
ModSecurity for Apache User Guide
Version 1.9.3 / (April 10, 2006)

Copyright © 2002-2006 Thinking Stone (http://www.thinkingstone.com)

Table of Contents

Introduction ...4

Licensing ...4

Acknowledgements ..5

Contact ..5

Installation ...6

CVS Access ...6

Nightly Snapshot Download ..6

Stable Release Download ..6

Installing from source ...6

Installing from binary ...8

Configuration ...10

Turning filtering on and off ...10

POST scanning ...10

Turning buffering off dynamically ...11

Controlling ModSecurity dynamically ..11

Chunked transfer encoding ..11

Default action list ...11

Implicit validation ..12

Filter inheritance ..12

Filter inheritance In multiuser environments ...14

URL Encoding Validation ...15

1

http://www.thinkingstone.com

Unicode Encoding Validation ..16

Byte range check ..16

Allowing others to see ModSecurity ..16

Rules ...18

Simple filtering ..18

Path normalisation ..18

Null byte attack prevention ..19

Regular expressions ..19

Inverted expressions ...20

Advanced filtering ..20

Argument filtering exceptions ...22

Cookies ..22

Output filtering ...23

Actions ..25

Specifying actions ..25

Per-rule actions ..26

Restricting what can appear in the per-rule action list ..27

Built-in actions ...27

Request headers added by mod_security ...32

Logging the request body ..32

Handling rule matches using ErrorDocument ..32

Making ModSecurity talk to your firewall ..33

Special Features ...34

File upload support ...34

Server identity masking ...37

Chroot support ...37

Logging ...43

Debug Log ...43

Audit logging ...43

Guardian log ..48

Custom logging ..49

Miscellaneous Topics ..50

Impedance mismatch ..50

Testing ...51

Solving Common Security Problems ..52

PHP ...54

Performance ...55

Important notes ..56

Changing the Apache hook at which mod_security runs ..56

Examples ...57

Parameter checking ...57

File upload ...57

ModSecurity for Apache User Guide

2

Securing FormMail ...57

Appendix A: Recommended Configuration ..57

ModSecurity for Apache User Guide

3

Introduction
ModSecurity(TM) is an open source intrusion detection and prevention engine for web applications. It

can also be called an web application firewall. It operates embedded into the web server, acting as a

powerful umbrella, shielding applications from attacks.

ModSecurity integrates with the web server, increasing your power to deal with web attacks. Some of its

features worth mentioning are:

• Request filtering; incoming requests are analysed as they come in, and before they get handled

by the web server or other modules. (Strictly speaking, some processing is done on the request

before it reaches ModSecurity but that is unavoidable in the embedded mode of operation.)

• Anti-evasion techniques; paths and parameters are normalised before analysis takes place in or-

der to fight evasion techniques.

• Understanding of the HTTP protocol; since the engine understands HTTP, it performs very spe-

cific and fine granulated filtering. For example, it is possible to look at individual parameters, or

named cookie values.

• POST payload analysis; the engine will intercept the contents transmitted using the POST meth-

od, too.

• Audit logging; full details of every request (including POST) can be logged for forensic analysis

later.

• HTTPS filtering; since the engine is embedded in the web server, it gets access to request data

after decryption takes place.

• Compressed content filtering; same as above, the security engine has access to request data after

decompression takes place.

ModSecurity can be used to detect attacks, or to detect and prevent attacks.

Licensing
ModSecurity is available under two licenses. Users can choose to use the software under the terms of the

GNU General Public License (http://www.gnu.org/licenses/gpl.html), as an Open Source / Free Software

product. Alternatively, a variety of commercial licenses is available: end-user licenses for individual or

site-wide deployment, OEM licenses for closed-source distribution with applications, web servers, or se-

curity appliances. For more information on commercial licensing please contact Thinking Stone.

Thinking Stone

Tel: +44 20 8141 2161

Fax: +44 87 0762 3934

http://www.thinkingstone.com

<contact@thinkingstone.com>

ModSecurity for Apache User Guide

4

http://www.gnu.org/licenses/gpl.html
http://www.thinkingstone.com

Note
ModSecurity and mod_security are trademarks of Thinking Stone.

Acknowledgements
This module would not be possible without the fine people who have created the Apache Web server, and

the fine people who have spent many hours building the Apache modules I used to learn Apache module

programming from.

Contact
ModSecurity is developed by Ivan Ristic and Thinking Stone. Comments and feature requests are wel-

come. Please send your emails to <ivanr@webkreator.com>.

Note
Please do not send support requests to my personal email address. I do spend time responding to

support queries but I don't respond privately any more. Doing so prevents other users from using

mail archives to find answers for themselves. If you need answers quickly or you want guaranteed

response times consider purchasing commercial support from Thinking Stone.

ModSecurity for Apache User Guide

5

Installation
Before you begin with installation you will need to choose your preferred installation method. First you

need to choose whether to install the latest version of ModSecurity directly from CVS (best features, but

possibly unstable) or use the latest stable release (recommended). If you choose a stable release, it might

be possible to install ModSecurity from binary. It is always possible to compile it from source code.

The following few pages will give you more information on benefits of choosing one method over anoth-

er.

CVS Access
If you want to access the latest version of the module you need to get it from the CVS repository. The list

of changes made since the last stable release is normally available on the web site (and in the file

CHANGES). The CVS repository for ModSecurity is hosted by SourceForge (http://www.sf.net). You

can access it directly or view if through web using this address: ht-

tp://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/mod-security/

To download the source code to your computer you need to execute the following two commands:

$ cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/mod-security login
$ cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/mod-security \
> co mod_security

The first line will log you in as an anonymous user, and the second will download all files available in the

repository.

Nightly Snapshot Download
If you don't like CVS but you still want the latest version you can download the latest nightly tarball from

the following address:

http://www.modsecurity.org/download/snapshot/mod_security-snapshot.tar.gz

New features are added to mod_security one by one, with regression tests being run after each change.

This should ensure that the version available from CVS is always usable.

Stable Release Download
To download the stable release go to http://www.modsecurity.org/download/. Binary distributions are

sometimes available. If they are, they are listed on the download page. If not download the source code

distribution.

Installing from source
When installing from source you have two choices: to install the module into the web server itself, or to

compile mod_security.c into a dynamic shared object (DSO).

ModSecurity for Apache User Guide

6

http://www.sf.net
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/mod-security/
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/mod-security/
http://www.modsecurity.org/download/snapshot/mod_security-snapshot.tar.gz
http://www.modsecurity.org/download/

DSO
Installing as DSO is easier, and the procedure is the same for both Apache branches. First unpack the dis-

tribution somewhere (anywhere will do), and compile the module with:

<apache-home>/bin/apxs -cia mod_security.c

After this you only need to stop and then start Apache (if you try to restart it you may get a segfault):

<apache-home>/bin/apachectl stop
<apache-home>/bin/apachectl start

Note
I've had reports from people using platforms that do not have the apxs utility installed. In some

Unix distribution this tool is distributed in a separate package. The problem arises when that

package is not installed b default. To resolve this problem read the documentation from your

vendor to discover how you can add your own custom Apache modules. (On some RedHat plat-

forms you need to install the package http-devel to get access to the apxs utility).

Static installation with Apache 1.x
When a module is compiled statically, it gets embedded into the body of the web server. This method res-

ults in a slightly faster executable but the compilation method (and subsequent maintenance) is a bit more

complicated.

$ cd <apache1-source>
$ cp <modsecurity-source>/apache1/mod_security.c ./src/modules/extra
$./configure \
> --activate-module=src/modules/extra/mod_security \
> -–enable-module=security

Compile, install, and start the web server as you normally do.

Static installation with Apache 2.x
To compile statically with Apache 2.x you only need to copy the module source code into the Apache

source code tree and reconfigure Apache:

$ cd <apache2-source>
$ cp <modsecurity-source>/apache2/mod_security.c ./modules/proxy
$./configure \
> -enable-security \
> --with-module=proxy:mod_security.c

ModSecurity for Apache User Guide

7

Integrating into the Apache 2.x build
You can also choose to integrate mod_security into the Apache 2.x build.

$ cd <modsecurity-source>/apache2
$ mkdir -r <apache2-source>/modules/security
$ cp mod_security.c Makefile.in config.m4 <apache2-source>/modules/security
$ cd <apache2-source>
$./buildconf

From this point on mod_security will appear to Apache as any other built-in module. It will not be com-

piled-in by default. To enable it do the following:

$./configure --enable-security

Compiling the Apache 1.x version against PCRE
By default ModSecurity relies on the regular expression library built into Apache for pattern matching.

This works well with Apache 2.x but not so much with Apache 1.x. The Apache 1.x regular expression

engine is several times slower. Since 1.9.2 it is possible to compile ModSecurity for Apache 1.x against

an external regular expression library (PCRE, http://www.pcre.org, the same library used in Apache 2.x)

and achieve significant performance increase. This is achieved with the USE_PCRE compile-time flag.

If you have PCRE already installed on your system it may be sufficient to compile ModSecurity like this:

<apache1-home>/bin/apxs -DUSE_PCRE -cia mod_security.c

If you don't already have PCRE then you will have to download, configure, and compile it first. It is not

necessary to install it.

$ cd <pcre-source>
$./configure && make
cp ./.libs/libpcre.so <apache1-home>/libexec

Then compile and install ModSecurity:

<apache1-home>/bin/apxs -I <pcre-source> -DUSE_PCRE -cia mod_security.c

Finally, tell Apache to load the PCRE library before ModSecurity. Add the following line before the line

that loads ModSecurity (LoadModule ...):

LoadFile libexec/libpcre.so

Now you can stop then start Apache and observe the performance improvements.

Installing from binary

ModSecurity for Apache User Guide

8

http://www.pcre.org

In some circumstances, you will want to install the module as a binary. At the moment I only make Win-

dows binaries available for download. When installing from binary you are likely to have two DSO librar-

ies in the distribution, one for each major Apache branch. Choose the file appropriate for the version you

are using. Then proceed as described below:

Apache 1.x
Copy mod_security.so (on Unix) or mod_security.dll (on Windows) to libexec/ (this

folder is relative to the Apache installation, not the source tree). Then add the following line to ht-

tpd.conf:

LoadModule security_module libexec/mod_security.so

Depending on your existing configuration (you may have chosen to configure module loading order ex-

plicitly) it may be necessary to activate the module using the AddModule directive:

AddModule mod_security.c

In most cases it is not important where you add the line. It is recommended (and, in fact, mandatory if you

intend to use the internal chroot feature) to make mod_security execute last in the module chain.

Read the section “Required module ordering for chroot support (Apache 1.x)” for more information.

