
The svg Package

Philip Ilten
philten@cern.ch

v1.0 (2012/09/05)

Contents

1 Introduction 1

2 Usage 2

3 Example 4

4 ROOT 5

5 Implementation 7

6 Thanks 11

1 Introduction

The open source program Inkscape has provided an excellent resource for the
simple and easy creation of images and diagrams using a graphical user interface.
The work by Johan B. C. Engelen has further enhanced the ability of Inkscape
to split an svg into a text component that can be imported into LATEX, and an
image component that can be imported as a pdf.1 Consequently it is now possible
to include an svg into a LATEX document where the text within the svg has been
rendered natively by LATEX.

The purpose of this package is twofold. First, the syntax of the com-
mand \includegraphics from the graphicx package has been extended to an
\includesvg command, which allows the specification of the svg width and height
using keys in an optional first argument. Second, this package allows for the ex-
traction of the svg, as rendered within the LATEX document, to an independent
image file. This is particularly useful when attempting to provide images to jour-
nals or collaborators, and one wishes the image to appear exactly as it does within
the original LATEX document.

1For further information see the svg-inkscape documentation on CTAN.

1

http://www.ctan.org/tex-archive/info/svg-inkscape


There is actually a third purpose to this package, which will almost certainly be
relevant to experimental particle physicists only, who frequently use the analysis
package Root. Further details on how to obtain beautiful Root plots using this
package are given in Section 4.

This documentation is broken into five parts: an explanation of the usage is
given in Section 2, an example is given in Section 3, further details with use in
Root is given in Section 4, and finally, the full implementation is given in Section
5 which hopefully should not need to be read.

There is one further point which is important to mention. This package relies
heavily upon executing commands from the shell using the \write18 command,
and so it is necessary for the flag -shell-escape to be included when compil-
ing documents using this package. Additionally, this package requires a working
installation of Inkscape and PdfLatex in order for an svg to be included or
extracted to a pdf. In order to extract to eps and png formats, the programs
PdfToPs and Convert (part of ImageMagick) must be installed respectively.
Finally, this package will not work on Windows, but should run on any *nix plat-
form as long as the paths to the appropriate programs are correctly defined.

2 Usage

The command to include an svg is similar to the \includegraphics command\includesvg

provided by the graphicx package. However, now the command

\includesvg[<options>]{<svg filename>}

is used where <svg filename> is the filename of the svg without the path or the
.svg postfix.

The <options>, described in detail below, can be specified globally for the\setsvg

package

\usepackage[<options>]{svg}

and reset locally when supplied to the \includesvg macro. The options can also
be reset globally using the macro \setsvg

\setsvg{<options>}

where <options> is a comma separated list of options.
The width of the svg can be specified via the width option and the height byoptions

width

height

svgpath

the height option. If both the width and height are specified, the width will be
used and the height will be rescaled to match the aspect ratio of the svg. The
path to the svg can be specified using the svgpath option, where the path must
terminate in a /. The default svgpath is set to the current directory, ./.

The included svg can be extracted from the document into a pdf, eps, or pngoptions
pdf

eps

png

independent of the document. The pdf flag enables pdf extraction, while the eps
and png flags enable eps and png extraction respectively. For example,

\includesvg[pdf,eps,<additional options>]{<svg filename>}

2



will extract the svg to both pdf and eps formats By default, all of these flags are
set to false and no extraction of the svg is performed. The extraction will render
the svg to the specified output(s) of choice using the same size as specified within
the \includesvg command. Consequently, the scale between the image and text
in the extracted output(s) will remain identical to the scale within the document
from which the svg was extracted.

The root name of the extracted output can be specified with the name option.options
name

path

For example,

\includesvg[name=foo,eps,png,<additional options>]{<svg filename>}

will extract the svg to the files foo.eps and foo.png in the current directory. By
default, name is set to Fig.\arabic{svgfigure}\alph{subfigure} and so any
svg included within a figure or subfigure environment will automatically be
labeled; i.e. if an svg is included in the first figure and second subfigure of the
document, and pdf extraction was requested, the svg will be extracted to the file
Fig.1b.pdf. A path for the extracted files can also be specified with the path
option, which must terminate with a /. The default path is set to the current
directory, ./.

