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1 Introduction

PCS is a set of Python modules and objects that make building network
protocol testing tools easier for the protocol developer. The core of the
system is the pcs module itself which provides the necessary functionality
to create classes that implement packets.

Installing PCS is covered in the text file, INSTALLATION, which came
with this package. The code is under a BSD License and can be found in
the file COPYRIGHT in the root of this package.

In the following document we set classes functions() and methods()
apart by setting them in different type. Methods and functions are also
followed by parentheses, “()”, which classes are not.

2 A Quick Tour

For the impatient programmer this section is a 5 minute intro to using PCS.
Even faster than this tour would be to read some of the test code in the
tests sub-directory or the scripts in the scripts sub directory.

PCS is a set of functions to encode and decode network packets from
various formats as well as a set of classes for the most commonly use network
protocols. Each object derived from a packet has fields automatically built
into it that represent the relevant sections of the packet.

Let’s grab a familiar packet to work with, the IPv4 packet. IPv4 packets
show a few interesting features of PCS. Figure 2 shows the definition of an
IPv4 packet header from [?] which specifies the IPv4 protocol.

In PCS every packet class contains fields which represent the fields of
the packet exactly, including their bit widths. Figure2 shows a command
line interaction with an IPv4 packet.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| IHL |Type of Service| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1: IPv4 Header Format

Each packet has a built in field called bytes which always contains the
wire representation of the packet.

In Figure3 the bytes field has been changed in its first position by setting
the hlen or header length field to 20, 5 � 2. Such programmatic access is
available to all fields of the packet.

The IPv4 header has fields that can be problematic to work with in any
language including ones that are

fig:ipheadfeatures less than one byte (octect) in length (Version, IHL, Flags)

fig:ipheadfeatures not an even number of bits (Flags)

fig:ipheadfeatures not aligned on a byte boundary (Fragment Offset)

Using just these features it is possible to write complex programs in
Python that directly manipulate packets. For now you should know enough
to safely ignore this documentation until you to explore further.

3 Working with Packets

In PCS every packet is a class and the layout of the packet is defined by a
Layout class which contains a set of Fields. Fields can be from 1 to many
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Python 2.4.2 (#1, Mar 7 2006, 15:04:29)
[GCC 4.0.1 (Apple Computer, Inc. build 5250)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from pcs.packets.ipv4 import *
>>> ip = ipv4()
>>> print ip
version 4
hlen 0
tos 0
length 0
id 0
flags 0
offset 0
ttl 64
protocol 0
checksum 0
src 0.0.0.0
dst 0.0.0.0

>>> ip.hlen=5<<2
>>> print ip
version 4
hlen 20
tos 0
length 0
id 0
flags 0
offset 0
ttl 64
protocol 0
checksum 0
src 0.0.0.0
dst 0.0.0.0

Figure 2: Quick and Dirty IPv4 Example
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>>> from pcs.packets.ipv4 import *
>>> ip = ipv4()
>>> ip.bytes
’@\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00’
>>> ip.hlen = 5 << 2
>>> ip.bytes
’D\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00’

Figure 3: The bytes Field of the Packet

ip = ipv6()
assert (ip != None)
ip.traffic_class = 1
ip.flow = 0
ip.length = 64
ip.next_header = 6
ip.hop = 64
ip.src = inet_pton(AF_INET6, "::1")
ip.dst = inet_pton(AF_INET6, "::1")

Figure 4: IPv6 Class

bits, so it is possible to build packets with arbitrary width bit fields. Fields
know about the widths and will throw exceptions when they are overloaded.

Every Packet object, that is an object instantiated from a specific PCS
packet class, has a field named bytes which shows the representation of the
data in the packet at that point in time. It is the bytes field that is used
when transmitting the packet on the wire.

The whole point of writing PCS was to make it easier to experiment with
various packet types. In PCS there are packet classes and packet objects.
Packet classes define the named fields of the packet and these named fields
are properties of the object. A practical example may help. Given an IPv6
packet class it is possible to create the object, set various fields, as well as
transmit and receive the object.

A good example is the IPv6 class: The code in Figure 4 gets a new IPv6
object from the ipv6() class, which was imported earlier, and sets various
fields in the packet. Showing the bytes field, Figure 5 gives us an idea of
how well this is working.

Note that various bits are set throughout the bytes. The data in the
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>>> ip.bytes
’‘\x10\x00\x00\x00@\x06@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01’

Figure 5: Bytes of the IPv6 Packet

>>> print ip
version 6
traffic_class 1
flow 0
length 64
next_header 6
hop 64
src ::1
dst ::1

Figure 6: Printing a Packet

packet can be pretty printed using the print() function as seen in Figure
6 or it can be dumped as a string directly as seen in Figure7.