Apache 2.x
Copy mod_security.so (on Unix) or mod_security.dll (on Windows) to modules/ (this

folder is relative to the Apache installation, not the source tree). Then add the following line to ht-

tpd.conf:

LoadModule security_module modules/mod_security.so

ModSecurity for Apache User Guide

9

Configuration
ModSecurity configuration directives are added to your configuration file (typically httpd.conf) dir-

ectly. When it is not always certain whether module will be enabled or disabled on web server start it is

customary to enclose its configuration directives in a <IfModule> container tag. This allows Apache to

ignore the configuration directives when the module is not active.

<IfModule mod_security.c>
mod_security configuration directives
...

</IfModule>

Since Apache allows configuration data to exist in more than one file it is possible to group ModSecurity

configuration directives in a single file (e.g. modsecurity.conf) and include it from httpd.conf

with the Include directive:

Include conf/modsecurity.conf

Turning filtering on and off
The filtering engine is disabled by default. To start monitoring requests add the following to your config-

uration file:

SecFilterEngine On

Supported parameter values for this parameter are:

• On – analyse every request

• Off – do nothing

• DynamicOnly – deprecated as of 1.9.3 - read the discussion in "Choosing what to log".

POST scanning
Request body payload (or POST payload) scanning is disabled by default. To use it, you need to turn it

on:

SecFilterScanPOST On

mod_security supports two encoding types for the request body:

• application/x-www-form-urlencoded - used to transfer form data

• multipart/form-data – used for file transfers

Other encodings are not used by most web applications. To make sure that only requests with these two

encoding types are accepted by the web server, add the following line to your configuration file:

ModSecurity for Apache User Guide

10

SecFilterSelective HTTP_Content-Type \
"!(^$|^application/x-www-form-urlencoded$|^multipart/form-data;)"

Turning buffering off dynamically
It is possible to turn POST payload scanning off on per-request basis. If ModSecurity sees that an envir-

onment variable MODSEC_NOPOSTBUFFERING is defined it will not perform POST payload buffering.

For example, to turn POST payload buffering off for file uploads use the following:

SetEnvIfNoCase Content-Type \
"^multipart/form-data;" "MODSEC_NOPOSTBUFFERING=Do not buffer file uploads"

The value assigned to the MODSEC_NOPOSTBUFFERING variable will be written to the debug log, so

you can put in there something that will tell you why was buffering turned off.

Controlling ModSecurity dynamically
It is also possible to enable or disable ModSecurity on the per-request basis. This is done via the MOD-

SEC_ENABLE environment variable, in combination with the SetEnvIf and SetEnvIfNoCase dir-

ectives. If MODSEC_ENABLE is not set the configuration specified with SecFilterEngine will be used. If

MODSEC_ENABLE is set the value of SecFilterEngine will be ignored. The possible values for

MODSEC_ENABLE are the same as for the SecFilterEngine directive: On, and Off.

Chunked transfer encoding
The HTTP protocol supports a method of request transfer where the size of the payload is not known in

advance. The body of the request is delivered in chunks. Hence the name chunked transfer encoding.

ModSecurity does not support chunked requests at this time; when a request is made with chunked encod-

ing it will ignore the body of the request. As far as I am aware no browser uses chunked encoding to send

requests. Although Apache does support this encoding for some operations most modules (e.g. the PHP

module with Apache 1.3.x) don't.

Left unattended this may present an opportunity for an attacker to sneak malicious payload. Add the fol-

lowing line to your configuration to prevent attackers to exploit this weakness:

SecFilterSelective HTTP_Transfer-Encoding "!^$"

This will not affect your ability to send responses using the chunked transfer encoding.

Default action list
Whenever a rule is matched against a request, one or more actions are performed. Individual filters can

each have their own actions but it is easier to define a default set of actions for all filters. (You can always

have per-rule actions if you want.) You define default actions with the configuration directive SecFil-

ModSecurity for Apache User Guide

11

terDefaultAction. For example, the following will configure the engine to log each rule match, and

reject the request with status code 404:

SecFilterDefaultAction "deny,log,status:404"

The SecFilterDefaultAction directive accepts only one parameter, a comma-separated list of ac-

tions separated. The actions you specify here will be performed on every filter match, except for rules that

have their own action lists.

Note
As of 1.8.6, if you specify a non-fatal default action list (a list that will not cause the request to be

rejected, for example log,pass) such action list will be ignored during the initialisation phase.

The initialisation phase is designed to gather information about the request. Allowing non-fatal

actions would cause some pieces of the request to be missing. Since this information is required

for internal processing such actions cannot be allowed. If you want ModSecurity to operate in a

"detect-only" mode you need to disable all implicit validations (URL encoding validation, Uni-

code encoding validation, cookie format validation, and byte range restrictions).

Note
Some actions cannot appear in the default list. These are: id, rev, skipnext, chain,

chained.

Implicit validation
As of 1.8.6 implicit request validation (if configured) will be performed only at the beginning of request

processing. Implicit validation consists of the checks of the request line, and the headers.

Note
As of 1.9dev4 Unicode encoding validation is not applied to the contents of the Referer header

when part of the initial implicit request validation. This is because this header often contains in-

formation from other web sites, and their encoding usually differs from the encoding used on the

protected web site.

Filter inheritance
Filters defined in parent folders are normally inherited by nested Apache configuration contexts. This is

behaviour is acceptable (and required) in most cases, but not all the time. Sometimes you need to relax

checks in some part of the site. By using the SecFilterInheritance directive:

SecFilterInheritance Off

ModSecurity for Apache User Guide

12

you can instruct ModSecurity to disregard parent filters so that you can start with rules from the scratch.

This directive affects rules only. The configuration is always inherited from the parent context but you

can override it as you are pleased using the appropriate configuration directives.

Note
Configuration and rule inheritance is always enabled by default. If you have a configuration con-

text beneath one that has had inheritance disabled you will have to explicitly disable inheritance

again if that is what you need.

When you choose not to inherit the rules from the parent context you can either write new rules for the

new context, or simply use the Include directive to include the same rules into many different contexts.

Sometimes only a small change to the rule set is required in the child context. In such cases you may

choose to use the selective inheritance option. You can do this with the help of the following two direct-

ives:

• SecFilterImport – import a single rule from the parent context. This directive is useful

when you want to start from scratch in the child context and only import selected rules from the

parent context.

• SecFilterRemove – remove a rule from the current context. This directive is useful when

you want to start with the same rule set as in the parent context, removing selected rules only.

The SecFilterImport and SecFilterRemove directives both accept a list rule IDs. The target

rules must have IDs associated with them (this is done using the id action). The directives will be ex-

ecuted in the order they appear in the configuration file. Therefore, it is possible to remove a rule with

SecFilterRemove and then add it again with SecFilterImport. Below you can find two ex-

amples that arrive at the same rule configuration, but take different routes to get there.

Note
If a target rule ID refers to a rule that is part of a chain, the import and remove directives will af-

fect the whole chain, and not only the rule the ID refers to.

Example 1: the rules from the parent context are not inherited, but a single rule is imported.

SecFilter XXX id:1001
SecFilter YYY id:1002
SecFilter ZZZ id:1003

<Location /subcontext/>
SecFilterInheritance Off
SecFilterImport 1003

</Location>

Example 2: the rules from the parent context are inherited, with two rules removed.

SecFilter XXX id:1001

ModSecurity for Apache User Guide

13

SecFilter YYY id:1002
SecFilter ZZZ id:1003

<Location /subcontext/>
SecFilterRemove 1001 1002

</Location>

Note
The Apache web server supports many different types of context (e.g. <Directory>,

<Location>, <Files>, ...). The order in which contexts are merged is significant. You should

try not to mix inheritance and different-type contexts. If you have to, make sure you test the con-

figuration to make sure it works as intended, and read the Apache context merging documentation

carefully: http://httpd.apache.org/docs-2.0/sections.html#mergin.

Filter inheritance In multiuser environments
When you are deploying ModSecurity in multi-user environments, and your users are allowed to use the

rules in their .htaccess files, you may not wish to allow them to not inherit the rules from the parent

context. There are two ways to achieve this.

Note
If you do not trust your users (e.g. running in a web hosting environment) then you should never

allow them access to ModSecurity. The .htaccess facility is useful for limited administration

control decentralisation, keeping ModSecurity configuration with the application code. But it is

not meant to be used in situations when the users may want to subvert the configuration. If you

are running a hostile environment you should turn off the .htaccess facility completely by

custom-compiling ModSecurity with the -DDISABLE_HTACCESS_CONFIG switch.

First, you can mark certain rules mandatory using the mandatory action. Such rules will always be inher-

ited in the child context.

The other way is to use the SecFilterInheritanceMandatory directive to simply make all rules

in the context mandatory for all child contexts.

SecFilterInheritanceMandatory On

Note
Just like SecFilterInheritance is always enabled in a context, SecFilterInherit-

anceMandatory is always disabled in a context, no matter of the value used in the parent con-

text.

You may be wondering what happens in a situation like this one:

ModSecurity for Apache User Guide

14

http://httpd.apache.org/docs-2.0/sections.html#mergin

SecFilter XXX id:1001
SecFilterInheritanceMandatory On
<Location /subcontext/>

SecFilterInheritance Off
SecFilter YYY id:1002
SecFilter ZZZ id:1003,mandatory

</Location>

<Location /subcontext/another/>
SecFilterRemove 1001 1002 1003
SecFilter QQQ id:1004

</Location>

Since rule inheritance is mandatory in the main context, the /subcontext/ context will inherit rule

1001 in spite of an attempt not to (using SecFilterInheritance Off). This subcontext will first

run rule 1001, followed by the rules 1002 and 1003.

The mandatory rule 1001 from the main context will also propagate to context /subcon-

text/another/, in spite of an attempt to remove it. This is also true for the rule 1003, which was

made mandatory for inheritance using the mandatory action. The SecFilterRemove 1001 1002 1003

directive will, however, succeed in removing rule 1002 because inheritance was not mandatory in /

subcontext/. This context will therefore first run rule 1001 and 1003, followed by the rule 1004.

Note
You should avoid importing and removing rules that makes use of the skip action. Unless you

are very careful you may end up with a configuration that does something other than what you in-

tended.

URL Encoding Validation
Special characters need to be encoded before they can be transmitted in the URL. Any character can be

replaced using the three character combination %XY, where XY represents an hexadecimal character code

(see http://www.rfc-editor.org/rfc/rfc1738.txt for more details). Hexadecimal numbers only allow letters

A to F, but attackers sometimes use other letters in order to trick the decoding algorithm. ModSecurity

checks all supplied encodings in order to verify they are valid.

You can turn URL encoding validation on with the following line:

SecFilterCheckURLEncoding On

Note
This directive does not check encoding in a POST payload when the multipart/form-data

encoding (file upload) is used. It is not necessary to do so because URL encoding is not used for

ModSecurity for Apache User Guide

15

http://www.rfc-editor.org/rfc/rfc1738.txt

this encoding.