Because a large number of files is generated for each svg extraction, it isoptions
clean

exclude

oftentimes desirable to automatically remove the temporary files. Using the option
clean will remove any generated files created other than the extracted output(s)
requested. The clean option is by default set as false to enable debugging.
Additionally, sometimes it may be necessary to export an svg without including
it in the current document. If the flag exclude is specified, the svg will not be
rendered in the current document, but will be extracted to the requested output(s).

Commands prior and post to the inclusion of the svg may be desired, such asoptions
pretex

postex

font or color commands. For example, to change the text size of the include svg
text one could use

{\tiny \includsvg[<options>]{<svg filename>}}

where now the text will be rendered in the font size specified by \tiny. In this
example, however, the \tiny command would not be included in the extracted out-
put and so the options pretex and postex are provided where the LATEX provided
to pretex is included before the svg, and postex after the svg. Consequently,
the example above can be rewritten as

\includsvg[pretex=\tiny,<additional options>]{<svg filename>}

where now the changed font size will be propagated to the extracted output.
Specialized LATEX macros can be used in the svg which can then be definedoptions

preamble

end

in the preamble of the LATEX document in which the svg is to be included. Ad-
ditionally, specialized packages such as \relsize may be needed by the LATEX
code extracted from the svg. Consequently, the preamble of the current LATEX
document is used for the extraction of the svg by default. It is possible, however,
to specify a different preamble with the option preamble where the file to use as
the preamble (including path and postfix) is given as the argument. The default

3



definition of preamble is \jobname.tex, and should suffice for most cases. The
preamble up to the line defined by the option end will be used, which is set to
a default of \begin{document}. Notice that an exact match must be made, and
so if any comments or text are on the same line after the \begin{document}, the
preamble will not be correctly extracted.

A variety of commands are executed directly to the system, via \write18 usingoptions
inkscape

pdflatex

pdftops

convert

this package and consequently, it may be necessary to change the binary paths
and options for each individual command. For the inclusion of an svg, Inkscape
is used to separate the text and image from the svg and can be set using the
inkscape option. By default the inkscape option is set to inkscape -z -C which
performs a non-gui export of svg page (notice that the -C option indicates page
and not drawing). For the extraction of a pdf, the LATEX program is used which is
set by the pdflatex option and set to pdflatex by default. The extraction of an
eps is performed by converting a pdf to an eps using PdfToPs. This command
is set with the pdftops option and is set by default to pdftops -eps. Finally,
conversion to png is accomplished via the Convert program which is set with
the convert option and by default set to convert -density 300 where -density
controls the resolution of the extracted png in dots per inch.

3 Example

As an example2 take the following lines of code

\begin{figure}

\subfloat[This text is too large!]{\includesvg[clean,

preamble=preamble.tex,pdf,width=5cm]{example}}

\subfloat[This text fits better.]{\includesvg[clean,

preamble=preamble.tex,eps,pretex=\relscale{0.5},width=5cm]{example}}

\caption{An example figure.\label{fig:example}}

\end{figure}

where the svg example.svg within this directory has been included twice using
the \svginclude command. The output is shown in Figure 1.

The first subfigure is created with the export option pdf with the default
name, and so the file Fig.1a.pdf is extracted. However, the text is overrunning
the margins of the image, and so the second subfigure decreases the relative size
of the text within the image using the pretex option. Now, an eps is requested
for extraction, and so the file Fig.1b.eps is created.

Notice that for both subfigures, the preamble was set to preamble.tex, also
included in this current directory, rather than the default current document. Ad-
ditionally, the flag clean has been used which forces the cleanup of any extraneous
generated files.

2The image used here is a slightly modified version of the image used in the initial documen-
tation on how to include an svg in LATEX by J. Engelen available on CTAN.

4

http://www.ctan.org/tex-archive/info/svg-inkscape


Inkscape

red
45

gr
ad

en

limn→∞
∑n

k=1
1
k2

This Figure 1

ooo

blue
green

aligned on baseline

90
degrees

90
de

gr
ee

s

ooo
ooo

xy z
TikZ this→

transparent

(a) This text is too large!

Inkscape

red

45
gr
ad

en

limn→∞
∑n

k=1
1
k2

This Figure 1

ooo

blue
green

aligned on baseline

9
0

d
e
g
re

e
s 9

0
d
e
g
re

e
s

ooo

ooo

x
y
zTikZ

this→

transparent

(b) This text fits better.

Figure 1: An example figure.

