Joe Bloggs 80 85
Jane Doe 70 90
John Smith 75 60

Let’s suppose now that the students. csv file has the first name and

surname in separate columns rather than single columns. So the CSV file
looks like:

regnum, forename, surname
12344,Mary,Brown
12345, Joe, Bloggs

12346, Jane, Doe
12347,John, Smith
12348,Alice, Jones

You may be tempted to replace
\DTLfetch{students} {regnum} {\RegNum} { name}
with

\DTLfetch{students} {regnum} {\RegNum} { forename}\space
\DTLfetch{students} {regnum}{\RegNum} { surname}

in the above code, but this is inefficient as it requires two searches for the
same row. Instead, you can do:

96

\DTLfetch{students} {regnum} {\RegNum} { forename}\space
\dtlgetentryfromcurrentrow{\Surname} {\dtlcolumnindex{students}{surname}}%
\ Surname

This can be done because

\DTLfetch{students} {regnum}{\RegNum} { forename}
is equivalent to

\edtlgetrowforvalue{students}{\dtlcolumnindex{students} {regnum}}{\RegNum}%
\dtlgetentryfromcurrentrow

{\dtlcurrentvalue} {\dtlcolumnindex{students} {forename}}$%
\dtlcurrentvalue

This means that \dt lcurrentrow has already been set by \DTLfetch
so we can just do another \dt lgetentryfromcurrentrow for the
surname field. The new code for the table is now:

\DTLloaddb{cmpl01l}{cmplOl.csv}% load course data
\DTLloaddb{students} {students.csv}% load student data

\begin{table} [htbp]
\caption{Student Marks (Joining Databases) }
\centering
\begin{tabular}{lrr}
\bfseries Name & \bfseries Autumn Marks & \bfseries Spring Marks%
\DTLforeach*{cmpl01}%
{\RegNum=regnum, \Autumn=Autumn Marks, \Spring=Spring Marks}$%
{(\\%
\DTLfetch{students} {regnum} {\RegNum} { forename}\space
\dtlgetentryfromcurrentrow{\Surname} {\dtlcolumnindex{students} {surname}}$%
\Surname
& \Autumn & \Spring}%
\end{tabular}
\end{table}

The result is shown in Table 5.28.

Table 5.28: Student Marks (Joining Databases)

Name Autumn Marks Spring Marks
Joe Bloggs 80 85
Jane Doe 70 90
John Smith 75 60

Caveat: be careful of scoping issues. Suppose you want the first name
and surname in separate columns, you may consider doing;:

\DTLfetch{students}{regnum} {\RegNum} { forename}$%

97

&
\dtlgetentryfromcurrentrow{\Surname} {\dtlcolumnindex{students} {surname}}%
\Surname

(and adding an extra column to the tabular environment). However this
will result in undefined values for \ Surname as \dtlcurrentrow is
only locally set. After the & special character \dt lcurrentrow has lost
its value as it’s no longer in the same scope. You can fix this problem in
a number of ways. Firstly you can make \dtlcurrentrow global after
\DTLfetch via

\global\dtlcurrentrow=\dtlcurrentrow

or you could move the column break to just before \ Surname and make
\Surname global:

\DTLfetch{students} {regnum} {\RegNum} { forename}$%
\dtlgetentryfromcurrentrow{\Surname} {\dtlcolumnindex{students} {surname}}$%
\global\let\Surname\Surname

&

\Surname

There are other possibilities as well, but the first method is probably the
best, especially if you have multiple columns you want to fetch.
Here’s the updated code:

\begin{table} [htbp]
\caption{Student Marks (Joining Databases) }
\centering
\begin{tabular}{llrr}
\bfseries Forename & \bfseries Surname &
\bfseries Autumn Marks & \bfseries Spring Marks%
\DTLforeach*{cmpl01}%
{\RegNum=regnum, \Autumn=Autumn Marks, \Spring=Spring Marks}$%
{\\%
\DTLfetch{students} {regnum} {\RegNum} { forename}%
\global\dtlcurrentrow=\dtlcurrentrow
&
\dtlgetentryfromcurrentrow{\Surname} {\dtlcolumnindex{students} {surname}}$%
\Surname
& \Autumn & \Spring}$%
\end{tabular}
\end{table}

The result is shown in Table 5.29.

98

Table 5.29: Student Marks (Joining Databases)

Forename Surname Autumn Marks Spring Marks

Joe Bloggs 80 85
Jane Doe 70 90
John Smith 75 60

99

\loadgidx

6 Creating an index, glossary or list of
acronyms (datagidx package)

The datagidx package is provided as an alternative to the glossaries
package. Rather than relying on an external indexing application, such as
xindy or makeindex, it uses the database mechanism of the datatool
package. datagidx and glossaries are not compatible. (Note: glossaries version
4.04 now has an option that uses TEX to sort the glossaries instead of
using makeindex or xindy.)

First a repeat of the caveat at the start of this manual:

Use the right tool for the right job.

Don’t expect datagidx to perform as efficiently as an application that is
designed specifically to sort and collate entries.

If, however, you are happy to exchange efficiency for the convenience
of not having to invoke an external application in between IETEX runs,
read on.

Sections 6.1 and 6.3 describe how to create and populate a database
that’s used to store terms or acronyms. By default the database is sorted
when it’s displayed using \printterms (see section 6.8). This is where
the main inefficiency lies in this package. A faster alternative is to use
datatooltk (see page 36) and its datagidx plugin, which will allow
you to enter terms in a graphical environment and sort the terms. This
way, you only need to sort the database after you enter a new term and
the sorting is done by a more efficient language than TgX. Note that this
means returning to using an external helper application, but it only needs
to be used when you add a new term rather than between each pair of
EIEX runs.

Once you've edited and sorted the database in datatooltk, you can
then just load it using;:

\loadgidx [(options)] { (filename) } { (title)}

where (filename) is the name of the file saved in datatooltk. The
remaining arguments (options) and (title) are the same as for \newgidx,
described in section 6.1. This command automatically sets the default

100

\newgidx

database to the loaded database. You can change the default database
using \DTLgidxSetDefaultDB, described in section 6.3.

Since \loadgidx is intended for use with presorted databases, the sort
key defaults to nothing.

If you've opted to use datagidx over glossaries because you don’t want
to install Perl, then don’t bother with datatooltk because, although

it’s a Java application, it requires Perl for the plugins.

6.1 Defining Index/Glossary Databases

The databases and their associated entries described here can only be
defined in the preamble. This is because the database must be set up
before the auxiliary file is read. If you don’t want to lose your place by
constantly returning to the preamble to add a new term while you edit

your document, consider putting all your definitions in a separate file
which can be \ input in the preamble. You can then switch between
tiles without losing your place (provided you are using a decent text
editor). Alternatively, use datatooltk’s datagidx plugin as
described above.

First you need to define a customised database that will be used to
store the entries in your index, glossary or list of acronyms:

\newgidx [(options)] {(label) } { (title) }

This defines a new database with a unique label and a title. For example:

\newgidx{index} {Index}

7

I can now identify this database using the label index. The title “Index’
is the default heading when the database is displayed using
\printterms (see section 6.8).

The optional argument (options) should be a key=value list. Available
options:

showgroups Boolean option that indicates whether or not to insert group
headings (and a group separator) between index groups, if
headings are supported by the given style. If no value is supplied,
true is assumed.

101

\DTLgidxCounter

style The style to use. The value should be the name of the style.
Available styles are listed in subsection 6.8.1.

sort How to sort the database. See subsection 6.8.2 for further details.

balance This is a boolean option that is only applied if columns is greater
than 1. If true, the columns are balanced. If false, the columns aren’t
balanced. If no value is specified, true is assumed.

heading The heading at the start of the index/glossary.

postheading What to put immediately after the heading.

6.2 Locations

Each term in an index or glossary database has an associated location list.
This is initially null. When you display the database using
\printterms (see section 6.8) only those entries with a non-null
location list or with a “see” cross-reference are displayed. The location by
default is the page number on which the entry has been used. This may
be changed to another counter by redefining

\DTLgidxCounter

to the name of the required counter. For example:

\renewcommand~* { \DTLgidxCounter} {section}

The datagidx package knows about the following counter styles: arabic,
roman, Roman, alph and Alph. If your location counter uses a different
style, you will need to add a new location type. This will only work if the
counter uses a command that expands to another command that takes a
number as its argument. For example, suppose I want to use small caps
Roman numeral page numbering. I need to define a command (say
\myscroman) that takes a counter name as its argument but expands to
another command that takes a number as its argument, like this:

\newcommand*{\myscroman} [1] {\myscrromannum{\value{#1}}}
\newcommand* { \myscromannum} [1] {\textsc{\romannumeral#1l}}

Note that the font changing command \text sc is in the definition of
\myscromannum not in the definition of \myscroman. The page counter
can now be changed so that it uses \myscroman:

\renewcommand« { \thepage} { \myscroman{page}}

102

Inow have to indicate that \myscromannum is a valid location type
using:

\DTLgidxAddLocationType

\DTLgidxAddLocationType {{cs name)}

where (cs name) is the name of the control sequence without the initial
backslash. Like this:

\DTLgidxAddLocationType{myscromannum}

Note that this is the command that takes a number as its argument
(\myscromannum) not the command that takes a counter name as its
argument (\myscroman).

As with makeindex and xindy, locations may have a compositor. The
default compositor is a full stop but may be changed by redefining

\DTLgidxSetCompositor

\DTLgidxSetCompositor

Alternatively, you can use the package option compositor.

6.3 Defining Terms

Once you have defined the database, you can now define terms
associated with that database using

\newterm

\newterm [(options)] { (name) }

where (name) is the term and (options) is a comma-separated list of
(key)=(value) options. The following keys are available:

database Identifies the database in which to store this term. For example:
\newterm[database=index] {reptile}
It can be somewhat cumbersome having to keep typing the
database for each new term. Instead you can identify the default

database using

\DTLgidxSetDefaultDB

\DTLgidxSetDefaultDB{(label)}

103

Note: the argument (label) is not expanded.

Example:

% define two indexes:

\newgidx{index} {Index}

\newgidx{people} {People}

% Set "index" as the default database:
\DTLgidxSetDefaultDB{index}

% This batch of terms will be added to database "index":
\newterm{reptile}

\newterm{mammal}

\newterm{insect}

[

% Set "people" as the default database:
\DTLgidxSetDefaultDB{people}

Q

% This batch of terms will be added to database "people":
\newterm{Bob}
\newterm{Mary}
\newterm{Jane}

label A unique identifying label. This should not contain any active
characters. If omitted, the label is extracted from (name) (see
below).

sort The sort key. If omitted, this is extracted from (name) (see below).

parent The parent entry, if this is a sub-term. An entry may only have
one parent. If you want the same term to appear under two
different parents, you’ll have to define two separate terms with the
same name but different parents (and different labels). This is the
only way to avoid ambiguity with the hyperlinks (if enabled).

text How the entry should appear in the document text. This is (name)
by default. If this option is used, (name) indicates how the entry
should appear in the index, glossary or list of acronyms.

description An optional description. This is usually not required for an
index but needed for a glossary.

plural The plural form of the term. If omitted this is formed by

“"_r

appending “s” to (name) (or the value of the text key if supplied).
symbol An associated symbol if required.
short An associated short form if required. (Default (name).)
long An associated long form if required. (Default (name).)

shortplural An associated short plural if required. (Default formed by

“"_rm

appending “s” to the value of the short key.)

104

longplural An associated long plural if required. (Default formed by

“"_rm

appending “s” to the value of the long key.)

see A cross-reference to a synonym. The value should be the label of
another entry. This entry will not have a location list, just the
reference to the other term.

seealso A cross-reference to a closely related term. This entry should
have both a location list and a reference to the other term.

If the or key are omitted, datagidx tries to form sensible defaults. At the
moment, this involves stripping certain commands (\MakeUppercase,
\MakeLowercase, \MakeTextUppercase, \MakeTextLowercase,
\acronymfont, \textsc, \textbf, \textmd, \textit, \textsl,
\textrm, \texttt, \textsf, \emph, \ensuremath and
\textsuperscript), stripping accents and replacing certain control
characters or control sequences (~ is replace with a space and \ & is
replaced with \andname (if defined) or “and” (if \andname isn’t
defined)). The Greek letter commands (\alpha etc) are converted to
their name.

Examples:

1. \ensuremath is stripped and \alpha is converted to “alpha” so
the following:

\newterm{\ensuremath{\alpha}}

sets both the label and sort to alpha but the name and text fields
are set to \ensuremath{\alpha}.

2. Accent commands are stripped so the following;:
\newterm{mac\’edoine}

sets both the label and sort fields to macedoine but the name and
text fields are set to mac\’ edoine.

The first letter must be grouped if it’s an accent or ligature or a

character outside the range a...z or A... Z.

3. This example must have the sort and label fields set manually
because the first letter has an accent:

\newterm[label=elite, sort=elite] {{\'e}lite}

105

. The same applies if you are using the inputenc package:
\newterm[label=elite, sort=elite] {{é}lite}
. The same applies to plural terms set explicitly:

\newterm
[%
plural={{ce}sophagi},
label={oesophagus}, %

sort={oesophagus}%

%

]
{{e}sophagus}

. Commands such as \oe aren’t dealt with, so you must manually
set the label and sort key:

\newterm[label=manoeuvre, sort=manoeuvre] {man\oe uvre}

. The same applies if you are using the inputenc package:

\newterm|[label=manoeuvre, sort=manoeuvre] {mancuvre }

Take care if any of the values to fields contain a comma or equal
sign. The value must be grouped.

. This term contains a comma in some of the fields:

\newterm
[%
label={comma}, %

sort={,},%
text={comma (,)}%
(

plural={commas (,)}

o

]

{, (comma) }
In the text, the entry is comma (,) butin the index the entry is

sorted according to the comma symbol and is displayed as ,
(comma) .

106

\DTLgidxParen

\DTLgidxPlace

6.3.1 Commands to Assist Sorting

There are some situations where you will have to specify the sort key, for
example:

\newterm

[

sort={Ten Downing Street}

]
{10 Downing Street}

However, there are some commands provided to help set the default
sort for entries that are sorted differently from the way they are typeset in
the index/glossary, which can help reduce the number of times you need
to explicitly set the sort field.

\DTLgidxParen/{ (text)}

This command is provided for parenthetical material that should be
typeset in the index, but should not contribute to the sort unless there is
an identical entry without parenthetical material.

For example:

\newterm{0\DTLgidxParen{zero}}

This term is typeset as 0 (zero), but has the sort and label fields set to
0.

The default sort used is word-order sorting. This has a special number
group for entries where the sort field consists solely of digits and they are
sorted numerically rather than by string comparison. Using
\DTLgidxParen in this manner, the following terms will appear in
numerical order in the index:

\newterm{O\DTLgidxParen{zero}}
\newterm{1\DTLgidxParen{one}}
\newterm{2\DTLgidxParen{two}}
\newterm{3\DTLgidxParen{three}}
\newterm{10\DTLgidxParen{ten}}
\newterm{100\DTLgidxParen{one hundred}}
\newterm{20\DTLgidxParen{twenty}}

If \DTLgidxParen was not used and the parentheses were explicitly
included, e.g. 0 (zero), then the entries would be placed in the symbol
group instead and be sorted according to string (so 10 (ten) would
come before 2 (two)).

107

\DTLgidxPlace {{country/county)} { (city/town) }

Use this command to indicate a place. For example:

\newterm{\DTLgidxPlace{USA} {New York}}

This sets the label and name to New York, USA, the text field is set to
just New York and the sort field is set to
New York\datatoolplacecomma USA (see section 5.8).

\DTLgidxSubject

\DTLgidxSubject { (subject)} { (text)}

Use this to indicate a subject, concept or object. Example:

\newterm{\DTLgidxSubject {population}{New York}}

Both the label and name fields default to New York, population,the
text field defaults to population and the sort field is set to
New York\datatoolsubjectcomma population (see section 5.8).

\DTLgidxName

\DTLgidxName { (forename(s)) } { (surname) }

Use this command to index a person. The entry will be sorted according
to the surname then the forenames. The entry will be displayed as
(surname), (forename(s)) in the index but will be displayed as (forename(s))
(surname) when referenced in the document. The label, on the other
hand, is set to just the surname. Example:

\newterm{\DTLgidxName{Donald E.}{Knuth}}

This sets the name field to Knuth, Donald E., the text field to Donald
E. Knuth, the label to Knuth and the sort field to
Knuth\datatoolpersoncomma Donald E. (see section 5.8).

A person’s title (such as “Dr”) should typically not affect the sort,
unless there is another person with the same surname and forenames (or
initials) without a title. To assist this, you can identify a person’s title
using:

\DTLgidxRank

\DTLgidxRank {(title) } { (forename(s)/initial(s)) }

Using examples from the Oxford Style Manual:

\newterm[label=AliceMeynell] {\DTLgidxName {Meynell}{Alice}}
\newterm[label=DrMeynell] {\DTLgidxName {Meynell} {\DTLgidxRank{Dr}{A.}}}
\newterm[label=AMeynell] {\DTLgidxName {Meynell}{A.}}

108

\DTLgidxNameNum

\DTLgidxMac

\DTLgidxSaint

Here the labels must be set as the surnames are identical for each entry,
but the entries will be sorted in the order: “Meynell, A.”, “Meynell,
Dr A.” and “Meynell, Alice”.

You can use

\DTLgidxNameNum{ (number) }

to indicate a number associated with a name. The number is typeset as
an uppercase Roman numeral in the text, but is sorted numerically.
For example:

\newterm{James~\DTLgidxNameNum{1l}}

This is typeset as James~1I, but gets the label James I (note no tilde)
and the sort field is set to James 01. This means that if I want to index
all the Kings whose name is James, they will appear in the correct order
in the index.

If a term contains a variant of “Mac” you can also use:

\DTLgidxMac { (text)}

The entry will be typeset with (fext) but the sort key will have (text)
replaced with Mac. Examples:

\newterm{\DTLgidxName{Joe} {\DTLgidxMac{Mc}Cullers}}
\newterm{\DTLgidxName{Bob} {\DTLgidxMac{M’ }Fingal}}
\newterm{\DTLgidxMac{Mc}Carthyism}
\newterm{\DTLgidxMac{Mc}Guffin}

Similarly saints can be identified using:

\DTLgidxSaint { (text)}

Examples:

\newterm{\DTLgidxSaint {St} Julian}
\newterm{\DTLgidxName{Q. } {\DTLgidxSaint {St}~John-Smythe}}
\newterm{\DTLgidxPlace{\DTLgidxSaint {St}~Andrews}{Fife}}

These will be sorted according to Saint Julian,
Saint John-Smythe\datatoolpersoncomma Q. and
Saint Andrews\datatoolplacecomma Fife.

Particles, such as “de”, “von” or “of” are usually ignored when
sorting. These can be identified using:

109

\DTLgidxParticle

\DTLgidxOffice

\newtermlabelhook

\DTLgidxParticle{ (text)}

Examples:

\newterm{\DTLgidxName{Fred} {\DTLgidxParticle{de} {Winter}}}
\newterm{\DTLgidxName{Gustav}{\DTLgidxParticle{von}{Aschenbach}}}

Here the names are sorted according to
Winter\datatoolpersoncomma Fredand
Aschenbach\datatoolpersoncomma Gustav but the labels are set
to deWinter and vonAschenbach.