Unicode Encoding Validation
Like many other features Unicode encoding validation is disabled by default. You should turn it on if

your application or the underlying operating system accept/understand Unicode.

Note
More information on Unicode and UTF-8 encoding can be found in RFC 2279 (ht-

tp://www.ietf.org/rfc/rfc2279.txt [???]).

SecFilterCheckUnicodeEncoding On

This feature will assume UTF-8 encoding and check for three types of errors:

• Not enough bytes. UTF-8 supports two, three, four, five, and six byte encodings. ModSecurity

will locate cases when a byte or more is missing.

• Invalid encoding. The two most significant bits in most characters are supposed to be fixed to

0x80. Attackers can use this to subvert Unicode decoders.

• Overlong characters. ASCII characters are mapped directly into the Unicode space and are thus

represented with a single byte. However, most ASCII characters can also be encoded with two,

three, four, five, and six characters thus tricking the decoder into thinking that the character is

something else (and, presumably, avoiding the security check).

Byte range check
You can force requests to consist only of bytes from a certain byte range. This can be useful to avoid

stack overflow attacks (since they usually contain "random" binary content). To only allow bytes from 32

to 126 (inclusive), use the following directive:

SecFilterForceByteRange 32 126

Default range values are 0 and 255, i.e. all byte values are allowed.

Note
This directive does not check byte range in a POST payload when multipart/form-data

encoding (file upload) is used. Doing so would prevent binary files from being uploaded.

However, after the parameters are extracted from such request they are checked for a valid range.

Allowing others to see ModSecurity
Prior to 1.9 ModSecurity supported the SecServerResponseToken directive. When used, this dir-

ModSecurity for Apache User Guide

16

???
???

ective exposed the presence of the module (with the version) in the web server signature. This directive

no longer works in 1.9. If used, it will emit a warning message to the error log.

ModSecurity for Apache User Guide

17

Rules
When the filtering engine is enabled, every incoming request is intercepted and analysed before it is pro-

cessed. The analysis begins with a series of built-in checks designed to validate the request format. These

checks can be controlled using configuration directives. In the second stage, the request goes through a

series of user-defined filters that are matched against the request. Whenever there is a positive match, cer-

tain actions are taken.

Simple filtering
The most simplest form of filtering is, well, simple. It looks like this:

SecFilter KEYWORD

For each simple filter like this, ModSecurity will look for the keyword in the request. The search is pretty

broad; it will be applied to the first line of the request (the one that looks like this GET /in-

dex.php?parameter=value HTTP/1.0). In case of POST requests, the body of the request will

be searched too (provided the request body buffering is enabled, of course).

Note
All pattern matches are case insensitive by default.

Path normalisation
Filters are not applied to raw request data, but on a normalised copy instead. We do this because attackers

can (and do) apply various evasion techniques to avoid detection. For example, you might want to setup a

filter that detects shell command execution:

SecFilter /bin/sh

But the attacker may use a string /bin/./sh (which has the same meaning) in order to avoid the

filter.

ModSecurity automatically applies the following transformations:

• On Windows only, convert \ to /

• Reduce /./ to /

• Reduce // to /

• Decode URL-encoded characters

You can choose whether to enable or disable the following checks:

• Verify URL encoding

• Allow only bytes from a certain range to be used

ModSecurity for Apache User Guide

18

Null byte attack prevention
Null byte attacks try to confuse C/C++ based software and trick it into thinking that a string ends before it

actually does. This type of an attack is typically rejected with a proper SecFilterByteRange filter.

However, if you do not do this a null byte can interfere with ModSecurity processing. To fight this, Mod-

Security looks for null bytes during the decoding phase and converts them into spaces. So, where before

this filter:

SecFilter hidden

would not detect the word hidden in this request:

GET /one/two/three?p=visible%00hidden HTTP/1.0

it now works as expected.

Regular expressions
The simplest method of filtering I discussed earlier is actually slightly more complex. Its full syntax is as

follows:

SecFilter KEYWORD [ACTIONS]

First of all, the keyword is not a simple text. It is an regular expression. A regular expression is a mini

programming language designed to pattern matching in text. To make most out of this (now) powerful

tool you need to understand regular expressions well. I recommend that you start with one of the follow-

ing resources:

• Perl-compatible regular expressions man page, http://www.pcre.org/pcre.txt

• Perl Regular Expressions, http://www.perldoc.com/perl5.6/pod/perlre.html

• Mastering Regular Expressions, http://www.oreilly.com/catalog/regex/

• Google search on regular expressions, http://www.google.com/search?q=regular%20expressions

• Wikipedia entry, http://en.wikipedia.org/wiki/Regular_expression

• POSIX regular expressions, http://www.wellho.net/regex/posix.html

Note
Two different regular expression engines are used in Apache 1.x and Apache 2.x. The Apache 1.x

regular expression engine is POSIX compliant. The Apache 2.x regular engine is PCRE compli-

ant. As a rule of thumb, regular expressions that work in Apache 1.x will work in Apache 2.x, but

not the other way round. If you need to write rules that work on both major branches you will

have to test them thoroughly. Since 1.9.2 it is possible to compile ModSecurity for Apache 1.x to

use PCRE as an regular expression library.

The second parameter is an action list definition, which specifies what will happen if the filter matches.

ModSecurity for Apache User Guide

19

http://www.pcre.org/pcre.txt
http://www.perldoc.com/perl5.6/pod/perlre.html
http://www.oreilly.com/catalog/regex/
http://www.google.com/search?q=regular%20expressions
http://en.wikipedia.org/wiki/Regular_expression
http://www.wellho.net/regex/posix.html

Actions are explained later in this manual.

Inverted expressions
If exclamation mark is the first character of a regular expression, the filter will treat that regular expres-

sion as inverted. For example, the following:

SecFilter !php

will reject all requests that do not contain the word php.

Advanced filtering
While SecFilter allows you to start quickly, you will soon discover that the search it performs is too

broad, and doesn't work very well. Another directive:

SecFilterSelective LOCATION KEYWORD [ACTIONS]

allows you to choose exactly where you want the search to be performed. The KEYWORD and the AC-

TIONS bits are the same as in SecFilter. The LOCATION bit requires further explanation.

The LOCATION parameter consist of a series of location identifiers separated with a pipe.

Examine the following example:

SecFilterSelective "REMOTE_ADDR|REMOTE_HOST" KEYWORD

It will apply the regular expression only the IP address of the client and the host name. The list of possible

location identifiers includes all CGI variables, and some more. Here is the full list:

• REMOTE_ADDR

• REMOTE_HOST

• REMOTE_USER

• REMOTE_IDENT

• REQUEST_METHOD

• SCRIPT_FILENAME

• PATH_INFO

• QUERY_STRING

• AUTH_TYPE

• DOCUMENT_ROOT

• SERVER_ADMIN

• SERVER_NAME

• SERVER_ADDR

• SERVER_PORT

ModSecurity for Apache User Guide

20

• SERVER_PROTOCOL

• SERVER_SOFTWARE

• TIME_YEAR

• TIME_MON

• TIME_DAY

• TIME_HOUR

• TIME_MIN

• TIME_SEC

• TIME_WDAY

• TIME

• API_VERSION

• THE_REQUEST

• REQUEST_URI

• REQUEST_FILENAME

• REQUEST_BASENAME

• IS_SUBREQ

There are some special locations:

• POST_PAYLOAD – filter the body of the POST request

• ARGS - filter arguments, the same as QUERY_STRING|POST_PAYLOAD

• ARGS_NAMES – variable/parameter names only

• ARGS_VALUES – variable/parameter values only

• COOKIES_NAMES - cookie names only

• COOKIES_VALUES - cookie values only

• SCRIPT_UID

• SCRIPT_GID

• SCRIPT_USERNAME

• SCRIPT_GROUPNAME

• SCRIPT_MODE

• SCRIPT_BASENAME

• ARGS_COUNT

• COOKIES_COUNT

• HEADERS

• HEADERS_COUNT

• HEADERS_NAMES

• HEADERS_VALUES

• FILES_COUNT

ModSecurity for Apache User Guide

21

• FILES_NAMES

• FILES_SIZES

And even more special:

• HTTP_header – search request header "header" (HEADER_header also

works as of 1.9)

• ENV_variable – search environment variable variable

• ARG_variable – search request variable/parameter variable

• COOKIE_name - search cookie with name name

• FILE_NAME_variable - search the filename of the file uploaded under the name vari-

able.

• FILE_SIZE_variable - search the size of the file uploaded under the name variable

A limited number of output-specific variables are also available for Apache 2 (only when output buffering

is enabled):

• OUTPUT - the complete response body

• OUTPUT_STATUS - response status code

Argument filtering exceptions
The ARG_variable location names support inverted usage when used together with the ARG location.

For example:

SecFilterSelective "ARGS|!ARG_param" KEYWORD

will search all arguments except the one named param.

Cookies
ModSecurity provides full support for Cookies. By default cookies will be treated as if they were in ver-

sion 0 format (Netscape-style cookies). However, version 1 cookies (as defined in RFC 2965) are also

supported. To enable version 1 cookie support use the SecFilterCookieFormat directive:

enable version 1 (RFC 2965) cookies
SecFilterCookieFormat 1

By default, ModSecurity will not try to normalise cookie names and values. However, since some applic-

ations and platforms (e.g. PHP) do encode cookie content you can choose to apply normalisation tech-

niques to cookies. This is done using the SecFilterNormalizeCookies directive.

SecFilterNormalizeCookies On

ModSecurity for Apache User Guide

22

Note
Prior to version 1.8.7 ModSecurity supported the SecFilterCheckCookieFormat direct-

ive. Due to recent changes in 1.8.7 this directive is now deprecated. It can still be used in the con-

figuration but it does not do anything. The directive will be completely removed in the 1.9.x

branch.

Output filtering
ModSecurity supports output filtering in the version for Apache 2. It is disabled by default so you need to

enable it first:

SecFilterScanOutput On

After that, simply add selective filters using a special variable OUTPUT:

SecFilterSelective OUTPUT "credit card numbers"

Those who have perhaps followed my columns at http://www.webkreator.com/php/ know that I am some-

what obsessed with the inability of PHP to prevent fatal errors. I have gone to great lengths to prevent

fatal errors from spilling to end users (see ht-

tp://www.webkreator.com/php/configuration/handling-fatal-and-parse-errors.html) but now, finally, I

don't have to worry any more about that. The following will catch PHP output error in the response body,

replace the response with an error, and execute a custom PHP script (so that the application administrator

can be notified):

SecFilterSelective OUTPUT "Fatal error:" deny,status:500
ErrorDocument 500 /php-fatal-error.html

You should note that although you can mix output filters with input filters, they are not executed at the

same time. Input filters are executed before a request is processed by Apache, while the output filters are

executed after Apache completes request processing.