4 ROOT

Root has the ability to export directly to an svg, which means that it is possible
to completely by-pass all of Root’s internal text rendering machinery, and let
LATEX handle the text natively. This means that all of the ugly fonts that are
rendered by Root can now be completely avoided, with the additional bonus of
being able to add references within plots. So how does one go about using this
package with Root?

1. Create the plot with Root as normal, but turn off all LATEX interpreta-
tion of text strings. This is a bit tricky, but can be accomplished by set-
ting the font in Root to a precision of zero as described in the documen-
tation for TAttFill. Remember that the font is set using the function
(TAttFill*)->SetTextFont(i) where i is the (font type) × 10 + (font
precision). In the following lines of code, a TStyle is defined which sets the
font to type “Courier New” with a precision of zero.

TStyle *style = new TStyle("style","style"); int FONT = 80;

style->SetTextFont(FONT);

style->SetLabelFont(FONT,"XYZ");

style->SetTitleFont(FONT,"XYZ");

style->SetTitleFont(FONT,"");

gROOT->SetStyle("style");

gROOT->ForceStyle();

Now, just use the standard LATEX syntax for creating labels, etc. Note
however, that the backslash must be escaped due to interpretation of special
characters by C++.

2. Print the plot as an svg.

gPad->Print("foo.svg");

3. Include the svg within the document using this package.

5

http://root.cern.ch/root/html/TAttText.html


x0
0.5 1 1.5

2 2.5
3 3.5

y

0
0.5

1
1.5

2
2.5

3
3.5

0

20

40

60

80

100

120

140

z(x, y) = 1

σxσy

√
4π2

exp

(
−
(

(x−µx)2

2σ2
x

+
(y−µy)2

2σ2
y

))

Figure 2: Rendering of a Root plot (no more “Comic CERNs”).

\usepackage[clean,pdf]{svg}

...

\includesvg[width=\columnwidth]{foo}

Consider the example image produced by Root in Figure 2. This figure was
generated by the Root macro root.C, provided within this directory, which pro-
duces the svg root.svg when run. The code used to produce this svg from within
Root is

void root() {

// Set the style.

gStyle->SetTextFont(80); gStyle->SetLabelFont(80,"XYZ");

gStyle->SetTitleFont(80,""); gStyle->SetTitleFont(80,"XYZ");

gStyle->SetPalette(1); gStyle->SetOptStat(0);

// Draw the plot.

TH2D *h = new TH2D("", "", 25, 0, 3.9, 25, 0, 3.9); TRandom r;

for (int i = 0; i < 30000; i++) h->Fill(r.Gaus(2.,1), r.Gaus(2.,1));

h->GetXaxis()->CenterTitle(); h->GetXaxis()->SetTitleOffset(2.5);

h->GetYaxis()->CenterTitle(); h->GetYaxis()->SetTitleOffset(2.5);

h->GetXaxis()->SetTitle("\\larger[2]$x$");

h->GetYaxis()->SetTitle("\\larger[2]$y$");

h->Draw("LEGO2");

// Draw additional text.

TText *t = new TText(); t->SetTextAlign(31);

t->DrawText(0.7, 0.9, "\\larger[2]$z(x,y) = \\frac{1}{\\sigma_x\\sigma_y"

"\\sqrt{4\\pi^2}}\\exp\\left(- \\left(\\frac{(x-\\mu_x)^2}"

"{2\\sigma_x^2} + \\frac{(y-\\mu_y)^2}{2\\sigma_y^2} \\right)"

"\\right)$");

6



// Print the plot.

gPad->Print("root.svg");

}

where the text produced within the Root plot is set to a precision of zero. The
plot was then included within this document using the LATEX code

\begin{figure}

\begin{center}

\includesvg[clean,preamble=preamble.tex,pdf,png,height=6cm,pretex=\tiny]

{root}

\end{center}

\caption{Rendering of a \croot plot (no more ‘‘Comic

CERNs’’).\label{fig:root}}

\end{figure}

which produces the extracted images Fig.2.pdf and Fig.2.png. Enjoy plots from
Root with natively rendered LATEX!