>>> ip
<IPv6: src: 0, dst: 0, traffic_class: 0, flow: 0, length: 0, \
version:6, hop: 0, next_header: 0>

Figure 7: Using the repr () method

4 Creating Packet Classes

For a packet to be a part of PCS it must sub-classed from the Packet class
as seen in Figure ??

The code in Figure ?? defines a new class, one that will describe an IPv6
packet, sub-classed from the Packet base class. All PCS packets must have
a layout field, which is set via the base class’s init () method, called at
the end of the ipv6 class’s own init () method.

Part of packet initialization is to set up the fields that the packet will
contain. Each field has several possible arguments, but the two that are
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class ipv6(pcs.Packet):
"""A class that contains the IPv6 header. All other data is
chained on the end."""

layout = pcs.Layout()

def __init__(self, bytes = None):
"""IPv6 Packet from RFC 2460"""
version = pcs.Field("version", 4, default = 6)
traffic = pcs.Field("traffic_class", 8)
flow = pcs.Field("flow", 20)
length = pcs.Field("length", 16)
next = pcs.Field("next_header", 8)
hop = pcs.Field("hop", 8)
src = pcs.Field("src", 16 * 8, type = str)
dst = pcs.Field("dst", 16 * 8, type = str)
pcs.Packet.__init__(self,

[version, traffic, flow, length, next, hop,
src, dst], bytes)

Figure 8: IPv6 Packet Class
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ip = ipv6()
ip.hop = 4 # Set hop count to 4.

Figure 9: Setting a Packet Field

required are a name, which is the string field specified as the first argument
and a width in bits, specified as the second argument. Note that all field
widths are specified in bits and not bytes or octets. Fields may also have a
type (see below) and default values. The name of the field becomes a named
property of the object which is what makes it possible to have code that like
that in Figure 9 where we set the packet’s hop count via its hop property.

The fields are set by passing them as an array to the PCS base class
initialization method.

4.1 Working with Different Types of Fields

It would have been convenient if all network protocol packets were simply
lists of fixed length fields, but that is not the case. PCS defines two extra
field classes, the StringField and the LengthValueField.

The StringField is simply a name and a width in bits of the string.
The data is interpreted as a list of bytes, but without an encoded field size.
Like a Field the StringField has a constant size.

Numerous upper layer protocols, i.e. those above UDP and TCP, use
length-value fields to encode their data, usually strings. In a length-value
field the number of bytes being communicated is given as the first byte,
word, or longword and then the data comes directly after the size. For
example, DNS [?] encodes the domain names to be looked up as a series
of length-value fields such that the domain name pcs.sourceforge.net gets
encoded as 3pcs11sourceforge3net when it is transmitted in the packet.

The LengthValueField class is used to encode length-value fields. A
LenghtValueField has three attributes, its name, the width in bits of the
length part, and a possible default value. Currently only 8, 16, and 32 bit
fields are supported for the length. The length part need never been set by
the programmer, it is automatically set when a string is assigned to the field
as shown in 10.

Figure 10 shows both the definition and use of a LengthValueField.
The definition follows the same system as all the other fields, with the name
and the size given in the initialization. The dnslabel class has only one
field, that is the name, and it’s length is given by an 8 bit field, meaning
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class dnslabel(pcs.Packet):
"""A DNS Label."""

layout = pcs.Layout()

def __init__(self, bytes = None):
name = pcs.LengthValueField("name", 8)
pcs.Packet.__init__(self,

[name],
bytes = bytes)

self.description = "DNS Label"

...

lab1 = dnslabel()
lab1.name = "pcs"

lab2 = dnslabel()
lab2.name = "sourceforge"

lab3 = dnslabel()
lab3.name = "net"

lab4 = dnslabel()
lab4.name = ""

Figure 10: Using a LengthValueField
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>>> from pcs.packets.ipv4 import *
>>> ip = ipv4()
>>> ip.hlen = 16
Traceback (most recent call last):
[...]
pcs.FieldBoundsError: ’Value must be between 0 and 15’
>>> ip.hlen = -1
Traceback (most recent call last):
[...]
pcs.FieldBoundsError: ’Value must be between 0 and 15’
>>>

Figure 11: Bounds Checking

the string sent can have a maximum length of 255 bytes.
When using the class, as mentioned, the size is not explicitly set. One last

thing to note is that in order to have a 0 byte terminator the programmer
assigns the empty string to a label. Using the empty string means that
the length-value field in the packet has a 0 for the length which acts as a
terminator for the list. For a complete example please review dns query.py
in the scripts directory.