Note
Actions skipnext and chain do not work with output filters.

Output filtering is only useful for plain text and HTML output. Applying regular expressions to binary

content (for example images) will only slow down the server. By default ModSecurity will scan output in

responses that have no content type, or whose content type is text/plan or text/html. You can

change this using the SecFilterOutputMimeTypes directive:

SecFilterOutputMimeTypes "(null) text/html text/plain"

Configured as in example above ModSecurity will apply output filters to plain text files, HTML files, and

ModSecurity for Apache User Guide

23

http://www.webkreator.com/php/
http://www.webkreator.com/php/configuration/handling-fatal-and-parse-errors.html
http://www.webkreator.com/php/configuration/handling-fatal-and-parse-errors.html

files where the mime type is not specified "(null)".

Note
Using output buffering will make ModSecurity keep the whole of the page output in memory, no

matter how large it is. The memory consumption is over twice the size of the page length.

While output monitoring is a useful feature in some circumstances you should be aware that it isn't fool-

proof. If an attacker is in a full control of request processing she can evade output monitoring in two

ways:

1. Use a Content-Type that is not being monitored. (For performance reasons it is not feasible to

monitor all content types.)

2. Encode the output in some way. Any simple encoding is likely to be enough to fool monitoring.

As of 1.9 another output variable is supported - OUTPUT_STATUS. This variable contains the status code

of the response.

ModSecurity for Apache User Guide

24

Actions
There are several types of actions:

• A primary action will make a decision whether to continue with the request or not. There can ex-

ist only one primary action. If you put several primary actions in the parameter, the last action to

be seen will be executed. Primary actions are deny, pass, and redirect.

• Secondary actions will be performed on a filter match independently on the decision made by

primary actions. There can be any number of secondary actions. For example, exec is one sec-

ondary action.

• Flow actions can change the flow of rules, causing the filtering engine to jump to another rule, or

to skip one or several rules. Flow actions are chain and skip.

• Parameters are not really actions, but a method of attaching parameters to filters. Some of this

parameters can be used by real actions. For example status supplies the response code to the

primary action deny.

Specifying actions
There are three places where you can put actions. One is the SecFilterDefaultAction directive,

where you define actions you want executed for the rules that follow the directive:

SecFilterDefaultAction "deny,log,status:500"

This example defines an action list that consists of three actions. Commas are used to separate actions in a

list. The first two actions consist of a single word. But the third action requires a parameter. Use double

colon to separate the parameter from the action name. Action parameters must not contain whitespace un-

less you surround them in single quotes (escape a single quote in the parameter with a backslash):

SecFilterDefaultAction "deny,log,status:'Hello World!'"

Note
As of 1.8.6, if you specify a non-fatal default action (such as log,pass) then it will be ignored

during the initialisation phase. The initialisation phase is designed to gather information about the

request, allowing non-fatal actions would cause some pieces of the request to be missing (for in-

ternal processing in ModSecurity). Therefore if you want ModSecurity to operate in a "detect-

only" mode you should disable all implicit validations (check URL encoding, Unicode, cookie

format, byte range).

Note
Meta-data actions (id, rev, msg, severity) and the actions that control the flow of rules

(skip/skipnext, chain) cannot appear in the SecFilterDefaultAction directive.

ModSecurity for Apache User Guide

25

Per-rule actions
You can also specify per-filter actions. Both filtering directives (SecFilter and SecFilterSe-

lective) accept a set of actions as an optional parameter. Per-rule actions are merged with the actions

specified in the most recent SecFilterSignatureAction directive (the default value is

log,deny,status:403). The following rules apply to the merging process:

1. Only one primary action is allowed per action list. A per-rule primary action will override the

primary action in the default list.

2. The actions specified in the per-rule configuration will override the equivalent actions in the

default action list.

3. When the restricted mode (see SecFilterActionsRestricted) is enabled only the

meta-data actions can appear in the per-rule action list.

4. Rules can be merged at configuration-time (preferred, intuitive), or at run-time (not so intuit-

ive). Read on to learn about the differences.

SecFilterSignatureAction
The SecFilterSignatureAction directive, available since 1.9RC1, makes it easier to maintain

rule sets. Prior to 1.9RC1, if one wanted to use per-rule action lists, every action list had to be complete,

e.g. specify a primary action, status codes etc. This made it very difficult to separate the rules (the logic to

detect attacks) from configuration policy. The SecFilterSignatureAction directive can appear

many times within a single configuration context and it applies to the rules that immediatelly follow it.

Also note that, for consistency, the rules that do not contain custom actions will also inherit the action list

from this directive. For example:

SecFilterDefaultAction log,deny,status:500

The rule below will respond with actions
specified in the context it is executed in.
You should note that the context a rule is
executed in is not necessarily the context
that rule was created in. Through inheritance
one rule can be executed in many different
contexts.
SecFilter 000

Warning rules
SecFilterSignatureAction log,pass
SecFilter 111 id:1
SecFilter 222 id:2

Error rules
SecFilterSignatureAction log,deny,status:403
SecFilter 333 id:3
SecFilter 444 id:4
Rule below, too, will reject with status 403

ModSecurity for Apache User Guide

26

SecFilter 555

When used together with SecFilterActionsRestricted, this directive makes it easier to include

third-party rule sets into the configuration.

Note
The value of the SecFilterSignatureAction directive will not be inherited in child con-

texts.

Restricting what can appear in the per-rule action list
Sometimes, when you want to include third-party rules in your configuration, you may want to appear

what actions will be allowed to appear in them. You can do this with the help of the SecFilterAction-

sRestricted directive:

SecFilterSignatureAction log,deny,status:403
SecFilterActionsRestricted On
Include conf/third-party-rules.conf

The only actions allowed in the per-rule configuration when the restricted mode is enabled are the meta-

data rules id, msg, rev, and severity. Other rules will be silently ignored.

Built-in actions

pass
Allow request to continue on filter match. This action is useful when you want to log a match but other-

wise do not want to take action.

SecFilter KEYWORD "log,pass"

allow
This is a stronger version of the previous filter. After this action is performed the request will be allowed

through and no other filters will be tried:

stop filter processing for request coming from
the administrator's workstation
SecFilterSelective REMOTE_ADDR "^192\.168\.2\.99$" allow

deny
Interrupt request processing on a filter match. Unless the status action is used too, ModSecurity will im-

mediately return a HTTP 500 error code. If a request is denied the header mod_security-action

ModSecurity for Apache User Guide

27

will be added to the list of request headers. This header will contain the status code used.

status
Use the supplied HTTP status code when request is denied. The following rule:

SecFilter KEYWORD "deny,status:404"

will return a "Page not found" response when triggered. The Apache ErrorDocument directive will be

triggered if present in the configuration. Therefore if you have previously defined a custom error page for

a given status then it will be executed and its output presented to the user.

redirect
On filter match redirect the user to the given URL. For example:

SecFilter KEYWORD "redirect:http://www.modsecurity.org"

This configuration directive will always override HTTP status code, or the deny keyword. The URL must

not contain a comma.

proxy
On filter match rewrite the request through the internal reverse proxy:

SecFilter KEYWORD "proxy:http://www.example.com"

For this action to work mod_proxy must be installed.

exec
Execute a binary on filter match. Full path to the binary is required:

SecFilter KEYWORD "exec:/home/ivanr/report-attack.pl"

This directive does not effect a primary action if it exists. This action will always call script with no para-

meters, but providing all information in the environment. All the usual CGI environment variables will be

there.

You can have one binary executed per filter match. Execution will add the header

mod_security-executed to the list of request headers.

Note
You should be aware that forking a threaded process results in all threads being replicated in the

new process. Forking can therefore incur larger overhead in multithreaded operation.

ModSecurity for Apache User Guide

28

Note
The script you execute must write something (anything) to stdout. If it doesn't ModSecurity

will assume execution didn't work.

log
Log filter match to the Apache error log.

nolog
Do not log the filter match. This will also prevent the audit logging from taking place.

skipnext
This action allows you to skip over one or more rules. You will use this action when you establish that

there is no need to perform some tests on a particular request. By default, the action will skip over the

next rule. It can jump any number of rules provided you supply the optional parameter:

SecFilterSelective ARG_p value1 skipnext:2
SecFilterSelective ARG_p value2
SecFilterSelective ARG_p value3

chain
Rule chaining allows you to chain several rules into a bigger test. Only the last rule in the chain will affect

the request but in order to reach it, all rules before it must be matched too. Here is an example of how you

might use this feature.

I wanted to restrict the administration account to log in only from a certain IP address. However, the ad-

ministration login panel was shared with other users and I couldn't use the standard Apache features for

this. So I used these two rules:

SecFilterSelective ARG_username admin chain
SecFilterSelective REMOTE_ADDR "!^YOUR_IP_ADDRESS_HERE$"

The first rule matches only if there exists a parameter username and its value is admin. Only then will the

second rule be executed and it will try to match the remote address of the request to the single IP address.

If there is no match (note the exclamation mark at the beginning) the request is rejected.

pause
Pause for the specified amount of milliseconds before responding to a request. This is useful to slow

down or completely confuse some web scanners. Some scanners will give up if the pause is too long.

Note

ModSecurity for Apache User Guide

29

Be careful with this option as it comes at a cost. Every web server installation is configured with

a limit, the maximal number of requests that may be served at any given time. Using a long delay

time with this option may create a "voluntary" denial of service attack if the vulnerability scanner

is executing requests in parallel (therefore many .

auditlog
Log the transaction information to the audit log.

noauditlog
Do not log transaction information to the audit log.

logparts
This action makes it possible to change what is logged (concurrent audit log only) on the per-request

basis. It was specifically designed to allow request bodies and response bodies to be conditionally logged.

For example, you may want to log the response bodies only of those transactions that may have suspi-

cious content in them.

This action requires one parameter, the list of parts to be logged. However, it supports relative changes to

the definition provided the first character of the parameter is either a plus + or a minus -. For example:

SecAuditLogType Concurrent
SecAuditLogParts ABCEFHZ
...

SecFilter 111 pass,logparts:ABCDFHZ
SecFilter 222 pass,logparts:+E
SecFilter 333 pass,logparts:-C

id, rev, msg, severity
These four actions all accept one parameter each, and then reproduce the parameters in every log message

emitted by ModSecurity. The idea is to be able to classify problems and put more information in the error

logs.

• id - unique rule ID

• rev - rule revision; if missing assumed to be "1"; whenever a rule is changed the revision value

must be incremented

• msg - a text message that will appear in the error log

• severity - an integer value or a name, as defined by syslog. Publishers are advised to only

use the following levels: 2 (high severity), 3 (medium severity), 4 (low severity) and 5 (normal

but significant). Levels 0-1 and 5-7 should only be used by the end users for their own purposes.