5 Implementation

initialization The package, which requires the packages xkeyval for the options, subfig for
automatic labeling within the subfigure command, the import package for correct
handling of paths, graphicx for the pdf inclusion commands, transparent for
transparency, and xcolor for color, is initialized.
1 \ProvidesPackage{svg}[2012/09/05 v1.0 SVG inclusion and extraction]%

2 \@ifpackageloaded{xkeyval}{}{\RequirePackage{xkeyval}}%

3 \@ifpackageloaded{subfig}{}{\RequirePackage{subfig}}%

4 \@ifpackageloaded{import}{}{\RequirePackage{import}}%

5 \@ifpackageloaded{graphicx}{}{\RequirePackage{graphicx}}%

6 \@ifpackageloaded{transparent}{}{\RequirePackage{transparent}}%

7 \@ifpackageloaded{xcolor}{}{\RequirePackage{xcolor}}%

input definition All commands used for input (i.e. for the svg and preamble) are defined within the
\SVG@in prefix, and set by the key definition of the line following their definition.
The exclude boolean, used to stop the inclusion of the svg within the document
is also defined.
8 \def\SVG@in@preamble{\jobname.tex}%

9 \define@key[SVG]{svg.sty}{preamble}{\def\SVG@in@preamble{#1}}%

10 \def\SVG@in@path{./}%

11 \define@key[SVG]{svg.sty}{svgpath}{\def\SVG@in@path{#1}}%

12 \def\SVG@in@end{\begin{document}}%

13 \define@key[SVG]{svg.sty}{end}{\def\SVG@in@end{#1}}%

14 \define@boolkey[SVG]{svg.sty}[SVG@in@]{exclude}[true]{}%

length definition All commands used for output are defined within the \SVG@out prefix, beginning
with the dimensions of the extracted image. If no dimensions are supplied both
useheight and usewidth are false, and so the natural dimensions of the svg are
used. If both usewidth and useheight are true, the width is used.

7



15 \newlength\SVG@out@width%

16 \newif\ifSVG@out@usewidth%

17 \define@key[SVG]{svg.sty}{width}%

18 {\setlength{\SVG@out@width}{#1}\SVG@out@usewidthtrue}%

19 \newlength\SVG@out@height%

20 \newif\ifSVG@out@useheight%

21 \define@key[SVG]{svg.sty}{height}%

22 {\setlength{\SVG@out@height}{#1}\SVG@out@useheighttrue}%

extract booleans The booleans for the extraction formats are defined. Additionally, the global ex-
port variable is defined, which is set to true whenever any extraction is requested.
23 \define@boolkey[SVG]{svg.sty}[SVG@out@]{pdf}[true]{}%

24 \define@boolkey[SVG]{svg.sty}[SVG@out@]{eps}[true]{}%

25 \define@boolkey[SVG]{svg.sty}[SVG@out@]{png}[true]{}%

26 \newif\ifSVG@out@extract

output definitions The extraction path, extraction root name, clean boolean, pre-LATEX commands,
and post-LATEX commands are defined.
27 \def\SVG@out@path{./}%

28 \define@key[SVG]{svg.sty}{path}{\def\SVG@out@path{#1}}%

29 \def\SVG@out@name{Fig.\arabic{svgfigure}\alph{subfigure}}%

30 \define@key[SVG]{svg.sty}{name}{\def\SVG@out@name{#1}}%

31 \define@boolkey[SVG]{svg.sty}[SVG@out@]{clean}[true]{}%

32 \def\SVG@out@pretex{}%

33 \define@key[SVG]{svg.sty}{pretex}{\def\SVG@out@pretex{#1}}%

34 \def\SVG@out@postex{}%

35 \define@key[SVG]{svg.sty}{postex}{\def\SVG@out@postex{#1}}%

command definitions The command options are defined within the prefix \SVG@cmd and are set by the
key definition following each command definition.
36 \def\SVG@cmd@inkscape{inkscape -z -C}%

37 \define@key[SVG]{svg.sty}{inkscape}{\def\SVG@cmd@inkscape{#1}}%

38 \def\SVG@cmd@pdflatex{pdflatex}%

39 \define@key[SVG]{svg.sty}{pdflatex}{\def\SVG@cmd@pdflatex{#1}}%

40 \def\SVG@cmd@pdftops{pdftops -eps}%

41 \define@key[SVG]{svg.sty}{pdftops}{\def\SVG@cmd@pdftops{#1}}%

42 \def\SVG@cmd@convert{convert -density 300}%

43 \define@key[SVG]{svg.sty}{convert}{\def\SVG@cmd@convert{#1}}%

process options All the options for the package are processed, and the svg counter is defined. The
svg counter is used to correctly handle the subfigure counting.
44 \ProcessOptionsX[SVG]%

45 \newcounter{svgfigure}[figure]%

\setsvg Define the macro to globally set keys.
46 \def\setsvg#1{\setkeys[SVG]{svg.sty}{#1}}%

\includesvg Define the macro used to include an svg. Set the keys and determine if extraction
should occur.