A person can also be indicated by their office, for example “Henry,
scribe of Bury St Edmunds”. For this, you can use:

\DTLgidxOf fice {({office)} { (name)}

Here the label defaults to just (name), so you may need to set the label
manually to ensure uniqueness. Examples:

\newterm
[
label={HenrySonJohn}

]
{\DTLgidxOffice{son \DTLgidxParticle{of}{John}}{Henry}}

\newterm
[

label={HenryBeaumont}

]
{\DTLgidxOffice{bishop \DTLgidxParticle{of}{Bayeux}}{Henry
\DTLgidxParticle{de} {Beaumont}}}

\newterm

[
label={HenryScribe}

]
{\DTLgidxOffice{scribe \DTLgidxParticle{of}{Bury}
\DTLgidxSaint {St}~Edmunds} {Henry}}

You can hook into the mechanism that sets the default sort key by
adding to the definition of

\newtermlabelhook

110

\DTLgidxNoFormat

\DTLgidxGobble

You can use etoolbox’s \appto command to append to this hook. For
example, suppose you want to index the terms \TeX, e\TeX and
pdf\TeX, but you want the terms to have the label and sort fields to be
just TeX, eTeX and pdfTeX, then you can add to the hook so that it
automatically converts \TeX to just TeX:

\appto\newtermlabelhook {\def\TeX{TeX}}

(Note that it’s important to use the local \de f rather than the global
\gdef to ensure the redefinition is localised.)
Now the terms can simply be defined using;:

\newterm{\TeX}
\newterm{e\TeX}
\newterm{pdf\TeX}

To assist in using this mechanism, the following commands are
available (these commands may also be used in the mandatory argument
of \newterm):

\DTLgidxNoFormat { (text)}

This commands simply does its argument, so any commands that should
be stripped from the label or sort field without the loss of their argument
can be \let to \DTLgidxNoFormat. For example, suppose you want to
define a command called, say, \appname that you want to use to identify
application names, like this:

\newcommand*{\app} [1] {\texttt{#1}}

This command needs to be stripped from the label and sort, so it can be
added to the hook like this:

\appto\newtermlabelhook{\let\app\DTLgidxNoFormat }
Now you can define terms like this:

\newterm{\app{makeindex}}
\newterm{\app{xindy}}

The label and sort keys are then set to makeindex (for the first term) and
xindy (for the second term).

\DTLgidxGobble { (text)}

This command discards its argument, so it can be used if you not only
want to strip a command but also its argument from the label and sort
fields.

111

For example, suppose you want some terms to have a footnote (both in
the index/glossary and in the document text) but the footnote shouldn’t
form part of the sort or label fields. You can add to the hook like this:

\appto\newtermlabelhook{\let\footnote\DTLgidxGobble}
Now you can define some terms with footnotes:

\newterm{foo\footnote{a note about foo}}
\newterm{bar\footnote{a note about bar}}

The label and sort keys are then set to foo (for the first term) and bar
(for the second term).

\DTLgidxIgnore

\DTLgidxIgnore

This is similar to \DTLgidxGobble but only affects the sort key not the
label. Example:

\newterm{de\DTLgidxIgnore{—-}escalate}

This is displayed as de-escalate and gets the label de-escalate but
is sorted according to deescalate.

\DTLgidxStripBackslash

\DTLgidxStripBackslash {(control sequence)}

This can be used to “stringify” a control sequence and remove the
leading backslash. For example, suppose you want to index the
ampersand symbol (&) but you want to sort it according to the actual
symbol &, you can do:

\newterm
[%
label={amp},
sort={\DTLgidxStripBackslash{\&}},
text={ampersand (\&)},
plural={ampersands (\&)},
1

{\& (ampersand) }

6.4 Referencing Terms

You can reference terms using

\useentry

112

\Useentry

\USEentry

\useentrynl

\Useentrynl

\USEentrynl

\glslink

\useentry { (label) } { (field) }

This fetches the given field for the term identified by (label), displays it
and marks the term as having been used. Example, suppose I have
previous (in the preamble) defined the term “reptile” using;:

\newterm{reptile}

I can now reference this term in the document:
\useentry{reptile} {Text}

or if I want the plural, I can use:
\useentry{reptile}{Plural}

There are also uppercase versions:

\Useentry { (label) } { (field) }

This makes the first letter uppercase (using the mfirstuc package) or to
make the whole text uppercase use:

\USEentry { (label) } { (field) }

If you use the hyperref package, the above commands will
automatically create hyperlinks to the relevant entry in the
index/glossary. You can suppress this action by using one of the
following analogous commands instead:

\useentrynl {(label)} { (field)}

\Useentrynl {(label)} { (field) }

\USEentrynl {(label)} { (field) }

You can also specify your own custom text:

\glslink{(label)} { (text)}

113

In all the above commands, the (label) argument may optionally start
with [(format)], where format is the name of a control name without the
preceding backslash. This command will be applied to this location in the
entry’s location list when it’s displayed in the index/glossary.

For example:

\useentry{ [textbf]reptile}{Text}

Note that the command (\textbf in the above example) should take
one argument (the location). If you attempt to use, say, a declaration
(such as \bfseries) the effect won't be localised.

You can display the value of a field without indexing it using:

\glsdispentry
\glsdispentry{(label)} {(field)}
To make the first letter uppercase, use:
\Glsdispentry
\Glsdispentry {(label)} { (field) }
The above commands aren’t expandable. If you want to fetch a value
without displaying or using it, you can use:
\DTLgidxFetchEntry

\DTLgidxFetchEntry{(cs)} {(label)} {(field)}

where (cs) is a control sequence, (label) is the label that uniquely
identifies the entry and (field) is the required field. The value of that field
is stored in (cs).

The predefined database fields are:

Name How the term appears in the index/glossary (as specified by the
mandatory argument of \newterm).

Text The value of the text field.

Plural The value of the plural field.
Description The value of the description field.
Symbol The value of the symbol field.

Long The value of the long field.

Short The value of the short field.

LongPlural The value of the longplural field.

114

ShortPlural The value of the shortplural field.
See The value of the see field.

SeeAlso The value of the seealso field.

Sort The value of the sort field.

Parent The value of the parent field.

Label The entry’s unique identifying label.

Used Has the value 1 (entry has been used) or either 0 or undefined
(entry hasn’t been used).

Location The entry’s location list (picked up from the last IZTEX run).

In addition, there are some fields designed for internal use: Child,
FirstIdand CurrentLocation.
You can add an entry to the index/glossary without displaying any

text using:
\glsadd
\glsadd{(label)}
As with \useentry, (label) maybe in the form [(format)] {(label) }
where (format) is the name of a control sequence without the leading
backslash.
You can also add all entries from a particular database using
\glsaddall

\glsaddall{(db name)}

where (db name) is the name of the database.

Unlike the commands of the same name provided by the glossaries
package, here there is a difference between \glsaddall and using
\glsadd on all entries in the database. In the case of \glsadd a location
is added to the location list for that entry. However in the case of
\glsaddall no location is added to each entry’s location list, but the
location list is set to non-null so the entry will appear in the
index/glossary.

6.4.1 Shortcut Commands

There are some shortcuts to common fields (if you are used to the
glossaries package, note that these commands have different formats to
the commands provided by glossaries with the same name):

115

\gls

\glspl

\glsnl

\glsplnl

\Gls

\Glspl

\Glsnl

\Glsplnl

\glssym

\gls{(label)}

This is equivalent to \useentry {(label)} { Text }.

\glspl{(label)}

This is equivalent to \useentry{ (label)} {Plural}.

\glsnl{(label)}

This is equivalent to \useentrynl{ (label) } { Text }.

\glsplnl {(label)}

This is equivalent to \useentrynl{(label)} {Plural}.

\G1s {(label)}

This is equivalent to \Useentry { (label) } { Text }.

\G1lspl{(label)}

This is equivalent to \Useentry { (label)} {Plural}.

\G1lsnl{ (label)}

This is equivalent to \Useentrynl{ (label) } { Text }.

\Glsplnl {(label)}

This is equivalent to \Useentrynl{(label)} {Plural}.

\glssym{(label)}

116

\Glssym

\newtermaddfield

\field

This is equivalent to \useentry { (label)} { Symbol}.

\Glssym{(label)}

This is equivalent to \Useentry { (label) } { Symbol}.

6.5 Adding Extra Fields

You can add new fields to the index/glossary database using;:

\newtermaddfield [(dD list)] {(field name)} { (key name)} { (default
value) }

The optional argument (db list) is a comma-separated list of databases
that should have this new field. If omitted, the field will be added to all
the defined databases. The argument (field name) is the label to give this
new column in the database(s). The argument (key name) is the name of
the new key to use in the optional argument of \newterm. The final
argument (default value) is the default value if the key isn’t used. Within
(default value), you may use

\field{ (key)}

to indicate the value of another key.
For example, suppose I want to be able to specify an alternative plural.
I can add a new field like this:

\newtermaddfield{AltPlural}{altplural}{}

This adds a new column with the label A1tP1lural to each defined
index/glossary database and adds a new key called altplural thatI
can now use in \newterm. The default is set to empty. Now I can define
terms with an alternative plural:

\newterm[altplural=kine] {cow}

In the document, I can use \gls{cow} to display “cow”, \glspl{cow}
to display “cows” and \useentry{cow} {AltPlural} to display
“kine”. To make life a little easier, I can define a new command to save

typing:

\newcommandx{\glsaltpl}[1]{\useentry{#1}{AltPlural}}

117

\newacro

Now I can just do \glsaltpl{cow} to display “kine”.

Here’s another example. Suppose I want to add a field that produces
the past tense of a verb. In this case, the default should be formed by
appending “ed” to the text field. The new field can be defined as follows:

\newtermaddfield{Ed} {ed} {\field{text}ed}

This adds a new column labelled “Ed” and defines a new key called “ed”
that can be used with \newterm. Now I can defined some verbs:

\newterm{ jump }
\newterm[ed=went] {go}

Let’s define a convenience command to access this field:
\newcommandx {\glsed} [1] {\useentry{#1}{Ed}}
This new field can now be referenced in the document:

He \glsed{jump} over the gate.
She \glsed{go} to the shop.

The above will be displayed as: He jumped over the gate. She went to the
shop.

6.6 Acronyms

You may have noticed that you can specify short and long fields when you
define a new term. There is a convenient shortcut command which uses
\newterm to define an acronym. The syntax is:

\newacro [(options)] { (short) } { (long) }

This is a shortcut for

\newterm
(%
description={\capitalisewords{(long)}},%
short={\acronymfont {(short)}}, %
long={(long)}, %
textz{\DTLgidxAchtyle{<bng>}{\acronymfont{@hmf)}}},%

plural={\DTLgidxAcrStyle{(long)s}{\acronymfont {(short)s}}}, %

sort={(short)}, %
(options) %
1%

\MakeTextUppercase { (short) }

118

\acronymfont

\DTLgidxAcrStyle

\acr

\acrpl

where \capitalisewords is defined in mfirstuc (automatically loaded
by datagidx) and \MakeTextUppercase is defined in textcase
(automatically loaded by datagidx). The other commands used are defined
by datagidx:

\acronymfont

By default this just typesets its argument but can be redefined if the
acronyms need to be typeset in a certain style (such as small caps).

\DTLgidxAcrStyle{(long)} {(short)}

This governs how the acronym is typeset in the text field. This defaults to:
(long) ((short)).

6.6.1 Using Acronyms

You can use terms that represent acronyms via commands such as
\useentry. For example, if you define the following in the preamble:

\newacro{css}{cascading style sheet}
then later in the text you can use:
\useentry{css}{Short}

to access the short form and
\useentry{css}{Long}

to access the long form. You can also use
\useentry{css} {Text}

(or \gls{css}) toaccess the full version. However with acronyms you
generally only want the full form on first use and just the short form on
subsequent use. The following commands are provided to do that. The

singular form is obtained using;:

\acr { (label) }

The plural form is obtained using:

\acrpl {(label)}

119

\Acr

\Acrpl

\glsreset

\glsunset

\glsresetall

\glsunsetall

Note that, unlike the glossaries package, \acr isn’t the same as \gls.
With datagidx, \g1s always references the text field. There is no “first”
field.

Take care when using acronyms with beamer. Using overlays can
cause problems with first use expansions.

As a general rule, you're not supposed to capitalise the first letter of an
acronym (especially if it is displayed in small caps) but if you need to you
can use:

\Acr {(label) }

and

\Acrpl {(label)}

6.6.2 Unsetting and Resetting Acronyms

ou can reset a term so it’s marked as not used with:
Yo tat t’ ked t d with

\glsreset { (label)}

or you can unset a term so it’s marked as used with:

\glsunset {(label)}

You can reset all the terms defined in a given database using;:

\glsresetall {(dbname)}

or unset all the terms defined in a given database using:

\glsunsetall {(db name)}

where (db name) is the name of the database as supplied when the
database was defined using \newgidx.

120

6.7 Conditionals

You can test if a term exists using

\iftermexists
\iftermexists{(label)} { (true part)} {(false part)}
You can test if a term has been used using;:
\ifentryused
\ifentryused{(label)} { (true part)} { (false part)}
6.8 Displaying the Index or Glossary
The index or glossary can be displayed using
\printterms

\printterms [(options)]

You will need to run IXTEX at least twice to ensure your index/glossary is
up-to-date. The first run will only display any entries that have a “See”
field defined.

The optional argument (options) is a comma-separated list of
(key)=(value) options. Available keys:

database The name of the database (as given in \newgidx).

postdesc This may have the value dot (put a full stop after the
description) or none (don’t put a full stop after the description).

prelocation This indicates what to put before the location list. Available
values:
none Nothing.
enspace An en-space.
space An ordinary space.
dotfill A dotted line (\dotfil1l).
hfill Expandable space (\hfil1l).

location This indicates how to display the location list. Available values:
hide Don’t display the location list.
list Display the location list.

121

first Only display the first location in the list.
symboldesc How to format the symbol in relation to the description.
Available values:
symbol Display the symbol but not the description.
desc Display the description but not the symbol field.

(symbol) desc Display the symbol (if defined) in parentheses
followed by the description.

desc (symbol) Display the description followed by the symbol (if
defined) in parentheses.

symbol desc Display the symbol (if defined) followed by the
description.

desc symbol Display the description followed by the symbol (if
defined).

columns This should be a positive number that indicates the page
column layout. If the value is greater than 1, the multicols
environment is used (defined in the multicol package, which is
automatically loaded).

namecase Indicates whether any case change should be applied to the
entry’s name field. Available values:
nochange Don't apply a case change.
uc Convert the name to uppercase.
Ic Convert the name to lowercase.

firstuc Convert the first letter to uppercase (using \makefirstuc
defined in mfirstuc).

capitalise Capitalise initial letters of each word in the name (using
\capitalisewords defined in mfirstuc).

namefont The font changing command to apply to the name. (Include the
initial backslash.) Declarations may be used.

postname What to put after the name.
see Indicates how the cross-reference (given in the “See” field) should be

displayed. Available values:

comma Insert a comma followed by a space in front of the
cross-reference.

brackets Insert a space before the cross-reference and put the
cross-reference in parentheses.

122

dot Insert a full stop followed by a space in front of the
cross-reference.

space Insert a space before the cross-reference.
nosep Don’t insert anything before the cross-reference.

semicolon Insert a semi-colon followed by a space in front of the
cross-reference.

location Display the cross-reference in the same way as a location.

child Indicates whether child entries should have their name displayed.
Available values: named (display the child’s name) and noname
(don’t display the child’s name).

showgroups Boolean option that indicates whether or not to insert group
headings (and a group separator) between index groups, if
headings are supported by the given style. If no value is supplied,
true is assumed.

style The style to use. The value should be the name of the style.
Available styles are listed in subsection 6.8.1.

symbolwidth Some of the styles allow you to specify a width for the
symbol field. This width can be specified with this option. The
value will be ignored by some of the styles.

locationwidth Some of the styles allow you to specify a width for the
location field. This width can be specified with this option. The
value will be ignored by some of the styles.

childsort A boolean option that indicates whether or not the child entries
should be sorted. If true, the child entries are listed using the same
sort order as the sort applied to the database. If false, the child
entries are listed in the order they were defined. If the value is
missing, true is assumed.

heading The heading at the start of the index/glossary.
postheading What to put immediately after the heading.
sort How to sort the database. See subsection 6.8.2 for further details.

balance This is a boolean option that is only applied if columns is greater
than 1. If true, the columns are balanced. If false, the columns aren’t
balanced. If no value is specified, true is assumed.

condition This specifies a boolean condition (as used by \DTLforeach)
so you can display only those entries where the condition is met.

123

\DTLgidxChildSep

\DTLgidxPostChild

For example, to only display entries starting with “H” (not
including any entry that is just the letter “H"”) you can do:

\printterms[condition={\DTLisiopenbetween{\Name} {H}{I}}]

6.8.1 Index or Glossary Styles

The index or glossary style is given by the style key in the optional
argument of \newgidx or \printterms. The following styles are
available:

index The “index” style is a basic style for an index. This style accepts the
locationwidth and symbolwidth keys in \printterms. This is the
default style.

indexalign The “indexalign” style is similar to the “index” style but aligns
the descriptions.

align The “align” style aligns the fields. This style accepts the locationwidth
and symbolwidth keys in \printterms.

gloss The “gloss” style is a basic glossary style. This style uses

\DTLgidxChildSep

as the separator between child entries (defaults to a space) and

\DTLgidxPostChild

to indicate what to put after the list of child entries (defaults to
nothing).

dict The “dict” style is designed for dictionary-like glossaries. This
assumes a hierarchical structure where the top level entries have a
name. The next level is used to indicate a category (such as
“adjective” or “noun”). If there is only one meaning for the term,
this level also has a description. If there is more than one meaning,
each meaning should be a child of the category entry. Only third
level entries are numbered. No further levels are expected. The
symbol field is ignored.

If showgroups is set, the group headers will be placed in a \chapter
(if defined) or in a \section (if \chapter isn’t defined).

124

This style uses:

\DTLgidxCategoryNameFont

\DTLgidxCategoryNameFont { (text)}

The font used to display the name of the category (first child level).

\DTLgidxCategorySep

\DTLgidxCategorySep

The category separator. (Defaults to a space).

\DTLgidxSubCategorySep

\DTLgidxSubCategorySep

The category separator. (Defaults to a space).

\DTLgidxDictPostItem

\DTLgidxDictPostItem

Indicates what to do at the end of each top-level item. (Defaults to
\par).
The indentation is given by the length register

\datagidxdictindent

\datagidxdictindent

This value defaults to lem.

For additional commands that affect the style of the indexes or
glossaries, see the documented code datatool-code.pdf.

6.8.2 Sorting the Index or Glossary Database

By default the index/glossary databases are sorted according to the Sort
tield using the \dt lwordindexcompare handler (see section 5.8). Note
that the entire database is sorted, which is less efficient that using external
indexing applications, such as makeindex or xindy, which only sort the
terms that have been used in the document. In addition, the sorting

125

algorithm used by datatool is less efficient than that used by a
custom-built sorting and collation application.

The database is sorted at the start of \printterms according to the
value of the sort key supplied by \printterms. To completely suppress
the sorting, set this key to empty. Example:

\printterms[database=index, sort={}, showgroups=false]

Note that in the above, I also switched off the group headers as they
don’t make sense with an unsorted index or glossary.

If you want to use a different comparison handler, you can set the sort
key to the required sort command, where you can use

\DTLgidxCurrentdb

\DTLgidxCurrentdb

to indicate the current database.
For example, to sort using letter rather than word comparison:

\printterms[database=index,
sort={\dtlsort{Sort}{\DTLgidxCurrentdb}{\dtlletterindexcompare}}]

You may recall from earlier that the index/glossary databases have a
column labelled “Firstld”. This can be used if you want to sort the
database according to the order of usage. Example:

\printterms[database=index,
sort={\dtlsort{FirstId}{\DTLgidxCurrentdb} {\dtlcompare}}]

Note that here I've used the \dt1compare handler (which is the fastest
handler) as I'm only concerned with a numerical rather than a string
comparison.

The default value of the sort key is actually:

\dtlsort{Sort,FirstId}{\DTLgidxCurrentdb}{\dtlwordindexcompare}}

This means that entries with duplicate “Sort” fields are then sorted
according to use.

Optimization

If you have used xindy or makeindex, you'll be familiar with the
document creation process. The document is first compiled, then the
indexing application is run to sort and collate the entries, then the
document is compiled again (and possible once more). This involves two
(or three) KIEX runs and one sort and collate run. With the datagidx
package, the sorting and collation is done every IXIEX run. For a large
index, this can be quite slow. If you're not editing the index or glossary,

126

you might prefer not to have to keep sorting the database whenever you
update the document. To assist this, datagidx provides the optimize
package option. This may take the following values:

off Don’t use the optimize facility. (The index/glossary databases will be
sorted every run, unless the sort is switched off by setting the sort
key to empty.)

low Use the “low” optimize setting. This only sorts the index/glossary
databases every other run. (Assuming that the sorting is done via
the \printtermssort key rather than explicitly using \dt1sort
or \DTLsort somewhere else in the document.) Don’t use this
option if sorting the databases makes the document out-of-date.
(For example, the group headers use sectioning commands.)

high Use the “high” optimize setting. This sorts the index/glossary
databases on the first run, then writes the sorted databases to
external files, which are read in on subsequent runs. Again this
assumes that the sorting is done via the \printtermssort key.
Don’t use this option if you want to edit the index/glossary
database.