• 0 EMERGENCY - system is unusable

• 1 ALERT - action must be taken immediately

ModSecurity for Apache User Guide

30

• 2 CRITICAL - critical conditions

• 3 ERROR - error conditions

• 4 WARNING - warning conditions

• 5 NOTICE - normal but significant conditions

• 6 INFO - informational

• 7 DEBUG - debug-level messages

Note
These actions only be used on a standalone rule, or on a rule that is starting a chain.

Although the id action can contain any text, it is recommended to only use integers. There is no guaran-

tee that, at some point in future, we will start to accept only integers as valid rule IDs. Unless you intend

to publish rules to the public you should use the local range: 1-99,999. These are the reserved ranges:

• 1 – 99999; reserved for your internal needs, use as you see fit but don't publish them to others

• 100,000-199,999; reserved for internal use of the engine, to assign to rules that do not have ex-

plicit IDs

• 200,000-299,999; reserved for rules published at modsecurity.org

• 300,000-399,999; reserved for rules published at gotroot.com

• 400,000 and above; unreserved range.

Contact Ivan Ristic to reserve a range.

mandatory
You can use this action to mark a rule, or a chain or rules, for mandatory inheritance in subcontexts. Read

the section on filter inheritance for more information.

Note
Action id can only used on a standalone rule, or on a rule that is starting a chain.

For example:

SecFilter 111 mandatory

or

SecFilter 111 mandatory,chain
SecFilter 222

setenv, setnote
These two actions will set or unset a named environment variable or an Apache. There are three formats

you can use.

ModSecurity for Apache User Guide

31

Choose the name and the value

SecFilter KEYWORD setenv:name=value

Choose just the name, a value "1" will be assumed:

SecFilter KEYWORD setenv:name

Delete an existing variable / note by placing an exclamation mark before the variable name:

SecFilter KEYWORD setenv:!name

Request headers added by mod_security
Wherever possible, ModSecurity will add information to the request headers, thus allowing your scripts to

find and use them. Obviously, you will have to configure ModSecurity not to reject requests in order for

your scripts to be executed at all. At a first glance it may be strange that I'm using the request headers for

this purpose instead of, for example, environment variables. Although environment variables would be

more elegant, input headers are always visible to scripts executed using an ErrorDocument directive

(see below) while environment variables are not.

This is the list of headers added:

• mod_security-executed; with the path to the binary executed

• mod_security-action; with the status code returned

• mod_security-message; the message about the problem detected, the same as the message

added to the error log

Logging the request body
ModSecurty will export a request body through the mod_security-body note. You can use this for log-

ging:

LogFormat "%h %l %u %t \"%r\" %>s %{mod_security-body}n

Note
If the request is of multipart/request-data type (file upload) the real request body will be replaced

with a simulated application/x-www-form-urlencoded content.

Handling rule matches using ErrorDocument
If your configuration returns a HTTP status code 500, and you configure Apache to execute a custom

script whenever this code occurs (for example: ErrorDocument 500 /error500.php) you will

be able to use your favourite scripting engine to respond to errors. The information on the error will be in

ModSecurity for Apache User Guide

32

the environment variables REDIRECT_* and HTTP_MOD_SECURITY_* (as described here: ht-

tp://httpd.apache.org/docs-2.0/custom-error.html).

Making ModSecurity talk to your firewall
In some cases, after detecting a particularly dangerous attack or a series of attacks you will want to pre-

vent further attacks coming from the same source. You can do this by modifying the firewall to reject all

traffic coming from a particular IP address (I have written a helper script that works with iptables, down-

load it from here: http://www.apachesecurity.net).

This method can be very dangerous since it can result in a denial of service (DOS) attack. For example,

an attacker can use a proxy to launch attacks. Rejecting all requests from a proxy server can be very dan-

gerous since all legitimate users will be affected too.

Since most proxies send information describing the original client (some information on this is available

here http://www.webkreator.com/cms/view.php/1685.html [???], under the "Stop hijacking" head-

er), we can try to be smart and find the real IP address. While this can work, consider the following scen-

ario:

• The attacker is accessing the application directly but is pretending to be a proxy server, citing a

random (or valid) IP address as the real source IP address. If we start rejecting requests based on

that deducted information, the attacker will simply change the IP address and continue. As a res-

ult we might have banned legitimate users while the attacker is still free searching for applica-

tion holes.

Therefore this method can be useful only if you do not allow access to the application through proxies, or

allow access only through proxies that are well known and, more importantly, trusted.

If you still want to ban requests based on IP address (in spite of all our warnings), you will need to write a

small script that will executed on a filter match. The script should extract the IP address of the attacker

from environment variables, and then make a call to iptables or ipchains to ban the IP address. We will in-

clude a sample script doing this with a future version of mod_security.

ModSecurity for Apache User Guide

33

http://httpd.apache.org/docs-2.0/custom-error.html
http://httpd.apache.org/docs-2.0/custom-error.html
http://www.apachesecurity.net
???

Special Features

File upload support
ModSecurity is capable of intercepting files uploaded through POST requests and multipart/

form-data encoding or (as of 1.9) through PUT requests.

Choosing where to upload files
ModSecurity will always upload files to a temporary directory. You can choose the directory using the

SecUploadDir directive:

SecUploadDir /tmp

It is better to choose a private directory for file storage, somewhere only the web server user is allowed

access. Otherwise, other server users may be able to access the files uploaded through the web server.

Verifying files
You can choose to execute an external script to verify a file before it is allowed to go through the web

server to the application. The SecUploadApproveScript directive enables this function. Like in the

following example:

SecUploadApproveScript /full/path/to/the/script.sh

The script will be given one parameter on the command line - the full path to the file being uploaded. It

may do with the file whatever it likes. After processing it, it should write the response on the standard

output. If the first character of the response is "1" the file will be accepted. Anything else, and the whole

request will be rejected. Your script may use the rest of the line to write a more descriptive error message.

This message will be stored to the debug log.

Storing uploaded files
You can choose to keep files uploaded through the web server. Simply add the following line to your con-

figuration:

SecUploadKeepFiles On

Files will be stored at a path defined using the SecUploadDir directive. If you want to keep files se-

lectively you can use

SecUploadKeepFiles RelevantOnly

This will keep only those files that belong to requests that are deemed relevant.

ModSecurity for Apache User Guide

34

Interacting with other daemons
To allow for interaction with other daemons (for example ClamAV, as described later), as of 1.9dev1 files

are created with relaxed permissions allowing group read. To do this assuming Apache runs as httpd and

daemon as clamav:

mkdir /tmp/webfiles
chown httpd:clamav /tmp/webfiles
chmod 2750 /tmp/webfiles

With this configuration in place, the user clamav will have access to the folder. The same goes for files,

which will be created with group ownership clamav. Don't forget to use the SecUploadDir directive to

store files in /tmp/webfiles.

Note
If you are keeping files around it might not be safe to leave them there owned by the web server

user. For example, if you have PHP running as a module and untrusted users on the server they

may be able to access the files. Consider implementing a cron script to make the files only read-

able by root, and possibly move them to a separate location altogether.

Integration with ClamAV
ModSecurity includes a utility script that allows the file approval mechanism to integrate with the

ClamAV virus scanner. This is especially handy to prevent viruses and exploits from entering the web

server through file upload.

#!/usr/bin/perl
#
modsec-clamscan.pl
mod_security, http://www.modsecurity.org
Copyright (c) 2002-2004 Ivan Ristic <ivanr@webkreator.com>
#
$Id: modsecurity-manual.xml,v 1.8.2.13 2006/04/10 12:35:37 ivanr Exp $
#
This script is an interface between mod_security and its
ability to intercept files being uploaded through the
web server, and ClamAV

by default use the command-line version of ClamAV,
which is slower but more likely to work out of the
box
$CLAMSCAN = "/usr/bin/clamscan";

using ClamAV in daemon mode is faster since the
anti-virus engine is already running, but you also
need to configure file permissions to allow ClamAV,

ModSecurity for Apache User Guide

35

usually running as a user other than the one Apache
is running as, to access the files
$CLAMSCAN = "/usr/bin/clamdscan";

if (@ARGV != 1) {
print "Usage: modsec-clamscan.pl <filename>\n";
exit;

}

my ($FILE) = @ARGV;

$cmd = "$CLAMSCAN --stdout --disable-summary $FILE";
$input = `$cmd`;
$input =~ m/^(.+)/;
$error_message = $1;

$output = "0 Unable to parse clamscan output [$1]";

if ($error_message =~ m/: Empty file\.$/) {
$output = "1 empty file";

}
elsif ($error_message =~ m/: (.+) ERROR$/) {

$output = "0 clamscan: $1";
}
elsif ($error_message =~ m/: (.+) FOUND$/) {

$output = "0 clamscan: $1";
}
elsif ($error_message =~ m/: OK$/) {

$output = "1 clamscan: OK";
}

print "$output\n";

Upload memory limit
Apache 1.x does not offer a proper infrastructure for request interception. It is only possible to intercept

requests storing them completely in the operating memory. With Apache 1.x there is a choice to analyse

multipart/form-data (file upload) requests in memory or not analyse them at all (selectively turn

POST processing off).

With Apache 2.x, however, you can define the amount of memory you want to spend parsing multipart/

form-data requests in memory. When a request is larger than the memory you have allowed a temporary

file will be used. The default value is 60 KB but the limit can be changed using the SecUploadIn-

MemoryLimit directive:

SecUploadInMemoryLimit 125000

ModSecurity for Apache User Guide

36

Server identity masking
One technique that often helps slow down and confuse attackers is the web server identity change. Web

servers typically send their identity with every HTTP response in the Server header. Apache is particu-

larly helpful here, not only sending its name and full version by default, but it also allows server modules

to append their versions too.

To change the identity of the Apache web server you would have to go into the source code, find where

the name "Apache" is hard-coded, change it, and recompile the server. The same effect can be achieved

using the SecServerSignature directive:

SecServerSignature "Microsoft-IIS/5.0"

It should be noted that although this works quite well, skilled attackers (and tools) may use other tech-

niques to "fingerprint" the web server. For example, default files, error message, ordering of the outgoing

headers, the way the server responds to certain requests and similar - can all give away the true identity. I

will look into further enhancing the support for identity masking in the future releases of mod_security.

If you change Apache signature but you are annoyed by the strange message in the error log (some mod-

ules are still visible - this only affects the error log, from the outside it still works as expected):

[Fri Jun 11 04:02:28 2004] [notice] Microsoft-IIS/5.0 mod_ssl/2.8.12 OpenSSL/0.9.6b \
configured -- resuming normal operations

Then you should re-arrange the modules loading order to allow mod_security to run last, exactly as ex-

plained for chrooting.

Note
In order for this directive to work you must leave/set ServerTokens to Full.