8



47 \def\includesvg{\@ifnextchar[\@includesvg{\@includesvg[]}}%

48 \def\@includesvg[#1]#2{%

49 \setkeys[SVG]{svg.sty}{#1}%

50 \SVG@out@extractfalse%

51 \ifSVG@out@pdf \SVG@out@extracttrue \fi%

52 \ifSVG@out@eps \SVG@out@extracttrue \fi%

53 \ifSVG@out@png \SVG@out@extracttrue \fi%

Run Inkscape to separate the svg into text and image. Only run Inkscape if
the svg is newer than the generated text and image.
54 \ifnum\pdfstrcmp%

55 {\pdffilemoddate{\SVG@in@path#2.svg}}%

56 {\pdffilemoddate{\SVG@in@path#2.pdf}}>0%

57 \immediate\write18{\SVG@cmd@inkscape \space -f\SVG@in@path#2.svg%

58 \space-A\SVG@in@path#2.pdf --export-latex}%

59 \fi%

Determine the image width and height using \includegraphics.
60 \ifSVG@out@usewidth%

61 \settoheight\SVG@out@height%

62 {\includegraphics[width=\SVG@out@width]{\SVG@in@path#2}}%

63 \else\ifSVG@out@useheight%

64 \settowidth\SVG@out@width%

65 {\includegraphics[height=\SVG@out@height]{\SVG@in@path#2}}%

66 \else%

67 \settoheight\SVG@out@height{\includegraphics{\SVG@in@path#2}}%

68 \settowidth\SVG@out@width{\includegraphics{\SVG@in@path#2}}%

69 \fi%

70 \fi%

Open the output file for extraction.
71 % Open the output file.

72 \ifSVG@out@extract%

73 \newwrite\SVG@out@file%

74 \setcounter{svgfigure}{\value{figure}}%

75 \stepcounter{svgfigure}%

76 \def\SVG@out@filename{\SVG@out@name}%

77 \immediate\openout\SVG@out@file=\SVG@out@path\SVG@out@filename.tex%

78 \fi%

Open and write the preamble. Notice that the catcodes for # need to be changed
to prevent double expansion when reading the line.
79 \ifSVG@out@extract%

80 \def\SVG@in@line{}%

81 \newread\SVG@in@file%

82 \immediate\openin\SVG@in@file=\SVG@in@preamble%

83 \fi%

84 \newif\ifSVG@in@read%

85 \ifSVG@out@extract \SVG@in@readtrue \fi%

86 \@whilesw\ifSVG@in@read\fi{%

87 \catcode‘\#=12\relax\endlinechar=-1%

9



88 \immediate\read\SVG@in@file to \SVG@in@line%

89 \ifx\SVG@in@end\SVG@in@line%

90 \SVG@in@readfalse%

91 \else%

92 \immediate\write\SVG@out@file{\unexpanded\expandafter{\SVG@in@line}}%

93 \fi%

94 \ifeof\SVG@in@file\SVG@in@readfalse\fi%

95 \endlinechar=13\catcode‘\#=6\relax}%

96 \ifSVG@out@extract \immediate\closein\SVG@in@file \fi%

Now write everything needed after the preamble. This includes requiring the
import package and defining all the dimensions need to match the document size
with the image size.
97 \ifSVG@out@extract%

98 \def\SVG@out@defpack{\makeatletter%

99 \@ifpackageloaded{import}{}{\RequirePackage{import}}%

100 \@ifpackageloaded{graphicx}{}{\RequirePackage{graphicx}}%

101 \@ifpackageloaded{transparent}{}{\RequirePackage{transparent}}%

102 \@ifpackageloaded{xcolor}{}{\RequirePackage{xcolor}}\makeatother}%

103 \def\SVG@out@defwidth{\def\svgwidth{0.99\textwidth}}%

104 \def\SVG@out@definput{\import{\SVG@in@path}{#2.pdf_tex}}%

105 \immediate\write\SVG@out@file{\unexpanded\expandafter{\SVG@out@defpack}}%

106 \immediate\write\SVG@out@file%

107 {\noexpand\setlength{\pdfpagewidth}{\the\SVG@out@width}}%

108 \immediate\write\SVG@out@file%

109 {\noexpand\setlength{\pdfpageheight}{\the\SVG@out@height}}%

110 \immediate\write\SVG@out@file%

111 {\noexpand\setlength{\paperheight}{\pdfpageheight}}%

112 \immediate\write\SVG@out@file%

113 {\noexpand\setlength{\paperwidth}{\pdfpagewidth}}%

114 \immediate\write\SVG@out@file{\noexpand\setlength{\textheight}{\paperheight}}%