6.9 Package Options

The following package options are available for datagidx:
optimize Sets the optimization. (See section 6.8.2.)

columns Sets the default number of columns to use for the indexes or
glossaries. (See section 6.8.)

child Sets whether or not to show the name in child entries, where the
style supports this option. (See section 6.8.)

namecase Sets the case change for the entry’s name. (See section 6.8.)
namefont Sets the font for the entry’s name. (See section 6.8.)
postname Indicates what to put after the entry’s name. (See section 6.8.)

postdesc Indicates what to put after the entry’s description. (See
section 6.8.)

prelocation Indicates what to put before the entry’s location. (See
section 6.8.)

location Indicates how to display the entry’s location. (See section 6.8.)

127

see Indicates how to display the entry’s cross-reference list. (See
section 6.8.)

symboldesc Indicates how to display the entry’s symbol in relation to the
description. (See section 6.8.)

compositor Sets the location compositor. (See section 6.2.)
draft Displays additional information, such as target names.
final Hides the draft information.

verbose Use datatool’s verbose mode.

nowarn A boolean option that suppresses datagidx’s rerun warnings.

Example 22 (Creating an Index)

In this document, I have used the datagidx package and the hyperref
package. In the preamble, I have the following:

\usepackage{datagidx}
\usepackage [colorlinks] {hyperref}

\newgidx{index}{Index}% define a database for the index
\DTLgidxSetDefaultDB{index}% set this as the default

\newterm{mac\’edoine}
\newterm{macram\’e}
\newterm[label=elite] {{\’e}lite}
\newterm{reptile}
\newterm[seealso={reptile}]{crocodylian}

\newterm
(%
parent=crocodylian

]

{crocodile}

\newterm
[%
parent=crocodylian

]
{alligator}

\newterm
(%

parent=crocodylian,
description={ (also cayman) }

128

]

{caiman}

\newterm|[see={caiman}] {cayman}

Now here’s some code to go in the document:

Here are some words containing accents: \gls{macedoine},

\gls{macrame} and \gls{elite}. \Gls{elite} requires extra care as it
starts with an accented letter. A \gls{crocodylian} is a family of
\glspl{reptile} consisting of \glspl{crocodile}, \glspl{alligator} and
\glspl{caiman}.

This produces the following:

Here are some words containing accents: macédoine, macramé and
élite. Elite requires extra care as it starts with an accented letter. A
crocodylian is a family of reptiles consisting of crocodiles, alligators and
caimans.

The index can then be displayed using:

\printterms [heading={\sectionx},database=index]

This requires two runs to ensure the index is up-to-date. The resulting
index is as follows:

Index

cayman see caiman see also reptile

crocodylian 129 élite 129
alligator 129 macédoine 129
caiman (also cayman) 129 macramé 129
crocodile 129 reptile 129

Here’s the code if you want to add the letter groups (I've also added a
dotted line before the location):

\printterms
[
heading={\sectionx*},
database=index,
prelocation=dotfill,
showgroups

]

which produces:

Index

129

C
cayman see caiman
crocodylian 129
alligator 129
caiman (also cayman) 129
crocodile 129

see also reptile

élite 129
M

macédoine 129

macramé 129
R

reptile 129

130

\DTLpiechart

7 Pie Charts (datapie package)

The datapie package is not loaded by the datatool package, so you need to
explicitly load datapie if you want to use any of the commands defined in
this section. You will also need to have the pgf/tikz packages installed.
The datapie package may be given the following options:

color=datapie Colour option (default).
gray=datapie Grey scale option.

rotateinner=datapie Rotate inner labels so that they are aligned with the
pie chart radial axis.

norotateinner=datapie Don’t rotate inner labels (default).

rotateouter=datapie Rotate outer labels so that they are aligned with the
pie chart radial axis.

norotateouter=datapie Don’t rotate outer labels (default).

Numerical information contained in a database created by the datatool
package can be converted into a pie chart using

\DTLpiechart [(condition)] { (settings list) } { (db name) } { (values) }

where (db name) is the name of the database, and (condition) has the same
form as the optional argument to \DTLforeach described in section 5.4.
If (condition) is false, that information is omitted from the construction of
the pie chart. The argument (values) is a comma separated list of
(cmd)=(key) pairs, the same as that required by the penultimate
argument of \DTLforeach. The (settings list) is a comma separated list
of (setting)=(value) pairs, where (setting) can be any of the following;:

variable This specifies the control sequence to use that contains the value
used to construct the pie chart. The control sequence must be one of
the control sequences to appear in the assignment list (values). This
setting is required.

start This is the starting angle of the first segment. The value is 0 by
default.

131

radius This is the radius of the pie chart. The default value is 2cm.

innerratio The distance from the centre of the pie chart to the point where
the inner labels are placed is given by this value multiplied by the
ratio. The default value is 0.5.

outerratio The distance from the centre of the pie chart to the point where
the outer labels are placed is given by this value multiplied by the
ratio. The default value is 1.25.

cutawayratio The distance from the centre of the pie chart to the point of
cutaway segments is given by this value multiplied by the ratio.
The default value is 0.2.

inneroffset This is the absolute distance from the centre of the pie chart to
the point where the inner labels are placed. You should use only
one or other of innerratio and inneroffset, not both. If you also want to
specify the radius, you must use ratio before inneroffset. If omitted,
the inner offset is obtained from the ratio multiplied by the innerratio
value.

outeroffset This is the absolute distance from the centre of the pie chart to
the point where the outer labels are placed. You should use only
one or other of outerratio and outeroffset, not both. If you also want to
specify the radius, you must use ratio before outeroffset. If omitted,
the outer offset is obtained from the ratio multiplied by the outerratio
value.

cutawayoffset This is the absolute distance from the centre of the pie
chart to the point of the cutaway segments. You should use only
one or other of cutawayratio and cutawayoffset, not both. If you also
want to specify the radius, you must use ratio before cutawayoffset. If
omitted, the cutaway offset is obtained from the ratio multiplied by
the cutawayratio value.

cutaway This is a list of cutaway segments. This should be a comma
separated list of individual numbers, or number ranges (separated
by a dash). For example cutaway={1, 3} will separate the first
and third segments from the rest of the pie chart, offset by the value
of the cutawayoffset setting, whereas cutaway={1-3} will separate
the first three segments from the rest of the pie chart. If omitted, the
pie chart will be whole.

innerlabel The value of this is positioned in the middle of each segment
at a distance of inneroffset from the centre of the pie chart. The
default is the same as the value of variable.

132

outerlabel The value of this is positioned at a distance of outeroffset from
the centre of the pie chart. The default is empty.

rotateinner This is a boolean setting, so it can only take the values t rue
and false. If the value is omitted t rue is assumed. If true, the
inner labels are rotated along the spokes of the pie chart, otherwise
the inner labels are not rotated. There are analogous package
options rotateinner=datapie and norotateinner=datapie.

rotateouter This is a boolean setting, so it can only take the values t rue
and false. If the value is omitted t rue is assumed. If true, the
outer labels are rotated along the spokes of the pie chart, otherwise
the outer labels are not rotated. There are analogous package
options rotateouter=datapie and norotateouter=datapie.

Example 23 (A Pie Chart)

This example loads data from a file called fruit .csv which contains
the following:

Name, Quantity
"Apples", 30
"Pears", 25

"Lemons, Limes",40.5
"Peaches",34.5
"Cherries", 20

First load the data:

\DTLloaddb{fruit} {fruit.csv}
Now create a pie chart in a figure:

\begin{figure} [htbp]

\centering
\DTLpiechart{variable=\quantity}{fruit} {\name=Name, \quantity=Quantity}
\caption{A pie chart}

\end{figure}

This creates Figure 7.1. The colours used are the defaults. See example 27
for an example that changes the default colours.

There are no outer labels by default, but they can be set using the
outerlabel setting. The following sets the outer label to the value of the
Name key:

\begin{figure} [htbp]

\centering

\DTLpiechart{variable=\quantity, outerlabel=\name} {fruit}{$%
\name=Name, \quantity=Quantity}

\caption{A pie chart (outer labels set)}

\end{figure}

133

Figure 7.1: A pie chart

This creates Figure 7.2.

Pears

Apples

Lemons,Limes

Cherries

Peaches

Figure 7.2: A pie chart (outer labels set)

You may prefer the labels to be rotated. The following switches on the
rotation for the inner and outer labels:

\begin{figure} [htbp]

\centering
\DTLpiechart{variable=\quantity,outerlabel=\name, %
rotateinner, rotateouter} {fruit}{%

\name=Name, \quantity=Quantity}

\caption{A pie chart (rotation enabled)}
\end{figure}

This creates Figure 7.3.

134

e}
®
3

w

A&

Lemons,Limes

G
b@prl-es

sayoesJ

Figure 7.3: A pie chart (rotation enabled)

Example 24 (Separating Segments from the Pie Chart)

You may want to separate one or more segments from the pie chart,
perhaps to emphasize them. You can do this using the cutaway setting.
The following separates the first and third segments from the pie chart:

\begin{figure} [htbp]

\centering
\DTLpiechart{variable=\quantity,outerlabel=\name, %
cutaway={1,3}} {fruit}{%

\name=Name, \quantity=Quantity}

\caption{A pie chart with cutaway segments}
\end{figure}

This produces Figure 7.4.
Alternatively I can specify a range of segments. The following
separates the first two segments:

\begin{figure} [htbp]

\centering

\DTLpiechart{variable=\quantity, outerlabel=\name, %
cutaway={1-2}}{fruit}{%

\name=Name, \quantity=Quantity}

\caption{A pie chart with cutaway segments (\texttt{cutaway=\{1-2\}})}
\end{figure}

This produces Figure 7.5.

135

Pears

Apples

Lemons,Limes

Cherries

Peaches

Figure 7.4: A pie chart with cutaway segments

Pears

Apples

Lemons,Limes

Cherries

Peaches

Figure 7.5: A pie chart with cutaway segments (cutaway={1-2})

136

Notice the difference between Figure 7.5 and Figure 7.6 which was
produced using:

\begin{figure} [htbp]

\centering

\DTLpiechart{variable=\quantity,outerlabel=\name, %
cutaway={1,2}}{fruit}{%s

\name=Name, \quantity=Quantity}

\caption{A pie chart with cutaway segments (\texttt{cutaway=\{1,2\}})}
\end{figure}

Pears

Apples

Lemons,Limes

Cherries

Peaches

Figure 7.6: A pie chart with cutaway segments (cutaway={1,2})

7.1 Pie Chart Variables

\DTLpievariable
\DTLpievariable
This command is set to the variable given by the variable setting in the
(settings list) argument of \DTLpiechart. The innerlabel is set to
\DTLpievariable by default.
\DTLpiepercent

\DTLpiepercent

This command is set to the percentage value of \DTLpievariable. The
percentage value is rounded to (1) digits, where (1) is the value of the
DTLpieroundvar I&TEX counter DTLpieroundvar.

137

Example 25 (Changing the Inner and Outer Labels)

This example uses the database defined in example 23. The inner label
is now set to the percentage value, rather than the actual value, and the
outer label is set to the name with the actual value in parentheses.

\begin{figure} [htbp]

\centering

\DTLpiechart{variable=\quantity, %
innerlabel={\DTLpiepercent\%}, %
outerlabel={\name\ (\DTLpievariable) }}{fruit}{%
\name=Name, \quantity=Quantity}

\caption{A pie chart (changing the labels)}
\end{figure}

This produces Figure 7.7.

Pears (25)

Apples (30)

Lemons,Limes (40.5)

23.0% Cherries (20)

Peaches (34.5)

Figure 7.7: A pie chart (changing the labels)

7.2 Pie Chart Label Formatting

\DTLdisplayinnerlabel

\DTLdisplayinnerlabel {({text)}

This governs how the inner label is formatted, where (text) is the text of
the inner label. The default is to just do (text).

\DTLdisplayouterlabel

138

\DTLdisplayouterlabel {(text)}

This governs how the outer label is formatted, where (text) is the text of
the outer label. The default is to just do (text).

Example 26 (Changing the Inner and Outer Label Format)

This example extends example 25. The inner and outer labels are now
both typeset in a sans-serif font:

\begin{figure} [htbp]

\centering

\renewcommand* {\DTLdisplayinnerlabel} [1]{\textsf{#1}}
\renewcommand* {\DTLdisplayouterlabel} [1]{\textsf{#1}}
\DTLpiechart{variable=\quantity, %
innerlabel={\DTLpiepercent\%}, %

outerlabel={\name\ (\DTLpievariable)}}{fruit}{$%
\name=Name, \quantity=Quantity}

\caption{A pie chart (changing the label format) }
\end{figure}

This produces Figure 7.8.

Pears (25)

Apples (30)

Lemons,Limes (40.5)

Cherries (20)

Peaches (34.5)

Figure 7.8: A pie chart (changing the label format)

7.3 Pie Chart Colours

The datapie package predefines colours for the first eight segments of the
pie chart. If you require more than eight segments or if you want to
change the default colours, you will need to use

139

\DTLsetpiesegmentcolor

\DTLsetpiesegmentcolor{(n)} {(color)}

The first argument (1) is the segment index (starting from 1), and the
second argument (color) is a colour specifier as used in commands such
as \color.

It is a good idea to set the colours so that each segment colour is
somehow relevant to whatever the segment represents. For example, in
the previous examples of pie charts depicting fruit, some of default
colours were inappropriate. Whilst red is appropriate for apples and
green is appropriate for pears, blue doesn’t really correspond to lemons
or limes.

\DTLdopiesegmentcolor

\DTLdopiesegmentcolor(n)

This sets the current text colour to that of the (n)th segment.

\DTLdocurrentpiesegmentcolor

\DTLdocurrentpiesegmentcolor

This sets the current text colour to that of the current pie segment. This
command may only be used within a pie chart, or within the body of
\DTLforeach

\DTLpieoutlinecolor

\DTLpieoutlinecolor

This sets the outline colour for the pie chart. The default is black.

\DTLpieoutlinewidth

\DTLpieoutlinewidth

This is a length that governs the line width of the outline. The default
value is Opt, but can be changed using \ set length. The outline is only
drawn if \DTLpieoutlinewidth is greater than Opt.

Example 27 (Pie Segment Colours)

This example extends example 26. It sets the outline thickness to 2pt,
and the outer label is now set in the same colour as the fill colour of the
segment to which it belongs. The third segment (lemons and limes) is set
to yellow and the fourth segment (peaches) is set to pink. In addition, a
legend is created using \DTLforeach.

140

\begin{figure} [htbp]

\centering
\setlength{\DTLpieoutlinewidth} {2pt}
\DTLsetpiesegmentcolor{3}{yellow}
\DTLsetpiesegmentcolor{4}{pink}
\renewcommand~* {\DTLdisplayinnerlabel} [1]
\renewcommand«* { \DTLdisplayouterlabel} [1]
\DTLdocurrentpiesegmentcolor
\textsf{\shortstack{#1}}}
\DTLpiechart{variable=\quantity, %
innerlabel={\DTLpiepercent\%}, %
outerlabel={\name\\ (\DTLpievariable) }}{fruit}{%
\name=Name, \quantity=Quantity}

\begin{tabular} [b] {11}
\DTLforeach{fruit} {\name=Name} {\DTLiffirstrow{}{\\}%
\DTLdocurrentpiesegmentcolor\rule{10pt}{10pt} &

\name

}

\end{tabular}

\caption{A pie chart (using segment colours and outline) }
\end{figure}

\textsf{#1}}

)
°

{
{

This produces Figure 7.9. (The format of the outer label has been changed
to use \shortstack to prevent the outer labels from taking up so much
horizontal space. The outerlabel setting has also been modified to use \\
after the name to move the percentage value onto the next row.)

7.4 Adding Extra Commands Before and After the Pie
Chart

The pie charts created using \DTLpiechart are placed inside a tikzpicture
environment (defined by the tikz package).

\DTLpieatbegintikz

\DTLpieatendtikz

\DTLpieatbegintikz

The macro \DTLpieatbegintikz is called at the start of the tikzpicture
environment, allowing you to change the tikzpicture settings. By default
\DTLpieatbegintikz does nothing, but you can redefine it to, say,
scale the pie chart (but be careful not to distort the chart).

\DTLpieatendtikz

141

Pears
(25)

Apples
(30)

Cherries
(20)

B Apples

I Pears
Lemons,Limes
Peaches

B Cherries

Figure 7.9: A pie chart (using segment colours and outline)

The macro \DTLpieatendtikz is called at the end of the tikzpicture
environment, allowing you add additional graphics to the pie chart. This
does nothing by default.

Example 28 (Adding Information to the Pie Chart)

This example modifies example 23. It redefines \DTLpieatendtikz
to add an annotated arrow.

\begin{figure} [htbp]

\centering
\renewcommand* {\DTLpieatendtikz} {%
\draw[<-] (45:1.5cm) —— (40:2.5cm)node[right] {Apples};}

\DTLpiechart{variable=\quantity}{fruit}{%
\name=Name, \quantity=Quantity}
\caption{An annotated pie chart}
\end{figure}

This produces Figure 7.10. (Note that the centre of the pie chart is the
origin of the TikZ picture.)

142

Apples

Figure 7.10: An annotated pie chart

143

\DTLplot

8 Scatter and Line Plots (dataplot
package)

The dataplot package provides commands for creating scatter or line plots
from databases. It uses the pgf/TikZ plot handler library to create the
plots. See the pgf manual for more detail on pgf streams and plot handles.
The dataplot package is not loaded by datatool so if you want to use it you
need to load it explicitly using \usepackage {dataplot}.

\DTLplot [{condition)] {(db list)} { (settings) }

This command creates a plot (inside a tikzpicture environment) of all the
data given in the databases listed in (db list), which should be a comma
separated list of database names. The optional argument (condition) is the
same as that for \DTLforeach. The (settings) argument is a comma
separated list of (setting)=(value) pairs. There are two settings that must
be specified x and y. The other settings are optional. Note that any value
that contains a comma, must be enclosed in braces. For example
colors={red, cyan,blue}. Note where any setting requires a
number, or list of numbers (such as bounds) the number must be supplied
in standard decimal notation (i.e. no currency, no number groups, and a
full stop as the decimal point). Available settings are as follows:

x The database key that specifies the x co-ordinates. This setting is
required.

y The database key that specifies the y co-ordinates. This setting is
required.

markcolors A comma separated list of colour names for the markers. An
empty value will use the current colour.

linecolors A comma separated list of colour names for the plot lines. An
empty value will use the current colour.

colors A comma separated list of colour names for the lines and markers.

marks A comma separated list of code to generate plot marks. (This
should typically be a list of \pgfuseplotmark commands, see the

144

pgf manual for further details.) You may use \relax as an element
of the list to suppress markers for the corresponding plot. For
example: marks={\pgfuseplotmark{o}, \relax} will use an
open circle marker for the first database, and no markers for the
second database listed in (db list).

lines A comma separated list of line style settings. (This should typically
be a list of \pgfsetdash commands, see the pgf manual for further
details on how to set the line style.) An empty value will use the
current line style. You may use \relax as an element of the list to
suppress line for the corresponding plot. For example:
lines={\relax, \pgfsetdash{} {0pt}} will have no lines for
the first database, and a solid line for the second database listed in
(db list).

width The width of the plot. This must be a length. The plot width does
not include outer tick marks or labels.

height The height of the plot. This must be a length. The plot height does
not include outer tick marks or labels.

style This setting governs whether to use lines or markers in the plot,
and may take one of the following values: both (lines and
markers), 1ines (only lines) or markers (only markers). The
default is markers.

axes This setting governs whether to display the axes, and may take one
of the following values: both, x, y or none. If no value is specified,
both is assumed.

box This setting governs whether or not to surround the plot in a box. It
is a boolean setting, taking only the values t rue and false. If no
value is specified, t rue is assumed.

xtics This setting governs whether or not to display the x tick marks. It is
a boolean setting, taking only the values t rue and false. If no
value is specified t rue is assumed. If the axes setting is set to both
or x, this value will automatically be set to t rue, otherwise it will
be set to false.

ytics This setting governs whether or not to display the y ticks. Itis a
boolean setting, taking only the values t rue and false. If no
value is specified t rue is assumed. If the axes setting is set to both
or y, this value will automatically be set to t rue, otherwise it will
be set to false.