When the SecServerSignature directive is used to change the public server signature, ModSecurity

will start writing the real signature to the error log, to allow you to identify the web server and the mod-

ules used.

[Fri Jun 11 04:02:28 2004] [notice] mod_security/1.9dev1 configured - Apache/2.0.52 \
(Unix) PHP/4.3.10 proxy_html/2.4

Chroot support

Standard approach
ModSecurity includes support for Apache filesystem isolation, or chrooting. Chrooting is a process of

confining an application into a special part of the file system, sometimes called a "jail". Once the chroot

(short for “change root”) operation is performed, the application can no longer access what lies outside

the jail. Only the root user can escape the jail (in most cases, there are some circumstances when even

ModSecurity for Apache User Guide

37

non-root users can escape too, but only on an improperly configured jail). A vital part of the chrooting

process is not allowing anything root related (root processes or root suid binaries) inside the jail. The idea

is that if an attacker manages to break in through the web server he won't have much to do because he,

too, will be in jail, with no means to escape.

Applications do not have to support chrooting. Any application can be chrooted using the chroot binary.

The following line:

chroot /chroot/apache /usr/local/web/bin/apachectl start

will start Apache but only after replacing the file system with what lies beneath /chroot/apache.

Unfortunately, things are not as simple as this. The problem is that applications typically require shared

libraries, and various other files and binaries to function properly. So, to make them function you must

make copies of required files and make them available inside the jail. This is not an easy task. (I covered

the process in detail in my book, Apache Security. The chapter that covers chroot is available for free at

http://www.apachesecurity.net).

The ModSecurity way
While I was chrooting an Apache the other day I realised that I was bored with the process and I started

looking for ways to simplify it. As a result, I built the chrooting functionality into the mod_security

module itself, making the whole process less complicated. With ModSecurity under your belt, you only

need to add one line to the configuration file:

SecChrootDir /chroot/apache

and your web server will be chrooted successfully.

Note
The internal chroot functionality provided by ModSecurity works great for simple setups. One ex-

ample of a simple setup is Apache serving static files only, or running scripts using modules. For

more complex setups you should consider building a jail the old-fashioned way.

Note
The internal chroot feature should be treated as somewhat experimental. Due to the large number

of default and third-party modules available for the Apache web server, it is not possible to verify

the internal chroot works reliably with all of them. You are advised to think about your option

and make your own decision. In particular, if you are using any of the modules that fork in the

module initialisation phase (e.g. mod_fastcgi, mod_fcgid, mod_cgid), you are advised to examine

each Apache process and observe its current working directory, process root, and the list of open

files.

What follows is a list of facts about the internal chroot functionality for you to consider before making the

decision:

ModSecurity for Apache User Guide

38

http://www.apachesecurity.net

1. Unlike external chrooting (mentioned previously) ModSecurity chrooting requires no addition-

al files to exist in jail. The chroot call is made after web server initialisation but before forking.

Because of this, all shared libraries are already loaded, all web server modules are initialised,

and log files are opened. You only need your data files in the jail.

2. To create new processes from within jail your either need to use statically-compiled binaries or

place shared libraries in the jail too.

3. With Apache 2.x, the default value for the AcceptMutex directive is pthread. Sometimes

this setting prevents Apache from working when the chroot functionality is used. Set Accept-

Mutex to any other setting to overcome this problem (e.g. posixsem). If you configure ch-

root to leave log files outside the jail, Apache will have file descriptors pointing to files outside

the jail. The chroot mechanism was not initially designed for security and some people fill un-

easy about this.

4. If your Apache installation uses mod_ssl you will find that it is not possible to leave the logs

directory outside the jail when a file-based SSL mutex is used. This is because mod_ssl cre-

ates a lock file in the logs directory immediately upon startup, but fails when it cannot find it

later. This problem can be avoided by using some other mutex type, for example SSLMutex

sem, or by telling mod_ssl to place its file-based mutex in a directory that is inside the jail

(using SSLMutex file://path/to/file).

5. If you are trying to use the chroot feature with a multithreaded Apache installation you may get

the folllowing message "libgcc_s.so.1 must be installed for pthread_cancel to work". Add

LoadFile /lib/libgcc_s.so.1 to your Apache configuration to fix this problem.

6. The files used by Apache for authentication must be inside the jail since these files are opened

on every request.

7. Certain modules (e.g. mod_fastcgi, mod_fcgi, mod_cgid) fork in the module initialisa-

tion phase. If they fork before chroot takes place they create a process that lives outside jail. In

this case ModSecurity must be configured to initialise after most modules but before the mod-

ules that fork. This is a manual process with Apache 1.3.x. It is an automated process with

Apache 2.x since ModSecurity 1.9.3.

Required module ordering for chroot support (Apache 1.x)

Note
This step should not be needed if you intend to leave the log files inside the jail.

As mentioned above, the chroot call must be performed at a specific moment in Apache initialisation,

only after all other modules are initialised. This means that ModSecurity must be the first on the list of

modules. To ensure that, you will probably need to make some changes to module ordering, using the fol-

lowing configuration directives:

ClearModuleList
AddModule mod_security.c
AddModule ...

ModSecurity for Apache User Guide

39

AddModule ...
AddModule ...

The first directive clears the list. You must put ModSecurity next, followed by all other modules you in-

tend to use (except http_core.c, which is always automatically added and you do not have to worry about

it). You can find out the list of built-in modules by executing the httpd binary with the -l switch:

./httpd -l

Note
If you choose to put the Apache binary and the supporting files outside of jail, you won't be able

to use the apachectl graceful and apachectl restart commands anymore. That

would require Apache reaching out of the jail, which is not possible. With Apache 2, even the

apachectl stop command may not work.

Required module ordering for chroot support (Apache 2.x)

Note
This step should not be needed if you intend to leave the log files inside the jail.

With Apache 2.x you shouldn't need to manually configure module ordering since Apache 2.x already in-

cludes support for module ordering internally. ModSecurity uses this feature to tell Apache 2.x when ex-

actly to call it and chroot works (if you're having problems let me know).

There was a change in how the process is started in Apache2. The httpd binary itself now creates the pid

file with the process number. Because of this you will need to put Apache in jail at the same folder as out-

side the jail. Assuming your Apache outside jail is in /usr/local/web/apache and you want jail to

be at /chroot you must create a folder /chroot/usr/local/web/apache/logs.

When started, the Apache will create its pid file there (assuming you haven't changed the position of the

pid file in the httpd.conf in which case you probably know what you're doing).

A step-by-step chroot guide
If you follow this step-by-step guide you won't even have to bother with the module ordering. First install

Apache as you normally would. Here I will assume Apache was installed into /usr/local/apache. I

will also assume the jail will be placed at /chroot/apache. It is always a good idea the installation

was successful by starting the server and checking it works properly.

mkdir -p /chroot/apache/usr/local
cd /usr/local
mv apache /chroot/apache/usr/local
ln -s /chroot/apache/usr/local/apache

ModSecurity for Apache User Guide

40

Now instruct ModSecurity to perform chroot upon startup:

SecChrootDir /chroot/apache

And start Apache:

/usr/local/apache/bin/apachectl startssl

Note
This procedure describes an approach where the Apache files are left inside the jail after chroot

takes place. This is the recommended approach because it works every time, and because it is

very easy to switch from a non-chrooted Apache to a chrooted one (simply by commenting the

SecChrootDir line in the configuration file). It is perfectly possible, however, to create a jail

where most of the files are outside. But this is also an option that is more difficult to get right. A

good understanding of the chroot mechanism is needed to get it right.

Note
Since version 1.8, if ModSecurity fails to perform chroot for any reason it will prevent the server

from starting. If it fails to detect chroot failure during the configuration phase and then detects it

at runtime, it will write a message about that in the error log and exit the child. This may not be

pretty but it is better than running without a protection of a chroot jail when you think such pro-

tection exists.

Performance measurement
In 1.9dev1 I introduced experimental support for performance measurement to the Apache 2 version of

ModSecurity. Measuring script performance is sometimes difficult if the clients are on a slow link. Be-

cause the response is generated and sent to the client at the same time it is not possible to separate the

two. The only way to measure performance is to withhold from sending the response in parts, and only

send it when it is generated completely. This is exactly what ModSecurity does anyway (for security pur-

poses) so it makes sense to use it for performance measurement. Three time measurements are performed

and data stored the results in Apache notes. All times are given in microseconds relative to the start of re-

quest processing:

• mod_security-time1 - ModSecurity initialisation completed. If the request contains a body

the body will have been read by now (provided POST scanning is enabled).

• mod_security-time2 - ModSecurity completes rule processing. Since we try to execute

last, just before request is processed by a handler, this time is roughly the time just before pro-

cessing begins.

• mod_security-time3 - response has been generated and is about to be sent to the client.

To use these values in a custom log do this (again, this only works with Apache 2):

ModSecurity for Apache User Guide

41

CustomLog logs/timer_log "%h %l %u %t \"%r\" %>s %b - %{UNIQUE_ID}e \
%<{mod_security-time1}n %<{mod_security-time2}n \
%<{mod_security-time3}n %D"

Each entry in the log will look something like this:

82.70.94.182 - - [19/Nov/2004:11:33:52 +0000] "GET /cgi-bin/modsec-test.pl HTTP/1.1" \
200 1418 - 532 1490 13115 14120

In the example above it took 532 microseconds for processing to reach ModSecurity. ModSecurity used

958 microseconds (1490 - 532) to execute the defined rules, the CGI script generated output in 11625 mi-

croseconds (13155 - 1490), and Apache took 965 microseconds to send the response to the client.

ModSecurity for Apache User Guide

42

Logging

Debug Log
Use the SecFilterDebugLog directive to choose a file where debug output will be written. If the

parameter does not start with a forward slash, Apache home path will be prepended to it.

SecFilterDebugLog logs/modsec_debug_log

You can control how detailed the debug log is with SecFilterDebugLevel:

SecFilterDebugLevel 4

Possible log values are:

• 0 - none (this value should always be used on production systems)

• 1 - significant events (these will also be reported in the error_log)

• 2 - info messages

• 3 - more detailed info messages

Note
ModSecurity uses log levels up until 9 internally but they are only useful for debugging purposes.