115 \immediate\write\SVG@out@file{\noexpand\setlength{\textwidth}{\paperwidth}}%

116 \immediate\write\SVG@out@file{\noexpand\setlength{\textheight}{\paperheight}}%

117 \immediate\write\SVG@out@file{\noexpand\setlength{\oddsidemargin}{-1in}}%

118 \immediate\write\SVG@out@file{\noexpand\setlength{\evensidemargin}{-1in}}%

119 \immediate\write\SVG@out@file{\noexpand\setlength{\topmargin}{-1in}}%

120 \immediate\write\SVG@out@file{\noexpand\setlength{\headheight}{0in}}%

121 \immediate\write\SVG@out@file{\noexpand\setlength{\headsep}{0in}}%

122 \immediate\write\SVG@out@file{\noexpand\setlength{\topskip}{0in}}%

123 \immediate\write\SVG@out@file{\noexpand\setlength{\footskip}{0in}}%

124 \immediate\write\SVG@out@file{\noexpand\setlength{\parindent}{0in}}%

125 \immediate\write\SVG@out@file{\noexpand\setlength{\parsep}{0in}}%

126 \immediate\write\SVG@out@file{\noexpand\setlength{\parskip}{0in}}%

127 \immediate\write\SVG@out@file{\noexpand\begin{document}}%

128 \immediate\write\SVG@out@file{%

129 \noexpand\pagestyle{empty}%

130 \noexpand\begin{center}%

131 \unexpanded\expandafter{\SVG@out@defwidth}%

132 \unexpanded\expandafter{\SVG@out@pretex}%

133 \expandafter\noexpand\SVG@out@definput%

10



134 \unexpanded\expandafter{\SVG@out@postex}%

135 \noexpand\end{center}}%

136 \immediate\write\SVG@out@file{\noexpand\end{document}}%

137 \immediate\closeout\SVG@out@file%

138 \fi%

Run LATEX on the extracted file and create the pdf.
139 \ifSVG@out@extract%

140 \immediate\write18{\SVG@cmd@pdflatex\space\SVG@out@path\SVG@out@filename.tex}%

141 \fi%

Convert the pdf to eps if requested.
142 \ifSVG@out@eps%

143 \immediate\write18{\SVG@cmd@pdftops\space\SVG@out@filename.pdf}%

144 \immediate\write18{mv \SVG@out@filename.eps%

145 \space\SVG@out@path\SVG@out@filename.eps}%

146 \fi%

Convert the pdf to png if requested.
147 \ifSVG@out@png%

148 \immediate\write18{\SVG@cmd@convert\space\SVG@out@filename.pdf%

149 \space\SVG@out@filename.png}%

150 \immediate\write18{mv \SVG@out@filename.png%

151 \space\SVG@out@path\SVG@out@filename.png}%

152 \fi%

Clean up if requested.
153 \ifSVG@out@extract%

154 \ifSVG@out@pdf%

155 \immediate\write18{mv \SVG@out@filename.pdf%

156 \space\SVG@out@path\SVG@out@filename.pdf}%

157 \else \ifSVG@out@clean \immediate\write18{rm \SVG@out@filename.pdf} \fi%

158 \fi%

159 \ifSVG@out@clean%

160 \immediate\write18{rm \SVG@out@path\SVG@out@filename.tex%

161 \space\SVG@out@filename.aux \SVG@out@filename.log \SVG@out@filename.out}%

162 \fi\fi%

Finally, include the svg in the current document and end the package.
163 \ifSVG@in@exclude \else {\def\svgwidth{\the\SVG@out@width}%

164 \SVG@out@pretex\import{\SVG@in@path}{#2.pdf_tex}\SVG@out@postex} \fi%

165 }%

6 Thanks

Thanks to my lovely wife Éadaoin for being a very patient beta tester and impor-
tant collaborator. Thanks is also due to J. Engelen for creating this functionality
within Inkscape, and of course to all the developers of Inkscape.

11


	Introduction
	Usage
	Example
	ROOT
	Implementation
	Thanks