145

xminortics This setting governs whether or not to display the x minor
tick marks. It is a boolean setting, taking only the values true and
false. If no value is specified t rue is assumed. This setting also
sets the x major tick marks on if the value is t rue.

yminortics This setting governs whether or not to display the y minor
tick marks. It is a boolean setting, taking only the values true and
false. If no value is specified t rue is assumed. This setting also
sets the y major tick marks on if the value is t rue.

xticdir This sets the x tick direction, and may only take the values in or
out.

yticdir This sets the y tick direction, and may only take the values in or
out.

ticdir This sets the x and y tick direction, and may only take the values
in or out.

bounds The value must be in the form (min x), (min y), (max x), (max y).
This sets the graph bounds to the given values. If omitted the
bounds are computed from the maximum and minimum values of
the data. For example

\DTLplot{datal,data2} {x=Height, y=Weight, bounds={0,0,10,20}}

Note that the bounds setting overrides the minx, maxx, miny and maxy
settings.

minx The value is the minimum value of the x axis.
miny The value is the minimum value of the y axis.
maxx The value is the maximum value of the x axis.
maxy The value is the maximum value of the y axis.

xticpoints The value must be a comma separated list of decimal numbers
indicating where to put the x tick marks. If omitted, the x tick
marks are placed at equal intervals along the x axis such that each
interval is not less than the length given by \DTLmintickgap.
This setting overrides xticgap.

xticgap This value specifies the gap between the x tick marks.

yticpoints The value must be a comma separated list of decimal numbers
indicating where to put the y tick marks. If omitted, the y tick
marks are placed at equal intervals along the y axis such that each
interval is not less than the length given by \DTLmintickgap.
This setting overrides yticgap.

146

yticgap This value specifies the gap between the y tick marks.

grid This is a boolean value that specifies whether or not to display the
grid. If no value is given, t rue is assumed. The minor grid lines
are only displayed if the minor tick marks are set.

xticlabels The value must be a comma separated list of labels for each x
tick mark. If omitted, the labels are the value of the x tick position,
rounded (n) digits after the decimal point, where (n) is given by
the value of the counter DTLplotroundXvar.

yticlabels The value must be a comma separated list of labels for each y
tick mark. If omitted, the labels are the value of the y tick position,
rounded (n) digits after the decimal point, where (n) is given by
the value of the counter DTLplotroundYvar.

xlabel The value is the label for the x axis. If omitted, the axis has no
label.

ylabel The value is the label for the y axis. If omitted, the axis has no
label.

legend This setting governs whether or not to display the legend, and
where it should be displayed. It may take one of the following
values none (don’t display the legend), north, northeast, east,
southeast, south, southwest, west or northwest. If the
value is omitted, northeast is assumed.

legendlabels The value must be a comma separated list of labels for the
legend. If omitted, the database names are used.

Example 29 (A Basic Graph)

Suppose you have a file called groupa . csv that contains the
following:
Height, Weight
.54,48.0
.55,45.
.56,58.
.56,50.
.57,46.
.58,48.
.59, 56.
.59, 58.
.60,60.
.62,56.

[= T = O = W S G B G S Y
W w0 WwoN O

147

First load this into a database called groupa:
\DTLloaddb{groupa} {groupa.csv}
The data can now be converted into a scatter plot as follows:

\begin{figure} [htbp]

\centering

\DTLplot {groupa} {x=Height, y=Weight}
\caption{A scatter plot}
\end{figure}

This produces Figure 8.1.

60.90 o
59.35
57.80 °
56.25 - o
5470
53.15
51.60
50.05 F ©

48.50 o
46.95

o

4540 | | | | | | | | | J
154 155 156 156 157 158 159 160 1.60 1.61 1.62

Figure 8.1: A scatter plot

Alternatively, you can use the style setting to change it into a line plot:

\begin{figure} [htbp]

\centering

\DTLplot {groupa} {x=Height, y=Weight, style=lines}
\caption{A line plot}

\end{figure}

148

60.90

59.35

57.80

56.25

54.70

53.15

51.60

50.05

48.50

46.95

45.40

| | | | | | | | | J

154 155 156 156 157 158 159 1.60 1.60 1.61 1.62

Figure 8.2: A line plot

149

This produces Figure 8.2.

Example 30 (Plotting Multiple Data Sets)

In this example, I shall use the database called groupa defined in
example 29, and another database called groupb which is loaded from
the file groupb . csv which contains the following:

Height,Weight

1.54,48.4
1.54,42.0
1.55,64.0
1.56,58.2
1.56,49.0
1.57,40.3
1.58,51.5
1.58,63.1
1.59,74.9
1.59,59.3

First load this into a database called groupb:

\DTLloaddb{groupb} {groupb.csv}

I can now plot both groups in the same graph, but I want a smaller graph
than Figure 8.1 and Figure 8.2, so I am going to set the plot width and
height to 3in:

\begin{figure} [htbp]

\centering

\DTLplot{groupa, groupb} {x=Height, y=Weight,width=3in, height=3in}
\caption{A scatter plot}

\end{figure}

This produces Figure 8.3.

Now let’s add a legend using the legend setting, with the legend labels
Group Aand Group B, and set the x tick intervals using xticpoints
setting. I am also going to set the x axis label to Height (m) and they
axis label to Weight (kg), and place a box around the plot.

\begin{figure} [htbp]

\centering

\DTLplot {groupa, groupb} {x=Height, y=Weight,

width=3in, height=3in, legend, legendlabels={Group A,Group B},
xlabel={Height (m)},ylabel={Weight (kqg) },box,
xticpoints={1.54,1.55,1.56,1.57,1.58,1.59,1.60,1.61,1.62}}
\caption{A scatter plot}

\end{figure}

150

Weight (kg)

7490 r
7144
6798
64.52
61.06 o
57.60 © ©

5414 -
50.68 |- o
4722
43.76 -

4030 | | | | | | | | | J
1.541.551.56 1.56 1.57 1.58 1.59 1.60 1.60 1.61 1.62

Figure 8.3: A scatter plot

74.90 T T T T T T

7144 - o Group A | 7
6798 L Group B

6452]
61.06 o .
57.60 r © © =
5414 r]
50.68 o .
4722]
43.76 -

4030 | | | | | | |
154 155 156 157 158 159 1.60 1.61 1.62

Height (m)

Figure 8.4: A scatter plot

151

This produces Figure 8.4.

8.1 Adding Information to the Plot

The datatool package provides two hooks used at the beginning and end
of the tikzpicture environment:

\DTLplotatbegintikz
\DTLplotatbegintikz

and

\DTLplotatendtikz

\DTLplotatendtikz

They are both defined to do nothing by default, but can be redefined to
add commands to the image. The unit vectors are set prior to using these
hooks, so you can use the same co-ordinates as those in the data sets.
However, to reduce the problem of exceeding TEX’'s maximum

dimension, \DTLplot scales the plot which may distort plot marks. To
get around this use

\dtlplothandlermark
\dt1lplothandlermark{{pgf code)}

instead of \pgfplothandlermark { (pgf code)}. (See example 33.) Note
that \dt1lplothandlermark is only intended for use within the
definition of \DTLplotatbegintikz or \DTLplotatendtikz. If used
elsewhere it will produce a warning and act as though you’d just used
\pgfplothandlermark.

\DTLaddtoplotlegend

\DTLaddtoplotlegend{(marker)} { (line style)} { (text)}

This adds a new row to the plot legend where (marker) is code to produce
the marker, (line style) is code to set the line style and (text) is a textual
label. You can use \relax to suppress the marker or line. For example:

\DTLaddtoplotlegend{\pgfuseplotmark{x}}{\relax}{Some Data}

Note that the legend is plotted before \DTLplotatendtikz, so if you
want to add information to the legend you will need to do the in
\DTLplotatstarttikz.

152

Example 31 (Adding Information to a Plot)

Returning to the plots created in example 30, suppose I now want to
annotate the plot, say I want to draw your notice to a particular point,
say the point (1.58,48.3), then I can redefine \DTLplotatendtikz to
draw an annotated arrow to that point:

\renewcommandx* {\DTLplotatendtikz}{$%
\draw[<-,line width=1lpt] (1.58,48.3) —- (1.6,43)
node [below] {interesting point};

}

So Figure 8.4 now looks like Figure 8.5. (Obviously,
\DTLplotatendtikz needs to be redefined before using \DTLplot.)

74.90 x x x x \ x w
7144 - o Group A | 7
6798 |- Group B i
64.52 _
go 61.06 o -
= 5760 - © © >
D0 ©
S 5414 .
50.68 - o i
4722 ¢ \ -
o O
43.76 _
4030 | | | | interesting point

1.54 155 156 157 158 159 1.60 1.61 1.62
Height (m)

Figure 8.5: A scatter plot

8.2 Global Plot Settings

8.2.1 Lengths

This section describes the lengths that govern the appearance of the plot
created using \DTLplot. These lengths can be changed using

153

\DTLplotwidth

\DTLplotheight

\DTLticklength

\DTLminortickleng

\DTLticklabeloffs

\DTLmintickgap

\DTLlegendxoffset

\DTLlegendyoffset

\setlength.

\DTLplotwidth

This length governs the length of the x axis. Note that the plot width
does not include any outer tick marks or labels. The default value is 4in.

\DTLplotheight

This length governs the length of the y axis. Note that the plot height
does not include any outer tick marks or labels. The default value is 4in

\DTLticklength

This governs the length of the tick marks. The default value is 5pt.

th

\DTLminorticklength

This governs the length of the minor tick marks. The default value is 2pt.

et

\DTLticklabeloffset

This governs the distance from the axis to the tick labels. The default
value is 8pt.

\DTLmintickgap

This is the minimum distance allowed between tick marks. If the plot
width or height is less than this distance there will only be tick marks at
either end of the axis. The default value is 20pt.

\DTLlegendxoffset

This is the horizontal distance from the border of the plot to the outer
border of the legend. The default value is 10pt.

\DTLlegendyoffset

154

DTLplotroundXvar

DTLplotroundYvar

\DTLplotmarks

This is the vertical distance from the border of the plot to the outer border
of the legend. The default value is 10pt.
8.2.2 Counters

These counters govern the appearance of plots created using \DTLplot.
The value of the counters can be changed using \setcounter.

DTLplotroundXvar

Unless you specify your own tick labels, the x tick labels will be given by
the tick points rounded to (n) digits after the decimal point, where (1) is
the value of the counter DTLplotroundXvar.

DTLplotroundYvar

Unless you specify your own tick labels, the y tick labels will be given by
the tick points rounded to (n) digits after the decimal point, where (1) is
the value of the counter DTLplotroundYvar.

8.2.3 Macros

These macros govern the appearance of plots created using \DTLplot.
They can be changed using \ renewcommand.

\DTLplotmarks

This must be a comma separated list of pgf code to create the plot marks.
\DTLplot cycles through this list for each database listed. The pgf
package provides convenient commands for generating plots using
\pgfuseplotmark. See the pgf manual for more details.

\DTLplotmarkcolors

\DTLplotlines

\DTLplotmarkcolors

This must be a comma separated list of defined colours to apply to the
plot marks. \DTLplot cycles through this list for each database listed. If
this macro is set to empty, the current colour will be used instead.

\DTLplotlines

155

This must be a comma separated list of pgf code to set the style of the plot
lines. \DTLplot cycles through this list for each database listed. Dash
patterns can be set using \pgfsetdash, see the pgf manual for more
details. If \DTLplotlines is set to empty the current line style will be
used instead.

\DTLplotlinecolors

\DTLplotlinecolors

This must be a comma separated list of defined colours to apply to the
plot lines. \DTLplot cycles through this list for each database listed. If
this macro is set to empty, the current colour will be used instead. The
default is the same as \DTLplotmarkcolors

\DTLXAxisStyle

\DTLXAxisStyle

This governs the style of the x axis. It is passed as the optional argument
to the TikZ \draw command. By default it is just — which is a solid line
style with no start or end arrows. The x axis line starts from the bottom
left corner of the plot and extends to the bottom right corner of the plot.
So if you want the x axis to have an arrow head at the right end, you can
do:

\renewcommand* { \DTLXAxisStyle}{->}

\DTLYAxisStyle

\DTLYAxisStyle

This governs the style of the y axis. It is analogous to \DTLXAxisStyle
described above.

\DTLmajorgridstyle

\DTLmajorgridstyle

This specifies the format of the major grid lines. It may be set to any TikZ
setting that you can pass to the optional argument of \draw. The default
value is color=gray, - which indicates a grey solid line.

\DTLminorgridstyle

\DTLminorgridstyle

This specifies the format of the minor grid lines. It may be set to any TikZ
setting that you can pass to the optional argument of \draw. The default

156

\DTLformatlegend

\DTLplotstream

valueis color=gray, loosely dotted which indicates a grey dotted
line.

\DTLformatlegend{ (legend)}

This formats the entire legend, which is passed as the argument. The
default is to set the legend with a white background, a black frame.

8.3 Adding to a Plot Stream

\DTLplotstream[(condition)] { (db name)} { (x key) } { (y key) }

This adds points to a stream from the database called (db name) where
the x co-ordinates are given by the key (x key) and the y co-ordinates are
given by the key (y key). (\DTLconverttodecimal is used to convert
locale dependent values to a standard decimal that is recognised by the
pgf package.) The optional argument (condition) is the same as that for
\DTLforeach

Example 32 (Adding to a Plot Stream)

Suppose you have a CSV file called data . csv containing the
following:

14

14
14
4

R NP O X
U O R oK

.5
,0.3

First load the file into a database called data:

\DTLloaddb{data} {data.csv}

Now create a figure containing this data:

\begin{figure} [tbhp]

\centering

\begin{tikzpicture}
\pgfplothandlermark{\pgfuseplotmark{o}}
\pgfplotstreamstart
\DTLplotstream{data}{x}{y}%
\pgfplotstreamend

\pgfusepath{stroke}

157

\end{tikzpicture}
\caption{Adding to a plot stream}
\end{figure}

This produces Figure 8.6.

(0]

Figure 8.6: Adding to a plot stream

Example 33 (Plotting Multiple Keys in the Same Database)

Suppose I have conducted two time to growth experiments. For each
experiment, I have recorded the log count at set times, and I have
recorded this information in the same data file called, say, growth.csv
which contains the following:

Time, Experiment 1,Experiment 2
0,3.73,3.6
23,3.67,3.7
60,4.9,3.8

I can load the data into a database using:

\DTLloaddb{growth} {growth.csv}

However, I'd like to plot both results on the same graph. Since they are
contained in the same database, I can’t use the method I used in
example 30. Instead I can use a combination of \DTLplot and
\DTLplotstream:

\begin{figure} [tbhp]
\centering

% compute bounds
\DTLminforkeys{growth}{Time} {\minX}
\DTLminforkeys{growth} {Experiment 1,Experiment 2}{\minY}
\DTLmaxforkeys{growth} {Time} { \maxX}
\DTLmaxforkeys{growth} {Experiment 1,Experiment 2} {\maxY}
% round x tick labels to 1 d.p.
\setcounter{DTLplotroundXvar} {1}

% redefine \DTLplotatbegintikz to plot the data for Experiment 1
\renewcommand~* {\DTLplotatbegintikz} {$%

% set plot mark

\dtlplothandlermark{\color{green}\pgfuseplotmark{x}}

158

[)

% start plot stream

\pgfplotstreamstart

% add data from Experiment 1 to plot stream
\DTLplotstream{growth} {Time} {Experiment 1}%
% end plot stream

\pgfplotstreamend

% stroke path

\pgfusepath{stroke}

% add information to legend (no line is require so use \relax)
\DTLaddtoplotlegend{\color{green}%
\pgfuseplotmark{x}}{\relax}{Experiment 1}

}

[)

% now plot the data for Experiment 2
\DTLplot{growth} {x=Time, y=Experiment 2, legend,
width=31in, height=3in,bounds={\minX, \minY, \maxX, \maxY},
xlabel={Time},ylabel={Log Count},
legendlabels={Experiment 2}}

\caption{Time to growth data}

\end{figure}

This produces Figure 8.7. Notes:

¢ Iredefined \DTLplotatbegintikz in order to add the new plot
to the legend, since \DTLplotatendtikz is used after the legend
is plotted. The x and y unit vectors are set before
\DTLplotatbegintikz so I don’t need to worry about the
co-ordinates, however I've had to use \dt lplothandlermark
instead of \pgfplothandlermark to prevent the plot marks from
being distorted.

e [have used \DTLminforkeys and \DTLmaxforkeys to
determine the bounds since \DTLplot won’t take the data for
Experiment 1 into account when computing the bounds.

159

Log Count

49
4.8
4.6
4.5
44
43
4.1
4.0
3.9
3.7
3.6

Experiment 1
o Experiment 2

@)

| | | | | | | | | J

0.0 6.0 12.018.024.030.0 36.042.048.0 54.0 60.0

Time

Figure 8.7: Time to growth data

160

\DTLbarchart

\DTLmultibarchart

9 Bar Charts (databar package)

The databar package provides commands for creating bar charts. It is not
loaded by the datatool package, so if you want to use it you will need to
load it explicitly using \usepackage {databar}. You must also have
the pgf package installed.

Bar charts can either be vertical or horizontal, the default is vertical. In
this section the x axis refers to the horizontal axis when plotting a vertical
bar chart and to the vertical axis when plotting a horizontal bar chart.
The x axis units are in increments of one bar. The y axis refers to the
vertical axis when plotting a vertical bar chart and to the horizontal axis
when plotting a horizontal bar chart. The y axis uses the same
co-ordinates as the data. The bars may have an upper and lower label. In
a vertical bar chart, the lower label is placed below the x axis and the
upper label is placed above the top of the bar. In a horizontal bar chart,
the lower label is placed to the left of the x axis and the upper label is
placed to the right of the end of the bar. (This is actually a misnomer as it
is possible for the “upper” label to be below the “lower” label if a bar has
a negative value, however the bars are considered to be anchored on the
x axis, and the other end of the bar is considered to be the “upper” end,
regardless of its direction.)

The databar package options are as follows:

color=databar Created coloured bar charts (default).
gray=databar Created grey scale bar charts.
vertical=databar Created vertical bar charts (default).

horizontal=databar Created horizontal bar charts.

\DTLbarchart [(condition)] { (settings)} { (db name) } { (values) }

\DTLmultibarchart [(condition)] { (settings)} { (db name) } { (values) }

These commands both create a bar chart from the information in the
database (db name), where (condition) is the same as the optional

161

argument for \DTLforeach described in section 5.4, and (values) is the
same as the penultimate argument of \DTLforeach. The (settings)
argument is a (setting)=(value) list of settings. The first command,
\DLTbarchart, will draw a bar chart for a given column of data in the
database, whereas the second command, \DTLmultibarchart, will
draw a bar chart that is divided into groups of bars where each bar
within a group represents data from several columns of a given row in
the database.

The variable setting is required for \DTLbarchart and the variables, the
other settings are optional (though some may only be used for one of
\DTLbarchart and \DLTmultibarchart), and are as follows:

variable This specifies the control sequence to use that contains the value
used to construct the bar chart. The control sequence must be one
of the control sequences to appear in the assignment list (values).
This setting is required for \DTLbarchart, and is unavailable for
\DTLmultibarchart.

variables This specifies a list of control sequences to use which contain
the values used to construct the bar chart. Each control sequence
must be one of the control sequences to appear in the assignment
list (values). This setting is required for \DTLmultibarchart, and
is unavailable for \DTLbarchart.

max This specifies the maximum value on the y axis. (This should be a
standard decimal value.)

length This specifies the overall length of the y axis, and must be a
dimension.

maxdepth This must be a zero or negative number. It specifies the
maximum depth of the y axis. (This should be a standard decimal
value.)

axes This setting specifies which axes to display. This may take one of
the following values: both, %, y or none.

barlabel This setting specifies the lower bar label. When used with
\DTLmultibarchart it indicates the group label.

multibarlabels This setting should contain a comma separated list of
labels for each bar within a group for \DTLmultibarchart. This
setting is not available for \DTLbarchart.

upperbarlabel This setting specifies the upper bar label. This setting is not
available for \DTLmultibarchart.