Audit logging
Standard Apache logging will not help much if you need to trace back steps of a particular user or an at-

tacker. The problem is that only a very small subset of each request is written to a log file. This problem

can be remedied with the audit logging feature of ModSecurity. These two directives:

SecAuditEngine On
SecAuditLog logs/audit_log

will let ModSecurity know that you want a full audit log stored into the log file audit log. Here is an ex-

ample of how a request is logged:

==
Request: 192.168.0.2 - - [[18/May/2003:11:20:43 +0100]] "GET /cgi-bin/printenv?p1=666 \
HTTP/1.0" 406 822
Handler: cgi-script
--
GET /cgi-bin/printenv?p1=666 HTTP/1.0
Host: wkx.dyndns.org:8080
User-Agent: mod_security regression test utility
Connection: Close

ModSecurity for Apache User Guide

43

mod_security-message: Access denied with code 406. Pattern match "666" at \
ARGS_SELECTIVE
mod_security-action: 406

HTTP/1.0 406 Not Acceptable
==

You can see that on the first line you get what you normally get from Apache. The second line contains

the name of the handler that was supposed to handle the request. Full request (with additional

mod_security headers) is given after the separator, and the response headers (in this case there is only one

line) is given after one empty line.

When the POST filtering is on, the POST payload will always be included in the audit log. Actual re-

sponse will never be included (at least not in this version).

Note
Take care when handling audit log data. The files may contain unfiltered binary data received

over the network. Such data may be dangerous if not handled properly (e.g. it may contain ter-

minal escape sequences.)

At this time, the audit logging part of the module will log Apache 1.x error messages, on the line below

the Handler: line. The line will always begin with Error:. This functionality will be added to the

Apache 2.x version of the module if possible.

Note
The audit log subsystem does not log request timeouts.

Note
The audit log entries do not contain the output headers Date and Server. This is because

Apache is adding these response headers to the response at the very last moment in response pro-

cessing making it impossible for a module to get to them.

Choosing what to log by response status code
As of 1.9 ModSecurity supports the SecAuditLogRelevantStatus directive, which is used to se-

lectively log requests to audit log even if they did not cause a warning or an error. It is especially useful to

establish a simple communication channel with the applications deployed on the web server. For ex-

ample, if you know the application always responds with a HTTP status code 500 whenever an internal

error or an attack occurs you can configure ModSecurity to log such requests in full:

SecAuditLogRelevantStatus ^5

This directive accepts one parameter, a regular expression that will be matched against the response status

ModSecurity for Apache User Guide

44

code. If there is a match the transaction will be considered relevant, and logged.

Unique request identifiers
If you add mod_unique_id to the Apache configuration mod_security will detect it and use the environ-

ment variable it generates (UNIQUE_ID). Its value will be written to the audit log. You could write the

unique ID in an error page to the user and use it later to track and fix a false positive.

Choosing what to log
The SecAuditEngine parameter accepts one of four values:

• On – log all requests

• Off – do not log requests at all

• RelevantOnly – only log relevant requests. Relevant requests are those requests that caused a

filter match.

• DynamicOrRelevant – (deprecated as of 1.9.3) log dynamically generated or relevant re-

quests. A request is considered dynamic if its handler is not null.

Note
It is sometimes difficult for ModSecurity to determine if a particular request is dynamic in nature

or not. Since this logic relies on the internal (and not entirely documented) workings of Apache

and on the chosen configuration it also makes it somewhat unpredictable. Because unpredictabil-

ity is not a desired quality in a security device, as of 1.9.3 dynamic request detection is deprec-

ated.

Getting ModSecurity to log dynamic requests can sometimes require a little bit of work depending on

your configuration. In Apache theory, a response to a request is generated by a so-called handler. If there

is a handler attached to a request it should be considered to be of a dynamic nature. In practise, however,

Apache can be configured to serve dynamic pages without a handler (it then chooses the module based on

the resource MIME type). This will happen, for example, if you configure PHP as instructed in the main

distribution:

AddType application/x-httpd-php .php

While this works, it isn't entirely correct. However, if you replace the above line with the following:

AddHandler application/x-httpd-php .php

PHP will work just as well, Apache will have a handler assigned to the request, and audit logger will be

able to log selectively.

As of 1.9 the audit logger takes the response code into account when deciding whether something is rel-

evant or not. At the time response codes 4xx and 5xx are treated as relevant. This makes it easy to per-

form audit logging on request from (any) web application. If an error occurs just respond as you normally

ModSecurity for Apache User Guide

45

would but just change the response code to (for example) 500.

New Audit Log Type
New audit log type was introduced in ModSecurity 1.9. The old audit log type remains useful for ad-hoc

logging but it is considered obsolete and it may be removed from ModSecurity 2.0. The new audit log

type was introduced to increase performance (one file per transaction is created, avoiding the need to syn-

chronise writes between concurrent requests), increase the amount of information logged, and to allow for

real-time audit log aggregation (a proof-of-concept piped logging script, modsec-audit-

log-collector.pl, is included in the distribution). The new audit log type can log the response body

too.

Note
For the new audit log type to work the mod_unique_id module must be active.

Example configuration:

Yes, we want to use the new format
SecAuditLogType Concurrent

Directory where the files will be stored
MUST NOT BE THE SAME AS THE APACHE LOGS FOLDER
SecAuditLogStorageDir /var/www/audit_log/data/

The index of all files created
YOU MUST NOT ALLOW NON-ROOT USERS TO WRITE
TO THE BASE FOLDER
SecAuditLog /var/www/audit_log/index

Choose what to log – everything (default is ABCFHZ)
SecAuditLogParts ABCDEFGHZ

For each audit log file created, an one-line entry will appear in the index file. Those who wish to imple-

ment real-time audit log aggregation should configure a script to receive information about audit log

entries via the piped logging mechanism.

Note
You have probably heard that it is dangerous to allow non-root users to have write permissions

in the Apache logs folder. In the same manner non-root users should not be allowed to have

write permissions in the folder where you place the audit log index file. To be safe create a sub-

directory beneath the main audit log folder and allow the httpd user to write there.

A typical audit log entry looks like this:

192.168.2.101 192.168.2.11 - - [15/Jul/2005:11:56:52 +0100] \
"POST /form.php HTTP/1.1" 403 3 "http://192.168.2.101:8080/form.php" \

ModSecurity for Apache User Guide

46

"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.8) Gecko/20050511 \
Firefox/1.0.4" G3yTd38AAAEAAAM7BLwAAAAA "-" \
/20050715/20050715-1156/20050715-115652-G3yTd38AAAEAAAM7BLwAAAAA 0 1031 \
md5:dc910f6d647d47b32ae6e47326f0ca42

The line begins with a "vcombined" log format, but it then adds the following fields:

• unique_id

• session_id (not used at this time)

• filename

• offset

• size

• hash of the audit log entry (MD5 hash used at this time)

A typical audit log entry may look like this:

--67458b6b-A--
[15/Jul/2005:11:56:52 +0100] G3yTd38AAAEAAAM7BLwAAAAA \
192.168.2.11 4236 192.168.2.101 8080
--67458b6b-B--
POST /form.php HTTP/1.1
Host: 192.168.2.101:8080
User-Agent: Mozilla/5.0
Accept: */*
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://192.168.2.101:8080/form.php
Content-Type: application/x-www-form-urlencoded
Content-Length: 5

--67458b6b-C--
f=111
--67458b6b-E--
403 (Response body)
--67458b6b-F--
HTTP/1.1 403 Forbidden
Last-Modified: Fri, 08 Jul 2005 14:25:30 GMT
ETag: "decb4-3-34b96a80"
Accept-Ranges: bytes
Content-Length: 19
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

--67458b6b-H--

ModSecurity for Apache User Guide

47

Message: Pattern match "111" at POST_PAYLOAD \
[id "1"] [rev "2"] [msg "3"] [severity "4"]
Apache-Handler: application/x-httpd-php
Stopwatch: 1126536042708000 11024 (7276* 7375 9842)

--67458b6b-Z--

Note
Take care when handling audit log data. The files may contain unfiltered binary data received

over the network. Such data may be dangerous if not handled properly (e.g. it may contain raw

terminal escape sequences.)

Available audit log parts:

• A – audit log header (mandatory)

• B – request headers

• C – request body (present only if the request body exists and ModSecurity is configured to inter-

cept it)

• D - RESERVED for ntermediary response headers, not implemented yet.

• E – intermediary response body (present only if ModSecurity is configured to intercept response

bodies, and if the audit log engine is configured to record it). Intermediary response body is the

same as the actual response body unless ModSecurity intercepts the intermediary response body,

in which case the actual response body will contain the error message (either the Apache default

error message, or the ErrorDocument page).

• F – final response headers (excluding the Date and Server headers, which are always added by

Apache in the late stage of content delivery).

• G – RESERVED for the actual response body, not implemented yet.

• H - audit log trailer

• Z – final boundary, signifies the end of the entry (mandatory)

Note
ModSecurity does not log response bodies of stock Apache responses (e.g. 404).

Guardian log
Since 1.9 ModSecurity supports a new directive, SecGuardianLog, that is designed to send all access

data to another program using the piped logging feature. Since Apache is typically deployed in a multi-

process fashion, making information sharing difficult, the idea is to deploy a single external process to

observe all requests in a stateful manner, providing additional protection.

Development of a state of the art external protection tool will be a focus of subsequent ModSecurity re-

ModSecurity for Apache User Guide

48

leases. However, a fully functional tool is already available as part of the Apache httpd tools project (ht-

tp://www.apachesecurity.net/tools/). The tool is called httpd-guardian and can be used to defend

against Denial of Service attacks. It uses the blacklist tool (from the same project) to interact with an ipt-

ables-based (Linux) or pf-based (*BSD) firewall, dynamically blacklisting the offending IP addresses. It

can also interact with SnortSam (http://www.snortsam.net). Assuming httpd-guardian is already

configured (look into the source code for the detailed instructions) you only need to add one line to your

Apache configuration to deploy it:

SecGuardianLog |/path/to/httpd-guardian

By default httpd-guardian will defend against clients that send more 120 requests in a minute, or

more than 360 requests in five minutes.

Custom logging
Since 1.8 it is possible to use Apache custom logging to log only those requests where ModSecurity was

involved. This is because ModSecurity now defines an environment variable mod_security-relevant

whenever it performs an action. To use a custom log file, add the following (or similar) to your configura-

tion:

CustomLog logs/modsec_custom_log \
"%h %l %u %t \"%r\" %>s %b %{mod_security-message}i" \
env=mod_security-relevant

ModSecurity for Apache User Guide

49

http://www.apachesecurity.net/tools/
http://www.apachesecurity.net/tools/
http://www.snortsam.net

Miscellaneous Topics

Impedance mismatch
Web application firewalls have a difficult job trying to make sense of data that passes by, without any

knowledge of the application and its business logic. The protection they provide comes from having an

independent layer of security on the outside. Because data validation is done twice, security can be in-

creased without having to touch the application. In some cases, however, the fact that everything is done

twice brings problems. Problems can arise in the areas where the communication protocols are not well

specified, or where either the device or the application do things that are not in the specification.

The worst offender is the cookie specification. (Actually all four of them: ht-

tp://wp.netscape.com/newsref/std/cookie_spec.html, http://www.ietf.org/rfc/rfc2109.txt, ht-

tp://www.ietf.org/rfc/rfc2964.txt [<?xml version="1.0"?> <ns:clipboard xm-

lns:ns="http://www.xmlmind.com/xmleditor/namespace/clipboard" ><ulink url="???"