4.2 Built in Bounds Checking

One of the nicer features of PCS is built in bounds checking. Once the
programmer has specified the size of the field, the system checks on any
attempt to set that field to make sure that the value is within the proper
bounds. For example, in Figure 11 an attempt to set the value of the IP
packet’s header length field to 16 fails because the header length field is only
4 bits wide and so must contain a value between zero and fifteen.

PCS does all the work for the programmer once they have set the layout
of their packet.

5 Retrieving Packets

One of the uses of PCS is to analyze packets that have previously stored,
for example by a program such as tcpdump(1). PCS supports reading and
writing tcpdump(1) files though the pcap library written by Doug Song.
The python API exactly mirrors the C API in that packets are processed
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>>> import pcap
>>> efile = pcap.pcap("etherping.out")
>>> efile.datalink()
1
>>> efile.datalink() == pcap.DLT_EN10MB
True
>>> lfile = pcap.pcap("loopping.out")
>>> lfile.datalink()
0
>>> lfile.datalink() == pcap.DLT_NULL
True
>>> lfile.datalink() == pcap.DLT_EN10MB
False
>>>

Figure 12: Determining the Bottom Layer

via a callback to a dispatch() routine, usually in a loop. Complete docu-
mentation on the pcap library can be found with its source code or on its
web page. This document only explains pcap as it relates to how we use it
in PCS.

When presented with a possibly unknown data file how can you start? If
you don’t know the bottom layer protocol stored in the file, such as Ethernet,
FDDI, or raw IP packets such as might be capture on a loopback interface,
it’s going to be very hard to get your program to read the packets correctly.
The pcap library handles this neatly for us. When opening a saved file it is
possible to ask the file what kind of data it contains, through the datalink()
method.

In Figure12 we see two different save files being opened. The first,
etherping.out is a tcpdump file that contains data collected on an Ether-
net interface, type DLT EN10 and the second, loopping.out was collected
from the loopback interface and so contains no Layer 2 packet information.

Not only do we need to know the type of the lowest layer packets but we
also need to know the next layer’s offset so that we can find the end of the
datalink packet and the beginning of the network packet. The dloff field
of the pcap class gives the data link offset. Figure13 continues the example
shown in Figure12 and shows that the Ethernet file has a datalink offset of
14 bytes, and the loopback file 4.

It is in the loopback case that the number is most important. Most net-
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>>> efile.dloff
14
>>> lfile.dloff
4
>>>

Figure 13: Finding the Datalink Offset

>>> ip = ipv4(packet[efile.dloff:len(packet)])
>>> print ip
version 4
hlen 5
tos 0
length 84
id 34963
flags 0
offset 0
ttl 64
protocol 1
checksum 58688
src 192.168.101.166
dst 169.229.60.161

Figure 14: Reading in a Packet

work programmers remember that Ethernet headers are 14 bytes in length,
but the 4 byte offset for loopback may seem confusing, and if forgotten
any programs run on data collected on a loopback interface will appear as
garbage.

With all this background we can now read a packet and examine it.
Figure 14 shows what happens when we create a packet from a data file.

In this example we pre-suppose that the packet is an IPv4 packet but
that is not actually necessary. We can start from the lowest layer, which
in this case is Ethernet, because the capture file knows the link layer of the
data. Packets are fully decoded as much as possible when they are read.

PCS is able to do this via a special method, called next() and a field
called data. Every PCS class has a next() method which attempts to figure
out the next higher layer protocol if there is any data in a packet beyond
the header. If the packet’s data can be understand and a higher layer packet
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>>> from pcs.packets.ethernet import ethernet
>>> ethernet = ethernet(packet[0:len(packet)])
>>> ethernet.data
<Packet: hlen: 5, protocol: 1, src: 3232261542L, tos: 0, dst: 2850372769L, ttl: 64, length: 84, version: 4, flags: 0, offset: 0, checksum: 58688, id: 34963>
>>> ip = ethernet.data
>>> print ethernet
src: 0:10:db:3a:3a:77
dst: 0:d:93:44:fa:62
type: 0x800
>>> print ip
version 4
hlen 5
tos 0
length 84
id 34963
flags 0
offset 0
ttl 64
protocol 1
checksum 58688
src 192.168.101.166
dst 169.229.60.161

Figure 15: Packet Decapsulation on Read

12



import pcs

from socket import *

def main():

conn = pcs.TCP4Connector("127.0.0.1", 80)
conn.write("GET / \n")
result = conn.read(1024)

print result

main()

Figure 16: HTTP Get Script

class is found the next() creates a packet object of the appropriate type and
sets the data field to point to the packet. This process is recursive, going
up the protocol layers until all remaining packet data or higher layers are
exhausted. In Figure15 we see an example of an Ethernet packet which
contains an IPv4 packet which contains an ICMPv4 packet all connected
via their respective data fields.