162

uppermultibarlabels This setting must be a comma separated list of upper
bar labels for each bar within a group. This setting is not available
for \DTLbarchart.

yticpoints This must be a comma separated list of tick locations for the y
axis. (These should be standard decimal values.) This setting
overrides yticgap.

yticgap This specifies the gap between the y tick marks. (This should be a
standard decimal value.)

yticlabels This must be a comma separated list of tick labels for the y axis.
ylabel This specifies the label for the y axis.

groupgap This specifies the gap between groups when using
\DTLmultibarchart. This value is given as a multiple of the bar
width. The default value is 1, which indicates a gap of one bar
width. This setting is not available for \DTLbarchart.

verticalbars This is a boolean setting, so it can only take the values true
(do a vertical bar chart) or false (do a horizontal bar chart). If the
value is omitted, t rue is assumed.

Example 34 (A Basic Bar Chart)

Recall example 23 defined a database called fruit. This example will
be using that database to plot a bar chart. The following plots a basic
vertical bar chart:

\begin{figure} [htbp]

\centering
\DTLbarchart{variable=\theQuantity} {fruit} {\theQuantity=Quantity}
\caption{A basic bar chart}

\end{figure}

This produces Figure 9.1.

9.1 Changing the Appearance of a Bar Chart

\DTLbarchartlength

\DTLbarchartlength

163

Figure 9.1: A basic bar chart

This specifies the total length of the y axis. You must use \setlength to
change this value. The default value is 3in.

\DTLbarwidth

\DTLbarwidth

This specifies the width of each bar. You must use \setlength to
change this value. The default value is 1cm.

\DTLbarlabeloffset

\DTLbarlabeloffset

This specifies the distance from the x axis to the lower bar label. You
must use \set length to change this value. The default value is 10pt.

DTLbarroundvar

| DTLbarroundvar

The y tick labels are rounded to (n) digits after the decimal point, where
(n) is given by the value of the counter DTLbarroundvar. You must use
\setcounter to change this value.

\DTLsetbarcolor

164

\DTLdobarcolor

\DTLsetbarcolor{(n)} {{(color)}

This sets the (n)th bar colour to (color). Only the first eight bars have a
colour defined by default. If you need more than eight bars, you will
need to define more bar colours. It is recommended that you set the
colour of each bar to correspond with whatever the bar represents.

\DTLdobarcolor{(n)}

This sets the current colour to the colour of the (n)th bar.

\DTLbaroutlinecolor

\DTLbaroutlinecolor

This macro contains the colour of the bar outlines. This defaults to
black.

\DTLbaroutlinewidth

\DTLbaroutlinewidth

This length specifies the line width for the bar outlines. If it is Opt, the
outline is not drawn. The default value is Opt.

\DTLbaratbegintikz

\DTLbaratendtikz

\DTLeverybarhook

\DTLstartpt
\DTLmidpt
\DTLendpt

\DTLbaratbegintikz

This specifies any additional commands to add to the start of the plot. It
defaults to nothing, and is called after the unit vectors are set.

\DTLbaratendtikz

This specifies any additional commands to add to the end of the plot. It
defaults to nothing.

\DTLeverybarhook

The specifies code to apply at every bar. Within the definition of
\DTLeverybarhook you can use the commands \DTLstartpt (the
start of the bar), \DTLmidpt (the mid point of the bar) and \DTLendpt
(the end of the bar). For example (using the earlier fruit database):

\renewcommand«* { \DTLeverybarhook} {%

165

\pgftext [at=\DTLmidpt] {\insertName\space (\insertValue) } %
}

\DTLbarchart{variable=\insertValue, axes=both,
ylabel=Quantity,max=50,verticalbars=false
1%

{fruit}{\insertValue=Value, \insertName=Name }

This puts the name followed by the quantity in brackets in the middle of
the bar.

\ifDTLverticalbars

\i1fDTLverticalbars

This conditional governs whether the chart uses vertical or horizontal
bars.

\DTLbarXlabelalign

\DTLbarXlabelalign

This specifies the text alignment of the lower bar labels. This defaults to

left, rotate=-90 if you use the vertical=databar package option or the

verticalbars setting, and defaults to right if you use the horizontal=databar
package option or the verticalbars=false setting.

\DTLbarYticklabelalign
\DTLbarYlabelalign

This specifies the text alignment of the y axis labels. This defaults to
right for vertical bar charts and center for horizontal bar charts.

\DTLbardisplayYticklabel
\DTLbardisplayYticklabel {({fext)}

This specifies how to display the y tick label. The argument is the tick
label.

\DTLdisplaylowerbarlabel

\DTLdisplaylowerbarlabel {(text)}

This specifies how to display the lower bar label for \DTLbarchart and
the lower bar group label for \DTLmultibarchart. The argument is
the label.

\DTLdisplaylowermultibarlabel

\DTLdisplaylowermultibarlabel {(fext)}

166

This specifies how to display the lower bar label for
\DTLmultibarchart. The argument is the label. This command is
ignored by \DTLbarchart.

\DTLdisplayupperbarlabel
\DTLdisplayupperbarlabel {(text)}

This specifies how to display the upper bar label for \DTLbarchart and
the upper bar group label for \DTLmultibarchart. The argument is
the label.

\DTLdisplayuppermultibarlabel

\DTLdisplayuppermultibarlabel {(fext)}

This specifies how to display the upper bar label for
\DTLmultibarchart. The argument is the label. This command is
ignored by \DTLbarchart.

Example 35 (A Labelled Bar Chart)

This example extends example 34 so that the chart is a bit more
informative (which is after all the whole point of a chart). This chart now
has a label below each bar, as well as a label above the bar. The lower
label uses the value of the Name key, and the upper label uses the
quantity. I have also set the outline width so each bar has a border.

\begin{figure} [htbp]
\setlength{\DTLbaroutlinewidth} {1lpt}

\centering

\DTLbarchart {variable=\theQuantity, barlabel=\theName, %
upperbarlabel=\theQuantity}{fruit}{$%
\theQuantity=Quantity, \theName=Name }

\caption{A bar chart}

\end{figure}

This produces Figure 9.2.

Example 36 (Profit/Loss Bar Chart)

Suppose I have a file called profits.csv that looks like:

Year,Profit

2000, \pounds2, 535
2001, \pounds3, 752
2002, -\pounds1, 520
2003, \pounds1, 270

167

40.5

Cherries
Peaches
Lemons,Limes
Pears

Apples

Figure 9.2: A bar chart

168

First I can load this file into a database called profits:

\DTLloaddb{profits} {profits.csv}

Now I can plot the data as a bar chart:

\begin{figure} [htbp]
\centering

% Set the width of each bar to 10pt
\setlength{\DTLbarwidth} {10pt}

% Set the outline width to 1pt
\setlength{\DTLbaroutlinewidth} {1lpt}
% Round the y tick labels to integers
\setcounter{DTLbarroundvar} {0}

% Adjust the tick label offset
\setlength{\DTLticklabeloffset} {20pt}
% Change the y tick label alignment
\renewcommand«* {\DTLbarYticklabelalign} {left}

% Rotate the y tick labels
\renewcommand* {\DTLbardisplayYticklabel}[1]{\rotatebox{-45}{#1}}
% Set the bar colours depending on the value of \theProfit
\DTLforeach{profits}{\theProfit=Profit}{%
\ifthenelse{\DTLislt{\theProfit}{0}}
{\DTLsetbarcolor{\DTLcurrentindex} {red}}
{\DTLsetbarcolor{\DTLcurrentindex}{blue}}}

% Do the bar chart

\DTLbarchart{variable=\theProfit, upperbarlabel=\theYear,
ylabel={Profit/Loss (\pounds) },verticalbars=false,
maxdepth=-2000, max=4000} {profits}

{\theProfit=Profit, \theYear=Year}

\caption{Profits for 2000--2003}

\end{figure}

This produces Figure 9.3. Notes:

1. This example uses \rotatebox, so the graphics or graphicx package
is required.

2. The y tick labels are too wide to fit horizontally so they have been
rotated to avoid overlapping with their neighbour.

3. Rotating the y tick labels puts them too close to the y axis, so
\DTLticklabeloffset is made larger to compensate.

4. Remember not to use \year as an assignment command as this
command already exists!

5. Before the bar chart is created I have iterated through the database,
setting the bar colour to red or blue depending on the value of
\theProfit.

169

\DTLbarchartwidth

\DTLnegextent

\DTLbarmax

Both \DTLbarchart and \DTLmultibarchart set the following
macros, which may be used in \DTLbaratbegintikz and
\DTLbaratendtikz:

\DTLbarchartwidth

This is the overall width of the bar chart. In the case of \DTLbarchart
this is just the number of bars. In the case of \DTLmultibarchart itis
computed as:

mxn+(m—1)xg

where m is the number of bar groups (i.e. the number of rows of data), n
is the number of bars within a group (i.e. the number of commands listed
in the variables) setting and g is the group gap (as specified by the
groupgap setting).

\DTLnegextent

This is set to the negative extent of the bar chart. (This value may either
be zero or negative, and corresponds to the maxdepth setting.)

\DTLbarmax

This is set to the maximum extent of the bar chart. (This value
corresponds to the max setting.)

2003
2002
2001
2000

Profit/Loss (£)
Figure 9.3: Profits for 2000-2003

Example 37 (A Multi-Bar Chart)

This example uses the marks database described in example 14. Recall
that this database stores student marks for three assignments. The keys
for the assignment marks are Assignment 1,Assignment 2 and
Assignment 3, respectively. I can convert this data into a bar chart
using the following:

170

\begin{figure} [htbp]

\centering
\DTLmultibarchart{variables={\assignI, \assignII, \assignIII},
barwidth=10pt, uppermultibarlabels={\assignI, \assignII, \assignIII},
barlabel={\firstname\ \surname}}{marks}{%

\surname=Surname, \firstname=FirstName, \assignI=Assignment 1,%
\assignII=Assignment 2,\assignIII=Assignment 3}

\caption{Student marks}

\end{figure}

This produces Figure 9.4. Notes:

1. Tused variables={\assignI, \assignII, \assignIII} to
set the variable to use for each bar within a group. This means that
there will be three bars in each group.

2. T have set the bar width to 10pt, otherwise the chart will be too
wide.

3. Tused
uppermultibarlabels={\assignI, \assignII, \assignIII}
to set the upper labels for each bar within a group. This will print
the assignment mark above the relevant bar.

4. Tused barlabel={\firstname\ \surname} to place the
student’s name below the group corresponding to that student.

Recall that example 14 computed the average score over for each
student, and saved it with the key Average. This information can be
added to the bar chart. It might also be useful to compute the average
over all students and add this information to the chart. This is done as
follows:

\begin{figure} [htbp]
\centering
% compute the overall mean
\DTLmeanforkeys{marks} {Average} {\overallmean}
% round it to 2 decimal places
\DTLround{\overallmean}{\overallmean} {2}
draw a grey dotted line indicating the overall mean
covering the entire width of the bar chart
\renewcommandx { \DTLbaratendtikz} {%
\draw[lightgray, loosely dotted] (0, \overallmean) --
(\DTLbarchartwidth, \overallmean)
node [right,black] {Average (\overallmean)};}
% Set the lower bar labels to draw a brace across the current
% group, along with the student’s name and average score
\renewcommand~* {\DTLdisplaylowerbarlabel} [1]{%
\tikz[baseline=(current bounding box.center)]{

o\

o

171

Clare Verdon

Roger Brady

Z0oe Adams

Andy Brown

Jane Brown

John Smith, Jr

Figure 9.4: Student marks

172

\draw[snake=brace, rotate=-90] (0,0) —-- (\DTLbargroupwidth,0);}
\DTLround{\theMean} {\theMean}{2}%

\shortstack{#1\\ (Average: \theMean) }}

% draw the bar chart

\DTLmultibarchart{variables={\assignI, \assignII,\assignIII},
barwidth=10pt, uppermultibarlabels={\assignI, \assignII, \assignIII},
barlabel={\firstname\ \surname}}{marks}

{\surname=Surname, \firstname=FirstName, \assignI=Assignment 1,%
\assignII=Assignment 2,\assignIII=Assignment 3, \theMean=Average}
\caption{Student marks}

\end{figure}

which produces Figure 9.5. Notes:

1. I've used the TikZ snake library to create a brace, so I need to put
\usetikzlibrary{snakes}

in the preamble. See the pgf manual for more details on how to use
this library.

2. Tused \DTLbargroupwidth to indicate the width of each bar
group.

3. Tused \DTLbarchartwidth to indicate the width of the entire bar
chart

173

84

0
7

Average (59.11)

50
48
I

62

o 560
524 52
I

72
68 |

|
|
|
|
|
|

Clare Verdon
(Average: 47.67)

Roger Brady
(Average: 60)

Zoe Adams
(Average: 52.33)

Andy Brown
(Average: 49.33)

Jane Brown
(Average: 79.67)

John Smith, Jr
(Average: 65.67)

Figure 9.5: Student marks

174

10 Converting a BIBTEX database into a
datatool database (databib package)

The databib package provides the means of converting a BIBIgX database
into a datatool database. The database can then be sorted using
\DTLsort, described in section 5.8. For example, you may want to sort
the bibliography in reverse chronological order. Once you have sorted
the bibliography, you can display it using \DTLbibliography,
described in section 10.3, or you can iterate through the database using
\DTLforeachbibentry, described in section 10.5.

Note that the databib package is not automatically loaded by datatool, so
if you want to use it, you must load it using \usepackage {databib}.

The purpose of this package is to provide a means for authors to

format their own bibliography style where there is no bibliography
style file available that produces the desired results. The \DTLsort
macro uses a much less efficient sorting algorithm than BIBTgX, and
loading the bibliography as a datatool database is much slower than

loading a standard bb1 file. If you have a large database, and you are
worried that I£TEX may have become stuck, try using the verbose
option to datatool or use the command \dt1lverbosetrue. This will
print informative messages to the console and transcript file, to let you
know what’s going on.

10.1 BIBTEX: An Overview

This document assumes that you have at least some passing familiarity
with BIBTEX, but here follows a brief refresher.

BIBIEX is an external application used in conjunction with EIEX. When
you run BIBIEX, you need to specify the name of the document’s auxiliary
file (without the aux extension). BIBTEX then reads this file and looks for
the commands \bibstyle (which indicates which bibliography style
(bst) file to load), \bibdata (which indicates which bibliography
database (bib) files to load) and \citation (produced by \cite and
\nocite, which indicates which entries should be included in the
bibliography). BIBTEX then creates a file with the extension bb1 which

175

contains the bibliography, formatted according to the layout defined in
the bibliography style file.

In general, given a document called, say, mydoc. tex, you will have to
perform the following steps to ensure that the bibliography and all
citations are up-to-date:

1. latex mydoc

This writes the citation information to the auxiliary file. The
bibliography currently doesn’t exists, so it isn’t displayed. Citations
will appear in the document as ?? since the internal cross-references
don’t exist yet.

2. bibtex mydoc

This reads the auxiliary file, and creates a file with the extension
bb1 which typically contains the typeset bibliography.

3. latex mydoc

Now that the bb1 file exists, the bibliography can be input into the
document. The internal cross-referencing information for the
bibliography can now be written to the auxiliary file.

4. latex mydoc

The cross-referencing information can be read from the auxiliary
file.

10.1.1 BIBTEX database

The bibliographic data required by BIBTgX must be stored in a file with
the extension bib, where each entry is stored in the form:

@ (entry_type) { (cite_key),
(field_name) = "(value)",

(field_name) = "(value)"
}

Note that curly braces { and } may be used instead of " and ".

The entry type, given by (entry_type) above, indicates the type of
document. This may be one of: article, book, booklet, inbook,
incollection, inproceedingsl, manual, mastersthesis,misc,
phdthesis, proceedings,
techreport or unpublished.

INote that conference isa synonym for inproceedings.

176

The (cite_key) above is a unique label identifying this entry, and is the
label used in the argument of \cite or \nocite. The available fields
depends on the entry type, for example, the field journal is required for
the article entry type, but is ignored for the inproceedings entry
type. The standard fields are: address, author, booktitle, chapter,
edition,editor, howpublished, institution, journal, key,
month, note, number, organization, pages, publisher, school,
series,title, type, volume and year.

Author and editor names must be entered in one of the following ways:

1. (First names) (von part) (Surname), (Jr part)

The (von part) is optional and is identified by the name(s) starting
with lowercase letters. The final comma followed by (Jr part) is also
optional. Examples:

author = "Henry James de Vere"

In the above, the first names are Henry James, the “von part” is de
and the surname is Vere. There is no “junior part”.

author = "Mary-Jane Brown, Jr"

In the above, the first name is Mary-Jane, there is no von part, the
surname is Brown and the junior part is Jr.

author = "Peter {Murphy Allen}"

In the above, the first name is Peter, and the surname is Murphy
Allen. Note that in this case, the surname must be grouped,
otherwise Murphy would be considered part of the forename.

author = "Maria Eliza {\uppercase{d}e La} Cruz"

In the above, the first name is Maria Eliza, the von part is De La,
and the surname is Cruz. In this case, the von part starts with an
uppercase letter, but specifying

author = "Maria Eliza De La Cruz"

would make BIBTEX incorrectly classify “Maria Eliza De La” as the
first names, and the von part would be empty. Since BIBTEX doesn’t
understand ETEX commands, using { \uppercase{d}e La} will
trick BIBIgX into thinking that it starts with a lower case letter.

177

2. (von part) (Surname), (Forenames)

Again the (von part) is optional, and is determined by the case of
the first letter. For example:

author = "de Vere, Henry James"

Multiple authors or editors should be separated by the key word and,
for example:

author = "Michel Goossens and Frank Mittlebach and Alexander Samarin"
Below is an example of a book entry:

@book{latexcomp,

title = "The \LaTeX\ Companion",

author = "Michel Goossens and Frank Mittlebach and
Alexander Samarin",

publisher = "Addison-Wesley",

year = 1994

}

Note that numbers may be entered without delimiters, as in

year = 1994. There are also some predefined strings, including those
for the month names. You should always use these strings instead of the
actual month name, as the way the month name is displayed depends on
the bibliography style. For example:

Qarticle{Cawley2007b,

author = "Gavin C. Cawley and Nicola L. C. Talbot",

title = "Preventing over-fitting in model selection via {Bl}ayesian
regularisation of the hyper-parameters",

journal = "Journal of Machine Learning Research",
volume = 8,

pages = "841--861",

month = APR,

year = 2007

}
You can concatenate strings using the # character, for example:
month = JUL # "~31~-—~" # AUG # "~4",

Depending on the bibliography style, this may be displayed as:
July 31 — August 4, or it may be displayed as: Jul 31 — Aug 4. For further
information, see [1].

178

\DTLloadbbl

10.2 Loading a databib database

The databib package always requires the databib.bst bibliography
style file (which is supplied with this bundle). You need to use \cite or
\nocite as usual. If you want to add all entries in the bib file to the
datatool database, you can use \nocite{x}.

\DTLloadbbl [(bbl name)] { (db name) } { (bib list) }

This command performs several functions:
1. it writes the following line in the auxiliary file:
\bibstyle{databib}

which tells BIBTEX to use the databib.bst BIBIEX style file,

2. it writes \bibdata {(bib list)} to the auxiliary file, which tells
BIBIEX which bib files to use,

3. it creates a datatool database called (db name),

4. it loads the file (bbl name) if it exists. (The value defaults to
\ jobname.bb1l, which is the usual name for a bb1 file.) If the bb1
file doesn’t exist, the database (db name) will remain empty.

You then need to run your document through IXIEX (or PDFIETEX) and
then run BIBTEX on the auxiliary file, as described in section 10.1. This
will create a bb1 file which contains all the commands required to add
the bibliography information to the datatool database called (db name).
The next time you IXIEX your document, this file will be read, and the
information will be added to (db name).

Note that \DTLloadbbl doesn’t generate any text. Once you have
loaded the data, you can display the bibliography uses

\DTLbibliography (described below) or you can iterate through it
using \DTLforeachbibentry described in section 10.5.

Note that the databib.bst BIBIEX style file provides the following
additional fields: isbn, doi, pubmed, url and abstract. However
these fields are ignored by the three predefined databib styles (plain,
abbrv and alpha). If you want these fields to be displayed in the
bibliography you will need to modify the bibliography style (see
subsection 10.4.1).

179

\DTLbibliography

10.3 Displaying a databib database

A databib database which has been loaded using \DTLloadbbl
(described in section 10.2) can be displayed using:

\DTLbibliography [{conditions)] { (db name)}

where (db name) is the name of the database.

Within the optional argument (condition), you may use any of the
commands that may be used within the optional argument of
\DTLforeach In addition, you may use the following commands:

\DTLbibfieldexists

\DTLbibfieldiseq

\DTLbibfieldexists{(field label)}

This tests whether the field with the given label exists for the current
entry. The field label may be one of: Address, Author, BookTitle,
Chapter, Edition, Editor, HowPublished, Institution,
Journal, Key, Month, Note, Number, Organization, Pages,
Publisher, School, Series, Title, Type, Volume, Year, ISBN, DOI,
PubMed, Abstract, Url or Eprints.

For example, suppose you have loaded a databib database called mybib
using \DTLloadbbl (described in section 10.2) then the following
bibliography will only include those entries which have a Year field:

\DTLbibliography [\DTLbibfieldexists{Year}] {mybib}

\DTLbibfieldiseq{ (field label)} { (value)}

This tests whether the value of the field given by (field label) equals
(value). If the field doesn’t exist for the current entry, this evaluates to
false. For example, the following will produce a bibliography which only
contains entries which have the Year field set to 2004:

\DTLbibliography [\DTLbibfieldiseq{Year}{2004}] {mybib}

\DTLbibfieldcontains

\DTLbibfieldcontains{(field label)} { (sub string)}

This tests whether the value of the field given by (field label) contains (sub
string). For example, the following will produce a bibliography which
only contains entries where the author field contains the name Knuth:

180

\DTLbibfieldislt

\DTLbibfieldisle

\DTLbibfieldisgt

\DTLbibfieldisge

\DTLbibliography[\DTLbibfieldcontains{Author} {Knuth}] {mybib}

\DTLbibfieldislt {(field label)} { (value)}

This tests whether the value of the field given by (field label) is less than
(value). If the field doesn’t exist for the current entry, this evaluates to
false. For example, the following will produce a bibliography which only
contains entries whose Year field is less than 1983:

\DTLbibliography [\DTLbibfieldislt{Year}{1983}] {mybib}

\DTLbibfieldisle{(field label)} { (value)}

This tests whether the value of the field given by (field label) is less than
or equal to (value). If the field doesn’t exist for the current entry, this
evaluates to false. For example, the following will produce a
bibliography which only contains entries whose Year field is less than or
equal to 1983:

\DTLbibliography [\DTLbibfieldisle{Year}{1983}] {mybib}

\DTLbibfieldisgt {(field label)} { (value)}

This tests whether the value of the field given by (field label) is greater
than (value). If the field doesn’t exist for the current entry, this evaluates
to false. For example, the following will produce a bibliography which
only contains entries whose Year field is greater than 1983:

\DTLbibliography [\DTLbibfieldisgt{Year}{1983}] {mybib}

\DTLbibfieldisge{ (field label)} { (value)}

This tests whether the value of the field given by (field label) is greater
than or equal to (value). If the field doesn’t exist for the current entry, this
evaluates to false. For example, the following will produce a
bibliography which only contains entries whose Year field is greater
than or equal to 1983:

\DTLbibliography [\DTLbibfieldisge{Year}{1983}] {mybib}

181

Note that \DTLbibliography uses \DTLforeachbibentry
(described in section 10.5) so you may also use test the value of the
counter DTLbibrow within (conditions). You may also use the boolean
commands defined by the ifthen package, such as \not.

Example 38 (Creating a list of publications since a given year)

Suppose my boss has asked me to produce a list of my publications in
reverse chronological order, but doesn’t want any publications published
prior to the year 2000. I have a file called nlct .bib which contains all
my publications which I keep in the directory
$HOME/texmf/bibtex/bib/. I could look through this file, work out
the labels for all the publications whose year field is greater or equal to
2000, and create a file with a \nocite command containing all those
labels in a comma separated list in reverse chronological order, but I
really can’t be bothered to do that. Instead, I can create the following
document:

\documentclass{article}

\usepackage{databib}

\begin{document }

\nocite{*}

\DTLloadbbl {mybib}{nlct}

\DTLsort {Year=descending, Month=descending} {mybib}
\DTLbibliography [\DTLbibfieldisge{Year}{2000}] {mybib}
\end{document }

Suppose I save this file as mypubs . tex, then I need to do:

latex mypubs
bibtex mypubs
latex mypubs

Notes:

1. \nocite{«} is used to add all the citations in the bibliography file
(nlct.bib in this case) to the databib database.
2. \DTLloadbbl{mybib} {nlct} does the following:
a) writes the line
\bibstyle{databib}

to the auxiliary file. This tells BIBIgX to use databib.bst
(which is supplied with this package). You therefore shouldn’t
use \bibliographystyle.

b) writes the line
\bibdata{nlct}

182

to the auxiliary file. This tells BIBTEX that the bibliography data
is stored in the file n1ct .bib. Since I have placed this file in
TgX's search path, BIBIEX will be able to find it.

c) creates a datatool database called mybib.

d) if the bb1 file (mypubs.bbl in this example) exists, it loads
this file (which adds the bibliography data to the database),
otherwise it does nothing further.

. In my BIBIEX database (n1ct .bib in this example), I have
remembered to use the BIBIEX month macros: jan, feb etc. This
means that the months are stored in the database in the form
\DTLmonthname { (nn) }, where (nn) is a two digit number from 01
to 12. \DTLsort ignores command names when it compares
strings, which means I can not only sort by year, but also by
month?,

. Once I have loaded and sorted my database, I can then display it
using \DTLbibliography. This uses the style given by the databib
style=databib package option, or the \DTLbibliographystyle
command, both of which are described in section 10.4.

. I'have filtered the bibliography using the optional argument
[\DTLbibfieldisge{Year} {2000}], which checks if the year
field of the current entry is greater than or equal to 2000. (Note that
if an entry has no year field, the condition evaluates to false, and

the entry will be omitted from the bibliography.)

. If the bibliography database is large, sorting and creating the
bibliography may take a while. Using databib is much slower than
using a standard BIBIEX style file.

Example 39 (Creating a list of my 10 most recent publications)

Suppose now my boss has asked me to produce a list of my ten most
recent publications (in reverse chronological order). As in the previous
example, I have a file called n1ct .bib which contains all my
publications. I can create the required document as follows:

\documentclass{article}
\usepackage{databib}
\begin{document }

2as long as I haven’t put anything before the month name in the bibliography file, e.g.
month = 2 # apr will sort by 2 03, instead of 03

183

\nocite{*}

\DTLloadbbl {mybib}{nlct}

\DTLsort {Year=descending, Month=descending} {mybib}
\DTLbibliography[\value{DTLbibrow}<10] {mybib}
\end{document }

10.4 Changing the bibliography style

The style of the bibliography produced using \DTLbibliography
depends on the style=databib package option, or can be set using

\DTLbibliographystyle

\DTLformatauthor

\DTLformateditor

\DTLbibliographystyle{(style)}

Note that this is not the same as \bibliographystyle, as the databib
package uses its custom databib.bst bibliography style file.
Example:

\usepackage[style=plain] {databib}

This sets the plain bibliography style. This is, in fact, the default style, so
it need not be specified.

Available styles are: plain, abbrv and alpha. These are similar to
the standard BIBTEX styles of the same name, but are by no means
identical. The most notable difference is that these styles do not sort the
bibliography. It is up to you to sort the bibliography using \DTLsort
(described in section 5.8).

10.4.1 Modifying an existing style

This section describes some of the commands which are used to format
the bibliography. You can choose whichever predefined style best fits
your required style, and then modify the commands described in this
section. A description of the remaining commands not listed in this
section can be found in section 6.4, section 6.5 and section 6.6.

\DTLformatauthor { (von part)} { (surname)} { (jr part) } { (forenames) }

\DTLformateditor {(von part)} { (surname)} { (jr part) } { (forenames) }

184

These commands are used to format an author/editor’s name,
respectively. The list of authors and editors are stored in the databib
database as a comma separated list of {(von part)} { (surname)} { (jr
part) } { (forenames) } data. This ensures that when you sort on the Author
or Editor field, the names will be sorted by the first author or editor’s
surname.

Within \DTLformatauthor and \DTLformateditor, you may use
the following commands:

\DTLformatforenames

\DTLformat forenames { (forenames) }

This is used by the plain style to display the author’s forenames?.

\DTLformatabbrvforenames

\DTLformatsurname

\DTLformatvon

\DTLformat jr

\DTLformatabbrvforenames { (forenames) }

This is used by the abbrv style to display the author’s initials (which are
determined from (forenames)). Note that if any of the authors has a name
starting with an accent, the accented letter must be grouped in order for
this command to work. For example:

author = "{\’E}lise {\"E}lawyn Edwards",

The initials are formed using \DTLstoreinitials described in
chapter 4, so if you want to change the way the initials are displayed (e.g.
put a space between them) you will need to redefine the commands used
by \DTLstoreinitials (such as \DTLbetweeninitials).

\DTLformatsurname { (surname) }

This displays its argument by default*.

\DTLformatvon {(von part)}

If the (von part) is empty, this command does nothing, otherwise it
displays its argument followed by a non-breakable space.

31t also checks whether (forenames) ends with a full stop using \DTLcheckendsperiod
to prevent a sentence ending full stop from following an abbreviation full stop

4Tt also checks whether the surname ends with a full stop using
\DTLcheckendsperiod

185

DTLmaxauthors

DTLmaxeditors

\DTLandlast
\DTLandnotlast
\DTLtwoand

\DTLbibitem

\DTLmbibitem

\DTLendbibitem

\DTLformatjr{UTpaﬁ>}

If the (jr part) is empty, this command displays nothing, otherwise it
displays a comma followed by its argument”.

For example, suppose you want the author’s surname to appear first in
small capitals, followed by a comma and the forenames. This can be
achieved by redefining \DTLformatauthor as follows:

\renewcommandx { \DTLformatauthor} [4] {%
\textsc{\DTLformatvon{#1}%
\DTLformatsurname {#2}\DTLformat jr{#3}},
\DTLformat forenames{#4}%

}

DTLmaxauthors

The counter DTLmaxauthors is used to determine the maximum number of
authors to display for a given entry. If the entry’s author list contains
more than that number of authors, \etalname is used, the definition of
which is given in section 6.4. The default value of DTLmaxauthors is 10.

DTLmaxeditors

The DTLmaxeditors counter is analogous to the DTLmaxauthors counter. It is
used to determine the maximum number of editor names to display. The
default value of DTLmaxeditors is 10.

Within a list of author or editor names, \DTLandlast is used between
the last two names, otherwise \DTLandnot last is used between names.
However, if there are only two author or editor names, \DTLtwoand is
used instead of \DTLandlast.

The command \DTLbibitem is used at the start of each bibliography
item. It uses \bibitem to provide a marker, such as [1], and writes the
citation information to the . aux file.

The command \DTLmbibitem is analogous to \DTLbibitem butis
for use with \DTLmbibliography.

The command \DTLendbibitem is a hook provided to add additional
information at the end of each bibliography item. This does nothing by
default, but if you want to display the additional fields provided by the
databib.bst style file, you can redefine \DTLendbibitem so that it
displays a particular field, if it is defined. Within this command, you may
use the commands \DTLbibfield, \DTLifbibfieldexist and

Sagain, it also checks (jr part) to determine if it ends with a full stop

186

\DTLifanybibfieldexist, which are described in section 10.5. For
example, if you have used the abstract field in any of your entries, you
can display the abstract as follows:

\renewcommand{\DTLendbibitem} {$%
\DTLifbibfieldexists{Abstract}{\DTLpar\textbf{Abstract}
\begin{quote}\DTLbibfield{Abstract}\end{quote}}{}}

(Note that \DTLpar needs to be used instead of \par.)
Example 40 (Compact bibliography)

Suppose I don’t have much space in my document, and I need to
produce a compact bibliography. Firstly, I can use the bibliography style
abbrv, either through the package option:

\usepackage[style=abbrv] {databib}

or using:

\DTLbibliographystyle{abbrv}

Once I have set the style, I can further modity it thus:

\renewcommandx* { \andname} { \ &}
\renewcommandx { \editorname} {ed. }
\renewcommandx { \editorsname} {eds.}
\renewcommand+* { \pagesname} {pp. }
\renewcommand« { \pagename} {p. }
\renewcommandx { \volumename} {vol.}
\renewcommandx { \numbername} {no. }
\renewcommandx { \editionname} {ed. }
\renewcommand«* { \techreportname} {T.R.}
\renewcommand= { \mscthesisname} {MSc thesis}

Now I can load® and display the bibliography:

% create a database called mybib from the information given
% in mybibl.bib and mybib2.bib
\DTLloadbbl {mybib} {mybibl, mybib2}

% display the bibliography

\DTLbibliography{mybib}

Example 41 (Highlighting a given author)

Suppose my boss wants me to produce a list of all my publications
(which I have stored in the file n1ct .bib, as in example 38). Most of my

®T can load the bibliography earlier, but obviously the bibliography should only be dis-
played after the bibliography styles have been set, otherwise they will have no effect

187

publications have multiple co-authors, but suppose my boss would like
me to highlight my name so that when he skims through the document,
he can easily see my name in the list of co-authors. I can do this by
redefining \DTLformatauthor so that it checks if the given surname
matches mine. (This assumes that none of the other co-author’s share my
surname.)

\renewcommand* {\DTLformatauthor} [4]{%
{\DTLifstringeq{#2}{Talbot}{\bfseries }{}%
\DTLformat forenames{#4}

\DTLformatvon{#1}%

\DTLformatsurname{#2}%

\DTLformatjr{#3}}}

Notes:

1. T'have used \DTLifstringeq (described in section 2.1) to perform
the string comparison.

2. If one or more of my co-authors shared the same surname as me, I
would also have had to check the first name, however there is
regrettably a lack of consistency in my bib file when it comes to my
forenames. Sometimes my name is given as Nicola L. C.
Talbot, sometimes the middle initials are omitted, Nicola
Talbot, or sometimes, just initials are used, N. L. C. Talbot.
This can cause problems when checking the forenames, but as long
as the other authors who share the same surname as me, don’t also
share the same first initial, I can use \DTLifStartsWith or
\DTLisPrefix, which are described in section 2.1 and section 2.2,
respectively. Using the first approach I can do:

\renewcommand* {\DTLformatauthor} [4]{%

{\DTLifstringeqg{#2}{Talbot} {\DTLifStartsWith{#4}{N}{\bfseries }{}}{}%
\DTLformatforenames{#4}

\DTLformatvon{#1}%

\DTLformatsurname{#2}%

\DTLformatjr{#3}}}

Using the second approach I can do:

\renewcommandx* {\DTLformatauthor} [4]{%
{\ifthenelse{\DTLiseq{#2}{Talbot}\and
\DTLisPrefix{#4}{N}}{\bfseries }{}%
\DTLformat forenames {#4}
\DTLformatvon{#1}%
\DTLformatsurname{#2}%
\DTLformatjr{#3}}}

3. I have used a group to localise the effect of \bfseries.

188

10.5 Ilterating through a databib database

\DTLbibliography (described in section 10.3) may still not meet your
needs. For example, you may be required to list journal papers and
conference proceedings in separate sections. In which case, you may find
it easier to iterate through the bibliography using:

\DTLforeachbibentry
\DTLforeachbibentry [{condition)] { (db name)} { (text)}

\DTLforeachbibentryx*
\DTLforeachbibentryx [{condition)] { (db name)} { (text)}

This iterates through the databib database called (db name) and does (text)
if (condition) is met. As with \DTLforeach, the starred version is
read-only.

\DTLforeachbibentry only makes local assignments, which means
that it’s unsuitable to display the references in a tabular-like environment
(for example, the europecv environment provided by the europecv class).
It's also a short command, so (fext) can’t contain any paragraph breaks.
Instead you can use the analogous commands:

\gDTLforeachbibentry
\gDTLforeachbibentry [{condition)] { (db name)} { (text)}

\gDTLforeachbibentryx*
\gDTLforeachbibentryx [{condition)] { (db name)} { (text)}

For each row of the database, the following commands are set:

\DBIBcitekey * \DBIBcitekey This is the unique label which identifies the
current entry (as used in the argument of \cite and \nocite).

\DBIBentrytype * \DBIBentrytype This is the current entry type, and will be one
of: article, book, booklet, inbook, incollection,
inproceedings, manual, mastersthesis, misc, phdthesis,
proceedings, techreport or unpublished. (Note that even if
you used the entry type conference in your bib file, its entry
type will be set to inproceedings).

The remaining fields may be accessed using:

\DTLbibfield

189

\DTLbibfield{/field label)}

where (field label) may be one of: Address, Author, BookTitle,
Chapter, Edition, Editor, HowPublished, Institution,
Journal, Key, Month, Note, Number, Organization, Pages,
Publisher, School, Series, Title, Type, Volume, Year, ISBN, DOI,
PubMed, Abstract or Url.

Alternatively, you can assign the value of a field to a control sequence
(cs) using:

\DTLbibfieldlet

\DTLbibfieldlet {{cs)} { (field label) }

You can determine if a field exists for a given entry using

\DTLifbibfieldexists

\DTLifbibfieldexists {(field label)} { (true part)} { (false part)}

If the field given by (field label) exists for the current bibliography entry, it
does (true part), otherwise it does (false part).

\DTLifbibanyfieldexists

\DTLifanybibfieldexists/{(field label list)} { (true part)} { (false
part) }

This is similar to \DTLifbibfieldexists except that the first
argument is a list of field names. If one or more of the fields given in (field

label list) exists for the current bibliography item, this does (true part),
otherwise it does (false part).

\DTLformatbibentry

\DTLformatbibentry

This formats the bibliography entry for the current row. It checks for the
existence of the command \DTLformat (entry type), where (entry type) is
given by \DBIBentrytype. These commands are defined by the
bibliography style. There is also a version for use with
\gDTLforeachbibentry

\gDTLformatbibentry

\gDTLformatbibentry

It’s also possible to use \DTLformatbibentry for a specific key, rather
than using it within \DTLforeachbibentry using:

190

\DTLformatthisbibentry {(db)} {{cite key) }

where (db) is the database name and (cite key) is the citation label. Note
that none of these three commands use \bibitem. You can manually
insert \bibitem{ (cite key)} in front of the command, or you can use:

\DTLcustombibitem{ (marker code) } { (ref text) } { (cite key) }

This is like \bibitem|[(text)] {(cite key) } except that it uses (marker code)
instead of \item[(fext)] and it uses (ref text) instead of
\the\value{\Q@listctr}.

\DTLcomputewidestbibentry

DTLbibrow

\DTLcomputewidestbibentry {(conditions)} { (db name)} { (bib
label) } { (cmd) }

This computes the widest bibliography entry over all entries satisfying
(conditions) in the database (db name), where the label is given by (bib
label), and the result is stored in (cmd), which may then be used in the
argument of the thebibliography environment.

The counter DTLbibrowkeeps track of the current bibliography entry.
This is reset at the start of each \DTLforeachbibentry and is
incremented if (conditions) is met.

Within the optional argument (condition), you may use any of the
commands that may be used within the optional argument of
\DTLbibliography, described in section 10.3.