6 Storing Packets

This section intentionally left blank.
Need to update pcap module to include support for true dump files.

7 Sending Packets

In PCS packets are received and transmitted (see 7 using Connectors.
A Connector is an abstraction that can contain a traditional network
socket, or a file descriptor which points to a protocol filter such as BPF. For
completely arbitrary reasons we will discuss packet transmission first.

In order to send a packet we must first have a connector of some type
on which to send it. A trivial example is the http get.py script which
uses a TCP4Connector to contact a web server, execute a simple GET
command, and print the results.
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Although everything that is done in the http get script could be done far
better with Python’s native HTTP classes the script does show how easy it
is to set up a connector.

For the purposes of protocol development and testing it is more interest-
ing to look at the PcapConnector class, which is used to read and write
raw packets to the network. Figure 17 shows a section of the icmpv4test
test script which transmits an ICMPv4 echo, aka ping, packet.

1

The test icmpv4 ping() function contains a good deal of code but we
are only concerned with the last two lines at the moment. The next to the
last line opens a raw pcap socket on the localhost, lo0, interface which allows
us to write packets directly to that interface. The last line writes a packet
to the interface. We will come back to this example again in section 9.

8 Receiving Packets

In order to receive packets we again use the Connector classes. Figure 18
shows the simplest possible packet sniffer program that you may ever see.

The snarf.py reads from a selected network interface, which in this case
must be an Ethernet interface, and prints out all the Ethernet packets and
any upper level packets that PCS knows about. It is this second point that
should be emphasized. Any packet implemented in PCS which has an upper
layer protocol can, and should, implement a next() method which correctly
fills in the packet’s data field with the upper level protocol. In this case the
upper layer protocols are likely to be either ARP, IPv4 or IPv6, but there
are others that are possible.

9 Chains

We first saw a the Chain class in Figure 17 and we’ll continue to refer
to that figure here. Chains are used to connect several packets together,
which allows use to put any packet on top of any other. Want to transmit
an Ethernet packet on top of ICMPv4? No problem, just put the Ethernet
packet after the ICMPv4 packet in the chain. Apart from creating arbitrary
layering, Chains allow you to put together better known set of packets. In
order to create a valid ICMPv4 echo packet we need to have a IPv4 packet
as well as the proper framing for the localhost interface. When using pcap

1Note that on most operating system you need root privileges in use the PcapCon-
nector class.
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def test_icmpv4_ping(self):
ip = ipv4()
ip.version = 4
ip.hlen = 5
ip.tos = 0
ip.length = 84
ip.id = 1
ip.flags = 0
ip.offset = 0
ip.ttl = 33
ip.protocol = IPPROTO_ICMP
ip.src = 2130706433
ip.dst = 2130706433

icmp = icmpv4()
icmp.type = 8
icmp.code = 0
icmp.cksum = 0

echo = icmpv4echo()
echo.id = 32767
echo.seq = 1

lo = localhost()
lo.type = 2
packet = Chain([lo, ip, icmp, echo])

icmp_packet = Chain([icmp, echo])
icmp.checksum = icmp_packet.calc_checksum()

packet.encode()

input = PcapConnector("lo0")
input.setfilter("icmp")

output = PcapConnector("lo0")
out = output.write(packet.bytes, 88)

Figure 17: Transmitting a Raw Ping Packet
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import pcs
from pcs.packets.ethernet import ethernet

def main():

from optparse import OptionParser

parser = OptionParser()
parser.add_option("-i", "--interface",

dest="interface", default=None,
help="Which interface to snarf from.")

(options, args) = parser.parse_args()

snarf = pcs.PcapConnector(options.interface)

while 1:
packet = ethernet(snarf.read())
print packet
print packet.data

main()

Figure 18: Packet Snarfing Program
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directly even the localhost interface has some necessary framing to indicate
what type of packet is being transmitted over it.

The packet we’re to transmit is set up as a Chain that contains four other
packets: localhost, IPv4, ICMPv4, and Echo. Once the chain is created it
need not be static, as in this example, as changes to any of the packets it
contains will be reflected in the chain. In order to update the actual bytes
the caller has to remember to invoke the encode() method after any changes
to the packets the chain contains. 2

Chains can also calculate RFC 792 style checksums, such as those used
for ICMPv4 messages. The checksum feature was used in Figure 17. Because
it is common to have to calculate checksums over packets it made sense to
put this functionality into the Chain class.

10 Displaying Packets

To be done, to be done...

2This may be fixed in a future version to make Chains more automatic.
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