Example 42 (Separate List of Journals and Conference Papers)

Suppose now my boss has decided that I need to produce a list of all
my publications, but they need to be separated so that all the journal
papers appear in one section, and all the conference papers appear in
another section. The journal papers need to be labelled [J1], [J2] and so
on, while the conference papers need to be labelled [C1], [C2] and so on.
(My boss isn’t interested in any of my other publications!) Again, all my
publications are stored in the BIBTgX database nlct .bib. The following
creates the required document:

\documentclass{article}
\usepackage{databib}
\begin{document}
\nocite{«*}
\DTLloadbbl{mybib}{nlct}

191

\DTLmultibibs

\DTLcite

\renewcommandx* { \refname} {Journal Papers}
\DTLcomputewidestbibentry{\equal {\DBIBentrytype}{article}}
{mybib}{J\theDTLbibrow} {\widest}

\begin{thebibliography} {\widest}
\DTLforeachbibentry[\equal{\DBIBentrytype}{article}] {mybib}{%
\bibitem[J\theDTLbibrow] {\DBIBcitekey} \DTLformatbibentry}
\end{thebibliography}

\renewcommand« { \refname} {Conference Papers}
\DTLcomputewidestbibentry{\equal {\DBIBentrytype}{inproceedings}}
{mybib}{C\theDTLbibrow} {\widest}

\begin{thebibliography}{\widest}
\DTLforeachbibentry[\equal {\DBIBentrytype} {inproceedings}] {mybib}{%
\bibitem[C\theDTLbibrow] {\DBIBcitekey} \DTLformatbibentry}
\end{thebibliography}

\end{document }

10.6 Multiple Bibliographies

It is possible to have more than one bibliography in a document, but it
then becomes necessary to have a separate auxiliary file for each
bibliography, and each auxiliary file must then be passed to BIBIEX. In
order to do this, you need to use

\DTLmultibibs { (name list)}

where (name list) is a comma separated list of names, (name). For each
(name), this command creates an auxiliary file called (name) . aux (note
that this command may only be used in the preamble).

When you want to cite an entry for a given bibliography named in
\DTLmultibibs, you must use:

\DTLcite [(text)] { (mbib) } { (cite key list) }

This is analogous to \cite [(text)] { (cite key list) }, but writes the
\citation command to (mbib).aux instead of to the document’s main
auxiliary file. It also ensures that the cross-referencing labels are based on

192

\DTLnocite

\DTLloadmbbl

\DTLmbibliography

(mbib), to allow you to have the same reference in more than one
bibliography without incurring a “multiply defined” warning message.
Note that you can still use \cite to add citation information to the main
auxiliary file.

If you want to add an entry to the bibliography without producing any
text, you can use

\DTLnocite { (mbib)} {{cite key list) }

which is analogous to \nocite {{cite key list) } , where again the citation
information is written to (mbib) . aux instead of the document’s main
auxiliary file.

Note that for both \DTLcite and \DTLnocite the (mbib) part must
be one of the names listed in \DTLmultibibs.

\DTLloadmbbl { (mbib)} { (db name) } { (bib list) }

This is analogous to \DTL1loadbbl { (db name) } { (bib list)} described in
section 10.2. (Again (mbib) must be one of the names listed in
\DTLmultibibs.) This creates a new datatool database called (db name)
and loads the bibliography information from (mbib) .bb1 (if it exists).

\DTLmbibliography [(condition)] { (mbib) } { (db name) }

This is analogous to \DTLbibliography [(condition)] { (db name)}, but
is required when displaying a bibliography in which elements have been
cited using \DTLcite and \DTLnocite.

Example 43 (Multiple Bibliographies)

Suppose I need to create a document which contains a section listing
all my publications, but I also need to have separate sections covering
each of my research topics, with a mini-bibliography at the end of each
section. As in the earlier examples, all my publications are stored in the
file nlct .bib which is somewhere on TeX’s path. Note that there will be
some duplication as the references in the mini-bibliographies will also
appear in the main bibliography at the end of the document, but using
\DTLcite and \DTLmbibliography ensures that all the
cross-referencing labels (and hyperlinks if they are enabled) are unique.

\documentclass{article}
\usepackage{databib}

193

\DTLmultibibs{kernel, food}

\begin{document }

\section{Kernel methods}

In this section I'm going to describe some research work into
kernel methods, and in the process I’'m going to cite some related
papers \DTLcite{kernel} {Cawley2007a,Cawley2006a}.

\DTLloadmbbl{kernel}{kernelDB}{nlct}
\DTLmbibliography{kernel} {kernelDB}

\section{Food research}

In this section I'm going to describe some research work
in the area of food safety, and in the process, I’'m going
to cite some related papers \DTLcite{food}{Peck1999,Barker1999a}

\DTLloadmbbl{food} {foodDB} {nlct}
\DTLmbibliography{food} {foodDB}

\cite{x}

\renewcommand{\refname} {Complete List of Publications}
\DTLloadbbl{fullDB}{nlct}

\DTLbibliography{fullDB}

\end{document }

Notes:

1. This will create the files kernel.aux and food.aux. These will
have to be passed to BIBIEX, in addition to the documents main
auxiliary file. So, if my document is called researchwork.tex,
then I need to do:

latex researchwork
bibtex researchwork
bibtex kernel
bibtex food

latex researchwork
latex researchwork

2. \cite{*} isused to add all the entries in the bib file to the main
bibliography database. As before, \DTL1loadbbl and
\DTLbibliography are used to load and display the main
bibliography.

194

Don’t try to directly input the .bb1 file using \ input (or \include)
instead of using \DTLloadbbl or \DTLloadmbbl as these
commands store the name of the required database and initialise the

database before loading the .bb1 file. Similarly, don’t just copy the
contents of the .bb1 file into your document without first defining the
database using \DTLnewdb and setting \DTLBIBdbname to the name
of the database.

195

\newperson

\malelabels

\femalelabels

11 Referencing People (person package)

Sometimes when mail-merging, it may be necessary to reference a person
by their pronoun which can lead to the cumbersome and impersonal
“he/she” construct. The person package allows you to define a person by
their full name, familiar name and gender. You can then use the
commands described in section 11.2 to produce the appropriate pronoun.
This can also be useful for other types of documents, such as an order
of service for a baptism or funeral. Since the document is much the same
from one person to the next, documents of this nature are frequently
simply copied and a search and replace edit is used to change the relevant
text. However this can lead to errors (especially if the previous person’s
name was Mary!) With the person package, you need only change the
definition of the person by modifying the arguments of \newperson.

11.1 Defining and Undefining People

A person is defined (globally) using the command:

\newperson [(label)] { (full name) } { (familiar name) } { (gender) }

The optional argument is a unique label identifying this person, in the
event that there is more than one person. If (label) is omitted anon is
used. (This is also the case for subsequent commands that take an
optional label.) The gender may be any of those given by

\malelabels

or

\femalelabels

The default definition of \malelabelsismale,Male, MALE, M, m and
the default definition of \ femalelabels is
female,Female, FEMALE, F, £. You can add extra identifiers using

196

\addmalelabel

\addmalelabel { (identifier) }

or

\addfemalelabel

\addfemalelabel {(identifier) }

For example:

\addmalelabel {boy}
\addfemalelabel{girl}

The total number of defined people is given by:

\thepeople

\thepeople

A person can be undefined using:

\removeperson

\removeperson [(label)]

where the person is given by (label).
If more than one person has been defined, they can all be removed
using;:

\removeallpeople

\removeallpeople

or you can remove a subset using:

\removepeople

\removepeople { (list) }

where (list) is a comma-separated list of labels.

11.2 Displaying Information

Once a person has been defined, you can display their name using;:

\personfullname

\personfullname [(label)]

197

where (label) is the unique label used in the optional argument to
\newperson. The person’s familiar name is displayed using:

\personname

\personname [(label)]

The person’s pronoun (“he” or “she”) is displayed using;:

\personpronoun

\personpronoun [(label)]

The objective pronoun (“him” or “her”) is displayed using;

\personobjpronoun

\personobjpronoun [(label)]

The possessive adjective (“his” or “her”) is displayed using;:

\personpossadj

\personpossadj [(label)]

The possessive pronoun “his” or “hers” is displayed using:

\personposspronoun

\personposspronoun [(label)]

The person’s relationship to their parent (“son” or “daughter”) is
displayed using;:

\personchild

\personchild[(label)]

The person’s relationship to their child (“mother” or “father”) is
displayed using;:

\personparent

\personparent [(label)]

The person’s relationship to their sibling (“brother” or “sister”) is
displayed using;:

\personsibling

\personsibling[(label)]

198

\Personpronoun

\Personobjpronoun

\Personpossadj

\Personposspronou

\Personchild

\Personparent

\Personsibling

If the word occurs at the start of a sentence, you will need one of the
following commands, which are as the above, except the first letter is
converted to upper case:

\Personpronoun [(label)]

\Personobjpronoun [(label)]

\Personpossadi [(label)]

n

\Personposspronoun [{label)]

\Personchild[(label)]

\Personparent [(label)]

\Personsibling|[(label)]

Example 44 (Order of Service (Memorial))
This example is for a memorial order of service.

\documentclass{article}

\usepackage{person}

\newperson{Jane Doe}{Jane}{female}

\begin{document }

\begin{center}

\Large

In Memory of \personfullname
\end{center}

199

We are gathered here to remember our \personsibling\ \personname.
\Personpronoun\ will be much missed, and \personpossadj\

family are in our prayers.

\end{document }

In Memory of Jane Doe

We are gathered here to remember our sister Jane. She will be much
missed, and her family are in our prayers.

If there is more than one person, you will need to use the optional
argument (label) to \newperson to uniquely identify each person. You
can then list all of the people’s full or familiar names using:

\peoplefullname
\peoplefullname
\peoplename
\peoplename
Note that if there is only one person defined, these commands behave the
same as \personfullname [(label)] and \personname[(label)].
Similarly for the pronouns:
\peoplepronoun
\peoplepronoun
\Peoplepronoun
\Peoplepronoun

\peopleobjpronoun

\peopleobjpronoun

\Peopleobjpronoun

\Peopleobjpronoun

\peoplepossadj

\peoplepossad]

200

\Peoplepossadj

\Peoplepossad]

\peopleposspronoun

\peopleposspronoun

\Peopleposspronoun

\peoplechild

\Peoplechild

\peopleparent

\Peopleparent

\peoplesibling

\Peoplesibling

\Peopleposspronoun

where, again, if only one person has been defined, each of these

commands is equivalent to \person... [(label)] or \Person... [(label)].

If more than one person has been defined, these commands will display

they/them/their/theirs or They/Them/Their/Theirs, as appropriate.
Likewise for relationship commands:

\peoplechild

\Peoplechild

\peopleparent

\Peopleparent

\peoplesibling

\Peoplesibling

Example 45 (Order of Service (Baptism))

In this example two people are defined.

\documentclass{article}

201

\usepackage{person}

\newperson[john] {John Joseph} {John}{male}
\newperson[jane] {Jane Mary}{Jane}{female}

\begin{document }
\begin{center}

\Large

Baptism of \peoplefullname.
\end{center}

Today we welcome \peoplename\ into God’s family, may He guide
and protect \peopleobjpronoun.

\end{document }

This is produces the following text:

Baptism of John Joseph and Jane Mary.

Today we welcome John and Jane into God’s family, may He guide and
protect them.

Example 46 (Mail Merging Using Appropriate Gender)

In this example I have a CSV file called students.csv containing the
following:

FirstName, Surname, Gender, Parent, Address

John, "Smith, Jr",M,Mr and Mrs Smith,1 The Street\\Newtown
Jane, Brown, F,Ms Brown, 2 The Avenue\\Oldtown

Andy, Brown,male,Mr Brown and Miss Sepia,3 The Road\\Newtown
Z\"oe,Adams, f,Mr and Mrs Adams,5 The Street\\Newtown
Roger,Brady,m,Mrs Brady, 6 The Avenue\\Oldtowm

Clare,Vernon, female,Mr Vernon,7 The Close\\Anytown

Suppose I have to write to each student’s parents regarding their child. I
can load the information using \DTLloaddb (described in section 5.2). I
can then iterate through the database and define the student as a person
and use the commands defined in the person package to display the
correct gender related text. I could give each person a unique label based
on the row count (\DTLcurrent index), but since I don’t need to reuse
the information, I can use the default anon label and undefine the person
when no longer required.

Note that in the CSV file, the gender label isn’t consistent. For some
students the gender is identified by a single letter (“m” or “f”) and for
others the gender is identified by a complete word (“male” or “female”).

202

There’s also no regard for case. This doesn’t matter to \newperson as all
the identifiers used are listed in \malelabels and \femalelabels.
The following is an example letter sent to all parents:

\documentclass{letter}
\usepackage{person}

load student information from file "students.csv"
\DTLloaddb{students}{students.csv}
\begin{document }
Iterate through the student database:
\DTLforeach{students} {\FirstName=FirstName, \Surname=Surname, %
\Gender=Gender, \Parent=Parent, \Address=Address} {%
Define "anon":
\newperson{\FirstName\space\Surname} {\FirstName} {\Gender}$%
Do the letter:
\begin{letter} {\Parent\\\Address}
\opening{Dear \Parent}
Your \personchild\ \personname\ has been awarded a
place. We look forward to seeing \personobjpronoun\
on \personpossadj\ arrival.
\closing{Yours Sincerely}
\end{letter}
Undefine "anon":
\removeperson
}

\end{document }

The body of the first letter appears as follows:

Your son John has been awarded a place. We look forward to seeing
him on his arrival.

Whereas the body of the second letter appears as follows:

Your daughter Jane has been awarded a place. We look forward to
seeing her on her arrival.

11.3 Advanced Commands
This section describes additional commands provided by the person

package. More detail can be found in the documented code
(datatool-code.pdf).

203

\ifpersonexists

\ifmale

\iffemale

\ifallmale

\ifallfemale

\ifmalelabel

11.3.1 Conditionals

\ifpersonexists{(label)} { (true part)} { (false part)}

Tests if the person identified by (label) has been defined. If true, do (true
part) otherwise do (false part).

\ifmale {(label)} { (true part)} { (false part)}

Test if the person identified by (label) is male. If true, do (true part)
otherwise do (false part).

\iffemale{(label)} { (true part)} { (false part)}

Test if the person identified by (label) is female. If true, do (true part)
otherwise do (false part).

\ifallmale [(label list)] { (true part)} { (false part)}

Tests if all the people listed in (label list) are male. If true, do (true part)
otherwise do (false part). If (label list) is omitted, applied to all defined
people.

\ifallfemale [(label list)] { (true part)} {{false part)}

Likewise to test if all the people tested are female.
To determine if a string is an allowed male label:

\ifmalelabel {(identifier)} { (true part)} { (false part) }

where (identifier) is the string to be tested. If true, do (true part) otherwise
do (false part). For example:

\def\gender {M}
\ifmalelabel{\gender}{male}{not male}

Similarly to for an allowed female label:

204

\iffemalelabel

\foreachperson

\malename
\femalename

\getpersongender

\getpersonname

\iffemalelabel {(identifier) } { (true part)} { (false part)}

For example:

\ifmalelabel{\gender}{Male}{$%
\iffemalelabel{\gender} {Female}$%
{Undefined Gender}%

11.3.2 Iterating Through Defined People

You can iterate through all defined people using:

\foreachperson ((name cs), (full name cs), (gender cs), (label
cs)) \do { (body) }

At each iteration, (name cs), (full name cs), (gender cs) and (label cs) are set
to the current person’s name, full name, gender and label, respectively.
(These arguments must all be command names.) Note that the gender is
set to the definition of \malename or \ femalename, as appropriate.l
Once these commands are set, (body) is applied.

If you only want to iterate through a subset of defined people, you can
use:

\foreachperson ({name cs), (full name cs), (gender cs), (label
cs)) \in{(list) } \do{ (body) }

where (list) is a comma-separated list of labels.

11.3.3 Accessing Individual Information

\getpersongender{(cs)} { (label) }

Gets the gender of the person identified by (label) and stores in (cs)
(which must be a command name). This sets (cs) to the definition of
\malename or \femalename as appropriate.

Predefined names provided by the person package are described in the documented code
(datatool-code.pdf).

205

\getpersonname {(cs) } { (label) }

Gets the name of the person identified by (label) and stores in (cs) (which
must be a command name).

\getpersonfullname

\getpersonfullname{{cs)} { (label)}

Gets the full name of the person identified by (label) and stores in (cs)
(which must be a command name).

206

Bibliography

[1] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The
BTEX Companion. Addison-Wesley, 1994.

207

Acknowledgements

Many thanks to Morten Hogholm for providing a much more efficient
way of storing the information in databases which has significantly
improved the time it takes to IZTEX documents containing large databases.

208

A
NACT e e e 120
NACE 119
\acronymfont 105,119
NACTPL ot 120
Nacrpl oo 119
\addfemalelabel 197
\addmalelabel 197
\alphaoviiinn.. 105
\andname 105
\appto ..o 111
B
beamerclass 120
booktabs package 50, 57, 58
\bottomrule 50, 58
C
\capitalisewords . 118,119,122
\chapter 124
colortbl package 59
counters:
DTLbarroundvar 164
DTLbibrow 191
DTLmaxauthors 186
DTLmaxeditors 186
DTLpieroundvar 137
DTLplotroundXvar 155
DTLplotroundYvar 155
DTLrowi 53
DTLrowiiovue.... 53
DTLrowiii 53
D
databar package i,2,3,161
databib package ii,
2,3,175,179, 180, 182-185, 189
datagidx package
..... i, 2, 3,100, 101, 105, 128
\datagidxdictindent 125
datapie package ii, 2,3,131,139

dataplot package i, 2, 3, 144
datatool package i,1ii, 2, 3,22, 24,
26, 28, 33, 36, 38, 39, 45, 54,
68, 72, 86, 94, 100, 128, 131,

144,152, 161, 175, 179, 183, 193

datatool-base package . i,2,4,5, 22,23
datatool-fp package i,ii, 2,3,24
datatool-pgfmath package . 1i,ii, 2, 3, 24
\datatoolparenstart 79
\datatoolpersoncomma . /8,108
\datatoolplacecomma 78
\datatoolsubjectcomma ... 78
datatooltk i, 36,39, 85, 86,100,101
\DBIBcitekey 189
\DBIBentrytype 189
Ndef .. 111
NAOtFILlLl wvveeee 121
\DTLabs0oi..... 26
\DTLadd ... 24,73
\DTLaddall 24
\DTLaddcolumn 39
\DTLaddentryforrow 38
\DTLaddtoplotlegend 152
\dtlaftercols 48
\DTLafterinitialbeforehyphen
.................... 35
\DTLafterinitials 35
\dtlafterrow 93
\DTLandlast 186
\DTLandnotlast 186
\dtlappendentrytocurrentrow
.................... 95
\DTLappendtorow 70
\DTLassign 90
\DTLbaratbegintikz 165
\DTLbaratendtikz 165
\DTLbarchart 161
\DTLbarchart options
AXES .+ v e 162
barlabel 162

209

length 162

MaX © oo e en 162,170

maxdepth 162,170

upperbarlabel 162

variable 162

verticalbars 163, 166

ylabel 163

yticgapo 163

yticlabels 163

yticpoints 163
\DTLbarchartlength 163
\DTLbarchartwidth 170,173
\DTLbardisplayYticklabel 166
\DTLbargroupwidth 173
\DTLbarlabeloffset 164
\DTLbarmax 170
\DTLbaroutlinecolor 165
\DTLbaroutlinewidth 165
DTLbarroundvar (counter) .. 164
\DTLbarwidth 164
\DTLbarXlabelalign 166
\DTLbarYticklabelalign . 166
\dtlbeforecols 48
\dtlbeforerow 93
\dtlbetweencols 48
\DTLbetweeninitials 35
\DTLBIBdbname 195
\DTLbibfield 189
\DTLbibfieldcontains 180
\DTLbibfieldexists 180
\DTLbibfieldiseq 180
\DTLbibfieldisge 181
\DTLbibfieldisgt 181
\DTLbibfieldisle 181
\DTLbibfieldislt 181
\DTLbibfieldlet 190
\DTLbibitem 186
\DTLbibliography 180
\DTLbibliographystyle .. 184
DTLbibrow (counter) 182,191
\dtlbreak 54
\DTLcite 192
\DTLcleardb 86
\DTLCLlip *v'vviien. 32
\DTLcolumncount 37
\dtlcolumnindex 89
\dtlcompare 78,80, 126
\DTLcomputebounds 76

\DTLcomputewidestbibentry

................... 191
\DTLconverttodecimal .

.............. 22,72,157
\dtlcurrencyalign 47
\dtlcurrencyformat 48
\DTLcurrencytype 87
\DTLcurrentindex 53,202
\dtlcurrentrow 93
\dtldbname 93
\DTLdecimaltocurrency . 23,72
\DTLdecimaltolocale ... 22,72
\dtldefaultkey 41
\DTLdeletedb 86
\dtldisplayafterhead 49
\dtldisplaycr 49
\DTLdisplaydb 44
\dtldisplayendtab 49
\DTLdisplayinnerlabel 138
\DTLdisplaylongdb 45

\DTLdisplaylowerbarlabel 166
\DTLdisplaylowermultibarlabel

................... 166
\DTLdisplayouterlabel 138
\dtldisplaystartrow 49
\dtldisplaystarttab 49

\DTLdisplayupperbarlabel 167
\DTLdisplayuppermultibarlabel

................... 167
\dtldisplayvalign 49
\DTLdiv 26
\DTLdobarcolor 165
\DTLdocurrentpiesegmentcolor

................... 140
\DTLdopiesegmentcolor 140
\DTLendbibitem 186
\DTLendptcuovon.. 165
DTLenvforeach (environment)

.................. 52,52
DTLenvforeachx (environment)

.................. 52,52
\DTLeverybarhook 165
\dtlexpandnewvalue 38
\DTLfetch 90
\dtlforcolumn 88
\dtlforcolumnidx 88
\DTLforeach

51,53-56, 64, 70, 73-76,

90, 123, 131, 140, 144, 157, 162

210

\DTLforeach* 51

\DTLforeachbibentry 189,190
\DTLforeachbibentryx ... 189
\dtlforeachkey 87
\DTLforeachkeyinrow 54
\DTLformatabbrvforenames 185
\DTLformatauthor 184
\DTLformatbibentry 190
\DTLformateditor 184
\DTLformatforenames 185
\DTLformatjr 185
\DTLformatlegend 157
\DTLformatsurname 185
\DTLformatvon 185
\DTLgabsc.ovo.... 26
\DTLgadd 24,73
\DTLgaddall 24
\DTLgcleardb 86
\DTLgClip v vv i 32
\DTLgdeletedb 86
\DTLgdivvvu.... 26
\DTLgetcolumnindex 88
\DTLgetdatatype 87
\dtlgetentryfromcurrentrow
.................... 94
\DTLgetkeydata 89
\DTLgetkeyforcolumn 89
\DTLgetlocation 89
\dtlgetrow 92
\dtlgetrowforvalue 93
\DTLgetrowindex 92
\dtlgetrowindex 92
\DTLgetvalue 89
\DTLgetvalueforkey 89
\DTLgidxAcrStyle 119

\DTLgidxAddLocationType 103
\DTLgidxCategoryNameFont 125

\DTLgidxCategorySep 125
\DTLgidxChildSep 124
\DTLgidxCounter 102
\DTLgidxCurrentdb 126
\DTLgidxDictPostItem ... 125
\DTLgidxFetchEntry 114
\DTLgidxGobble 111
\DTLgidxIgnore 112
\DTLgidxMac 109
\DTLgidxName 108
\DTLgidxNameNum 109
\DTLgidxNoFormat 111

\DTLgidxOffice 110
\DTLgidxParen 107
\DTLgidxParticle 110
\DTLgidxPlace 107
\DTLgidxPostChild 124
\DTLgidxRank 108
\DTLgidxSaint 109
\DTLgidxSetCompositor .. 103
\DTLgidxSetDefaultDB ... 103

\DTLgidxStripBackslash . 112
\DTLgidxSubCategorySep . 125

\DTLgidxSubject 108
\DTLOMAX '« ¢ v e eeeeeeeenn. 28
\DTLgmaxall 29
\DTLgmeanall 29
\DTLgmin 27
\DTLgminall 28
\DTLgmul 25
\DTLgNeqvueuenen... 27
\DTLgnewdb 36
\DTLground 31
\DTLgsdforall 31
\DTLgsSgrt 27
\DTLgsSubcovvuun... 25
\DTLgtrunc 31
\DTLgvarianceforall 29
\dtlheaderformat 48
\dtlicompare 78, 80
\DTLifAllLowerCase 15
\DTLifAllUpperCase 14
\DTLifbibanyfieldexists 190
\DTLifbibfieldexists ... 190
\DTLifcasedatatype 8
\DTLifclosedbetween 13
\DTLifclosedbetween* 13
\DTLifcurrency 6
\DTLifcurrencyunit 7
\DTLifdbempty 37
\DTLifdbexists 88
\DTLifeqcovuieuenon.. 9
\DTLifeqg*ou.... 9
\DTLiffirstrow 53,57
\DTLifFPclosedbetween ... 14
\DTLifFPopenbetween 14
\DTLifgtc....... 12
\DTLifgt* 12
\DTLifhaskey 88
\DTLifinlist 91
\DTLifint 5

211

\DTLiflastrow 53

\DTLiflt 11
\DTLifltx 11
\DTLifnull 67
\DTLifnullorempty 67
\DTLifnumclosedbetween .. 12
\DTLifnumeq 8
\dtlifnumeq 8
\DTLifnumerical 7
\DTLifnumgt 11
\DTLifnumlt 10
\dtlifnumlt 10
\DTLifnumopenbetween 13
\DTLifoddrow 54, 60
\DTLifopenbetween 14
\DTLifopenbetweenx 14
\DTLifreal 5
\DTLifStartsWith 16
\DTLifstring 8

\DTLifstringclosedbetween 12
\DTLifstringclosedbetweenx

.................... 12
\DTLifstringeqg 9
\DTLifstringegx 9
\DTLifstringgt 11
\DTLifstringgt* 11
\DTLifstringlt 10
\DTLifstringlt* 10

\DTLifstringopenbetween . 13
\DTLifstringopenbetween* 13

\DTLifSubString 15
\DTLinitialhyphen 35
\DTLinitials 34
\dtlintalign 47
\dtlintformat 48
\DTLinttype 87
\DTLisclosedbetween 19
\DTLiSCUTrTeNncy 17
\DTLiscurrencyunit 17
\DTLiseqoovvvun... 19
\DTLisFPclosedbetween ... 21
\DTLisFPeqg 21
\DTLisFPgt 20
\DTLisFPgteqg 20
\DTLiSFPlt 20
\DTLisFPlteq 20
\DTLisFPopenbetween 21
\DTLisgt 18, 56
\DTLisiclosedbetween 19

\DTLisieqg 19
\DTLisigt 19
\DTLisiltvvunn .. 18
\DTLisint 18
\DTLisiopenbetween 20
\DTLisltouvon... 18
\DTLisnumerical 17
\DTLisopenbetween 20
\DTLisPrefix 21
\DTLisreal 18
\DTLisstring 16
\DTLisSubString 21
\dtllastloadeddb 86
\DTLlegendxoffset 154
\DTLlegendyoffset 154
\dtlletterindexcompare .. 78
\DTLloadbbl 179
\DTLloaddb 40, 42,43, 87,202
\DTLloaddb options
autokeys 41
headers 41, 63
keys . .. o 40, 41
noheader 40
noheaders 46
omitlines 41
\DTLloaddbtex 39
\DTLloadmbbl 193
\DTLloadrawdb 43,87
\DTLmajorgridstyle 156
ADTLMAX « v oo e e e e ae . 28
\DTLmaxall 28
DTLmaxauthors (counter) ... 186
DTLmaxeditors (counter) ... 186
\DTLmaxforcolumn 76
\DTLmaxforkeys 76,159
\DTLmbibitem 186
\DTLmbibliography 193
\DTLmeanforall 29
\DTLmeanforcolumn 74
\DTLmeanforkeys 74,77
\DTLmidpt 165
ADTLmMin . ..ovveneen... 27
\DTLminall 28
\DTLminforcolumn 76
\DTLminforkeys 75,159
\DTLminorgridstyle 156
\DTLminorticklength 154
\DTLmintickgap 146, 154
\DTLmuloounveenn... 25

212

\DTLmultibarchart 161
\DTLmultibarchart options

AXES « v e 162
barlabel 162
groupgap ... 163,170
length 162
MaX «ovveeenene 162,170
maxdepth 162,170
multibarlabels 162
uppermultibarlabels 163
variables 162,170
verticalbars 163
ylabel 163
yticgap L 163
yticlabels 163
yticpoints 163
\DTLmultibibs 192
\DTLNEg « .ot v iemeeneene.. 27
\DTLnegextent 170
\DTLnewcurrencysymbol .. 4,7
\DTLnewdb 36,85, 195
\DTLnewdbentry 38, 40, 85
\DTLnewdbonloadfalse .. 43,687
\DTLnewdbonloadtrue 43
\DTLNEWIrOW 37,85
\DTLnocite 193
\dtlnoexpandnewvalue 38
\DTLnumbernull 67
\DTLnumitemsinlist 91
\DTLPATY + vt ieeeee e 38,44
\DTLpieatbegintikz 141
\DTLpieatendtikz 141
\DTLpiechart 131, 141
\DTLpiechart options
cutaway 132,135
cutawayoffset 132
cutawayratio 132
innerlabel 132,137
inneroffset 132
innerratio 132
outerlabel 133, 141
outeroffset 132,133
outerratio 132
radius 132
ratio L 132
rotateinner 133
rotateouter 133
start 131
variable 131,132,137

\DTLpieoutlinecolor 140
\DTLpieoutlinewidth 140
\DTLpiepercent 137
DTLpieroundvar (counter) .. 137
\DTLpievariable 137

\DTLplot 144,153,155, 156,158, 159
\DTLplot options

AXES « v i 145
bounds 144, 146
box 145
colors, 144
grid 147
height 145
legend 147,150
legendlabels 147
linecolors 144
lines 145
markcolors 144
marks 144
MAXK o ee et ee e e 146
MaXy . vveeieeene . 146
MINX .o e 146
mnyco.o... 146
style L. 145, 148
tiedir ... L. 146
width 145
> 144
xlabel 147
xminortics 146
xticdir oo L 146
xticgap 146
xticlabels 147
xticpoints 146, 150
xtics ... 145
Y e 144
ylabel 147
yminortics 146
yticdir L 146
yticgap 146, 147
yticlabels 147
yticpoints 146
ytics .. .o 145
\DTLplotatbegintikz 152,159
\DTLplotatendtikz 152,159
\dtlplothandlermark 152,159
\DTLplotheight 154
\DTLplotlinecolors 156
\DTLplotlines 155
\DTLplotmarkcolors 155

213

\DTLplotmarks 155
DTLplotroundXvar (counter) .

................ 147, 155
DTLplotroundYvar (counter) .
................ 147, 155
\DTLplotstream 157,158
\DTLplotwidth 154
\DTLprotectedsaverawdb 36,85
\DTLrawmap 44
\dtlrealalign 47
\dtlrealformat 48
\DTLrealtype 87
\dtlrecombine 94
\dtlrecombineomitcurrent 94
\DTLremovecurrentrow /1
\DTLremoveentryfromrow .. 70
\dtlremoveentryincurrentrow
.................... 94
\DTLremoverow 70
\DTLreplaceentryforrow .. 70
\dtlreplaceentryincurrentrow
.................... 94
\DTLround 31,73
\DTLrowcount 37
DTLrowi (counter) 53,58, 59
DTLrowii (counter) 53
DTLrowiii (counter) 53
\dtlrownum 93
\DTLsavedb 85
\DTLsavelastrowcount .. 54,73
\DTLsaverawdb 36, 85
\DTLsavetexdb 85
\DTLsdforall 30
\DTLsdforcolumn 75
\DTLsdforkeys 75
\DTLsetbarcolor 164
\DTLsetdefaultcurrency .. 23
\DTLsetdelimiter 41,85
\DTLsetheader 39
\DTLsetnumberchars 4
\DTLsetpiesegmentcolor . 140
\DTLsetseparator 41,85
\DTLsettabseparator ... 41,85
\DTLsOort 80,127
\dtlsort 77,127
\DTLSOrt* ..., 80
\DTLsplitstring 33
\DTLSQrtvuvvnn... 27
\DTLstartpt 165

\DTLstoreinitials 34
\dtlstringalign 47
\dtlstringformat 48
\DTLstringnull 67
\DTLstringtype 87
ADTLSUD .« viiiii it 25
\DTLsubstitute 33
\DTLsubstituteall 33
\DTLsumcolumn 74
\DTLsumforkeys 73
\dtlswapentriesincurrentrow
.................... 95
\DTLSWapPIOWSuuwu... 90
\DTLticklabeloffset 154,169
\DTLticklength 154
\DTLtrunc 31
\DTLtwoand 186
\DTLunsettype 87
\dtlupdateentryincurrentrow
.................... 95
\DTLvarianceforall 29
\DTLvarianceforcolumn ... 75
\DTLvarianceforkeys 75
\dtlwordindexcompare
.............. 78,79,125
\DTLXAxisStyle 156
\DTLYAxisStyle 156
E
\edtlgetrowforvalue 93
\emph 105
\ensuremath 105
environments:
DTLenvforeach 52,52
DTLenvforeach=* 52,52
EUrOPECY . v v v v vttt 189
longtable 44,45, 49
multicols 122
table ... i i 46
tabular 4446, 48, 49,
51, 60-63, 68, 73, 88, 98, 189
thebibliography 191
tikzpicture 141,142,144, 152
verbatim 51
etoolbox package 67,111
europecv (environment) 189
europecvclass 189
F
\femalelabels 196, 203

214

\femalename 205, 205
\field 117
file types
AUX « o e e et 175
bbl 175,176,179, 183
bib 175,176, 179, 188, 189
bst ... 175
\foreachperson 205
fopackage ii, 2,22-24,72
G
\Ngdef 111
\gDTLforeachbibentry ... 189
\gDTLforeachbibentry .. 189
\gDTLformatbibentry 190
\getpersonfullname 206
\getpersongender 205
\getpersonname 205
glossaries package 3, 100, 101, 115, 120
\NGLS v 116
\Ngls o 116
\glsadd 115
\glsaddall 115
\Glsdispentry 114
\glsdispentry 114
\glslink 113
\Glsnl ... 116
\glsnl 116
\Glspliiini.... 116
\glspl ..., 116
\Glsplnlcv..... 116
\glsplnl 116
\glsreset 120
\glsresetall 120
\GLISSYmM ... vvviiinnnn.n. 117
\NglsSSymouiuin... 116
\glsunset 120
\glsunsetall 120
graphics package 169
graphicx package 169
H
NREFIIL o 121
hyperref package 113,128
I
\ifallfemale 204
\ifallmale 204
\ifdefempty 67
\ifDTLverticalbars 166

\ifentryused 121

\iffemale 204
\iffemalelabel 205
\ifmale 204
\ifmalelabel 204
\ifpersonexists 204
\iftermexists 121
ifthen package 16,51, 182
\input 39, 86
inputenc package 106
L
\label options
0 i 105
\Nlet oo 111
\loadgidx 100
\loadgidx options
SOrt .o 101
longtable (environment) 44,45,49
longtable package 45
M
\makefirstuc 122
makeindex 100, 103, 125, 126
\MakeLowercase 105
\MakeTextLowercase 105
\MakeTextUppercase 105,118,119
\MakeUppercase 105
\malelabels 196, 203
\malename 205, 205
mfirstuc package 113,119,122
\midrule 50, 57, 58
morewrites package 86
multicol package 122
multicols (environment) ... 122
N
\NEWACYO vt v viienen. 118
\newgidx 101,120, 121, 124
\newgidx options
balance 102
heading 102
postheading 102
showgroups 101
SOMt v o 102
style 102,124
\newperson 196, 203
\newterm 103,114,117, 118
\newterm options
database 103

215

description 104, 114
label 104
long 104, 105, 114, 118
longplural 105, 114
parent 104, 115
plural 104,114
SEE . 105, 115
seealso 105, 115
short 104,114,118
shortplural 104, 115
sort, 104, 115
symbol 104, 114
text 104, 114, 118-120
\newtermaddfield 117
\newtermlabelhook 110
\not 182
(0]
N0 v 106
P
package options:
child 127
color
databar 161
datapie 131
columns 127
compositor 103,128
delimiter 2
draft 128
final 128
gray
databar 161
datapie 131
horizontal
databar 161, 166
location 127
math 2,3
fpo .o 2,3
pgfmath 2,3
namecase 127
namefont 127
norotateinner
datapie 131,133
norotateouter
datapie 131, 133
nowarn 128
optimize 127
high 127

low 127
off 127
postdesc 127
postname 127
prelocation 127
rotateinner
datapie 131,133
rotateouter
datapie 131,133
SEE .. 128
separator 2
style
databib 183,184
symboldesc 128
verbose 2,3,128,175
true 2,3
vertical o
databar 161, 166
\Peoplechild 201
\peoplechild 201
\peoplefullname 200
\peoplename 200
\Peopleobjpronoun 200
\peopleobjpronoun 200
\Peopleparent 201
\peopleparent 201
\Peoplepossadj 201
\peoplepossadj 200
\Peopleposspronoun 201
\peopleposspronoun 201
\Peoplepronoun 200
\peoplepronoun 200
\Peoplesibling 201
\peoplesibling 201

person package
ii, 2, 3, 196, 202, 203, 205

\Personchild 199
\personchild 198
\personfullname 197
\personname 198
\Personobjpronoun 199
\personobjpronoun 198
\Personparent 199
\personparent 198
\Personpossadj 199
\personpossadj 198
\Personposspronoun 199
\personposspronoun 198
\Personpronoun 199

216

\personpronoun 198
\Personsibling 199
\personsibling 198
pgf package 3,24,
131, 144, 145, 155-157, 161, 173
pgfmath package ii, 2, 22-24
\pgfplothandlermark 152,159

\printterms 100,102, 121,124,126
\printterms options

balance 123
child 123
childsort 123
columns 102,122,123
condition 123
database 121
heading 123
location 121
locationwidth 123,124
namecase 122
namefont 122
postdesc 121
postheading 123
postname 122
prelocation 121
SEE i i 122
showgroups 123,124
sort 123, 126, 127
style 123,124
symboldesc 122
symbolwidth 123,124
probsoln package 36
R
\removeallpeople 197
\removepeople 197
\removeperson 197
S
\section 124
siunitx package 47
\sort options
K oo 105

substr package 33

table (environment) 46
tabular (environment)
.......... 44-46, 48, 49,
51, 60-63, 68, 73, 88, 98, 189

\tabularnewline 49
\NTeX e 111
\textbf 105
textcase package 15,119
textcomp package 6
\textit 105
\textmd 105
\textrm 105
\textsc 105
\textsf 105
\textsl 105
\textsuperscript 105
\texttt 105
thebibliography (environ-
ment) 191
\thepeople 197
tikz package 131,141
tikzpicture (environment) ..
......... 141, 142,144,152
\toprule 50, 58
U
\USEentry 113
\Useentry 113
\useentry 112,119
\USEentrynl 113
\Useentrynl 113
\useentrynl 113
\%
verbatim (environment) 51
X
xindy 100, 103, 125, 126

217

	Contents
	List of Examples
	List of Figures
	List of Tables
	Introduction
	Data Types
	Conditionals
	ifthen conditionals

	Fixed Point Arithmetic
	Strings
	Databases
	Creating a New Database
	Loading a Database from an External ASCII File
	Displaying the Contents of a Database
	Iterating Through a Database
	Null Values
	Editing Database Rows
	Arithmetical Computations on Database Entries
	Sorting a Database
	Saving a Database to an External File
	Deleting or Clearing a Database
	Advanced Database Commands
	Operating on Current Row

	Creating an index, glossary or list of acronyms (datagidx package)
	Defining Index/Glossary Databases
	Locations
	Defining Terms
	Commands to Assist Sorting

	Referencing Terms
	Shortcut Commands

	Adding Extra Fields
	Acronyms
	Using Acronyms
	Unsetting and Resetting Acronyms

	Conditionals
	Displaying the Index or Glossary
	Index or Glossary Styles
	Sorting the Index or Glossary Database

	Package Options

	Pie Charts (datapie package)
	Pie Chart Variables
	Pie Chart Label Formatting
	Pie Chart Colours
	Adding Extra Commands Before and After the Pie Chart

	Scatter and Line Plots (dataplot package)
	Adding Information to the Plot
	Global Plot Settings
	Lengths
	Counters
	Macros

	Adding to a Plot Stream

	Bar Charts (databar package)
	Changing the Appearance of a Bar Chart

	Converting a BibTeX database into a datatool database (databib package)
	BibTeX: An Overview
	BibTeX database

	Loading a databib database
	Displaying a databib database
	Changing the bibliography style
	Modifying an existing style

	Iterating through a databib database
	Multiple Bibliographies

	Referencing People (person package)
	Defining and Undefining People
	Displaying Information
	Advanced Commands
	Conditionals
	Iterating Through Defined People
	Accessing Individual Information

	Bibliography
	Acknowledgements
	Index