>http://www.ietf.org/rfc/rfc2964.txt</ulink ></ns:clipboard >], http://www.ietf.org/rfc/rfc2965.txt.) For

many of the cases, possible in real life, there is no mention in the specification - leaving the programmers

to do what they think is appropriate. For the largest part this is not a problem when the cookies are well

formed, as most of them are. The problem is also not evident because most applications parse cookies

they themselves send. It becomes a problem when you think from a point of view of a web application

firewall, and a determined adversary trying to get past it. In the 1.8.x branch and until 1.8.6, ModSecurity

(changes were made to 1.8.7) used a v1 cookie parser. However, the differences between v0 and v1

formats could be exploited to make a v1 parser see one cookie where a v0 parser would see more. Con-

sider the following:

Cookie: innocent="; nasty=payload; third="

A v0 parser does not understand double quotes. It typically only looks for semi-colons and splits the

header accordingly. Such a parser sees cookies innocent, nasty, and third. A v1 parser, on the oth-

er hand, sees only one cookie - innocent.

How is the impedance mismatch affecting the web application firewall users and developers? It certainly

makes our lives more difficult but that’s all right - it’s a part of the game. Developers will have to work to

incorporate better and smarter parsing routines. For example, there are two cookie parsers in ModSecurity

1.8.7 and the user can choose which one to use. (A v0 format parser is now used by default.) But such im-

provements, since they cannot be automated, only make using the firewall more difficult - one more thing

for the users to think about and configure.

On the other hand, the users, if they don’t want to think about cookie parsers, can always fall back to use

those parts of HTTP that are much better defined. Headers, for example. Instead of using COOK-

IE_innocent to target an individual cookie they can just use HTTP_Cookie to target the whole

cookie header. Other variables, such as ARGS, will look at all variables at once no matter how hard ad-

versaries try to mask them.

ModSecurity for Apache User Guide

50

http://wp.netscape.com/newsref/std/cookie_spec.html
http://wp.netscape.com/newsref/std/cookie_spec.html
http://www.ietf.org/rfc/rfc2109.txt
<?xml version="1.0"?> <ns:clipboard xmlns:ns="http://www.xmlmind.com/xmleditor/namespace/clipboard" ><ulink url="???" >http://www.ietf.org/rfc/rfc2964.txt</ulink ></ns:clipboard >
<?xml version="1.0"?> <ns:clipboard xmlns:ns="http://www.xmlmind.com/xmleditor/namespace/clipboard" ><ulink url="???" >http://www.ietf.org/rfc/rfc2964.txt</ulink ></ns:clipboard >
http://www.ietf.org/rfc/rfc2965.txt

Testing
A small HTTP testing utility was developed as part of the ModSecurity effort. It provides a simple and

easy way to send crafted HTTP requests to a server, and to determine whether the attack was successfully

detected or not.

Calling the utility without parameters will result in its usage printed:

$./run-test.pl
Usage: ./run-test.pl host[:port] testfile1, testfile2, ...

First parameter is the host name of the server, with port being optional. All other parameters are filenames

of files containing crafted HTTP requests.

To make your life a little bit easier, the utility will generate certain request headers automatically:

• Host: hostname

• User-Agent: mod_security regression testing utility

• Connection: Close

You can include them in the request if you need to. The utility will not add them if they are already there.

Here is how an HTTP request looks like:

01 Simple keyword filter
#
mod_security is configured not to allow
the "/cgi-bin/keyword" pattern
#
GET /cgi-bin/keyword HTTP/1.0

This request consists only of the first line, with no additional headers. You can create as complicated re-

quests as you wish. Here is one example of a POST method usage:

10 Keyword in POST
#
POST /cgi-bin/printenv HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 5

p=333

Lines that are at the beginning of the file and begin with # will be treated as comments. The first line is

special, and it should contain the name of the test.

The utility expects status 200 as a result and will treat such responses as successes. If you want some oth-

er response you need to tell it by writing the expected response code on the first line (anywhere on the

line). Like this:

14 Redirect action (requires 302)

ModSecurity for Apache User Guide

51

GET /cgi-bin/test.cgi?p=xxx HTTP/1.0

The brackets and the "requires" keyword are not required but are recommended for better readability.

Solving Common Security Problems
As an example of ModSecurity capabilities we will demonstrate how you can use it to detect and prevent

the most common security problems. We won't go into detail here about problems themselves but a very

good description is available in the Open Web Application Security Project's guide, available at ht-

tp://www.owasp.org [???].

Directory traversal
If your scripts are dealing with the file system then you need to pay attention to certain meta characters

and constructs. For example, a character combination ../ in a path is a request to go up one directory level.

In normal operation there is no need for this character combination to occur in requests and you can for-

bid them with the following filter:

SecFilter "\.\./"

Cross site scripting attacks
Cross site scripting attacks (XSS) occur when an attacker injects HTML or/and JavaScript code into your

Web pages and then that code gets executed by other users. This is usually done by adding HTML to

places where you would not expect them. A successful XSS attack can result in the attacker obtaining the

cookie of your session and gaining full access to the application!

Proper defense against this attack is parameter filtering (and thus removing the offending HTML/

Javascript) but often you must protect existing applications without changing them. This can be done with

one of the following filters:

SecFilter "<script"
SecFilter "<.+>"

The first filter will protect only against JavaScript injection with the <script> tag. The second filter is

more general, and disallows any HTML code in parameters.

You need to be careful when applying filters like this since many application want HTML in parameters

(e.g. CMS applications, forums, etc). You can this with selective filtering. For example, you can have the

second filter from above as a general site-wide rule, but later relax rules for a particular script with the

following code:

<Location /cms/article-update.php>
SecFilterInheritance Off
other filters here ...
SecFilterSelective "ARGS|!ARG_body" "<.+>"

ModSecurity for Apache User Guide

52

???
???

</Location>

This code fragment will only accept HTML in a named parameter body. In reality you will probably add a

few more named parameters to the list.

SQL/database attacks
Most Web applications nowadays rely heavily on databases for data manipulation. Unless great care is

taken to perform database access safely, an attacker can inject arbitrary SQL commands directly into the

database. This can result in the attacker reading sensitive data, changing it, or even deleting it from the

database altogether.

Filters like:

SecFilter "delete[[:space:]]+from"
SecFilter "insert[[:space:]]+into"
SecFilter "select.+from"

can protect you from most SQL-related attacks. These are only examples, you need to craft your filters

carefully depending on the actual database engine you use.

Operating system command execution
Web applications are sometimes written to execute operating system commands to perform operations. A

persistent attacker may find a hole in the concept, allowing him to execute arbitrary commands on the

system.

A filter like this:

SecFilterSelective ARGS "bin/"

will detect attempts to execute binaries residing in various folders on a Unix-related operating system.

Buffer overflow attacks
Buffer overflow is a technique of overflowing the execution stack of a program and adding assembly in-

structions in an attempt to get them executed. In some circumstances it may be possible to prevent these

types of attack by using the line similar to:

SecFilterByteRange 32 126

as it will only accept requests that consists of bytes from this range. Whether you use this type of protec-

tion or not depends on your application and the used character encoding.

If you want to support multiple ranges, regular expressions come to rescue. You can use something like:

SecFilterSelective THE_REQUEST "!^[\x0a\x0d\x20-\x7f]+$"

ModSecurity for Apache User Guide

53

PHP

PHP peculiarities
When writing ModSecurity rules that are meant to protect PHP applications one needs to have a list of

PHP peculiarities in mind. It is often easy to design a rule that works when you are attacking yourself in

one way but completely miss an attack variant. Below is a list of things I am aware about:

• When the register_globals is set to On request parameters become global variables. (In PHP 4.x

it is even possible to override the GLOBALS array).

• Cookies are treated as request parameters.

• Whitespace at the beginning of parameters is ignored.

• The remaining whitespace (in parameter names) is converted to underscores.

• The order in which parameters are taken from the request and the environment is EGPCS

(environment, get, post, cookies, built-in variables). This means that a POST parameter will

overwrite the parameters transported on the request line (in QUERY_STRING).

• When the magic_quotes_gpc is set to On PHP will use backslash to escape the following charac-

ters: single quote, double quote, backslash, and NULL.

• If magic_quotes_sybase is set to On only the single quote will be escaped using another single

quote. In this case the magic_quotes_gpc setting becomes irrelevant.

Preventing register_global problems
Nowadays it is widely accepted that using the register_globals feature of PHP leads to security problems,

but it wasn't always like this (if you don't know what this feature is then you are probably not using it;

but, hey, read on the discussion is informative). In fact, the register_globals feature was turned on by de-

fault until version 4.2.0. As a result of that, many applications that exist depend on this feature (for more

details have a look at http://www.php.net/register_globals).

If you can choose, it is better to refactor and rewrite the code to not use this feature. But if you cannot af-

ford to do that for some reason or another, you can use ModSecurity to protect an application from a

known vulnerability. Problematic bits of code usually look like this:

<?php
// this is the beginning of the page
if ($authorised) {

// do something protected
}
// the rest of the page here
?>

And the attacker would take advantage of this simply by adding an additional parameter to the URL. For

example, http://www.modsecurity.org/examples/test.php?authorised=1

Rejecting all requests that explicitly supply the parameter in question will be sufficient to protect the ap-

plication from all attackers:

ModSecurity for Apache User Guide

54

<Location /vulnerable-application/>
SecFilterSelective ARG_authorised "!^$"
SecFilterSelective COOKIE_authorised "!^$"

</Location>

The filter above rejects all requests where the variable "authorised" is not empty. You can also see that

we've added the <Location> container tag to limit filter only to those parts of the web server that really

need it.

Performance
The protection provided by ModSecurity comes at a cost, but the cost is generally very low. Your web

server becomes a little bit slower and uses more memory.

Speed
In my experience, the speed difference is not significant. Most regular expressions take only a couple of

microseconds to complete. The performance impact is directly related to the complexity of the configura-

tion. You can use the performance measurement improvements in the Apache 2 version of the module to

measure exactly how much time ModSecurity spends working on each request. In my tests this was usu-

ally 2-4 milliseconds for a couple of hundred of rules (on a server with a 2 GHz processor).

Note
The debug log in the Apache 2 version of the module will show the time it took ModSecurity to

process every request, and even individual rules.

Note
If you have the debug logging feature enabled the performance figures you get from ModSecurity

will not be realistic. Debug logging is usually very extensive (especially on the higher levels) and

also very slow. The best way to assess the speed of ModSecurity is to create a custom Apache log

and log the performance notes as described earlier.

Memory consumption
In order to be able to analyse a request, ModSecurity stores the request data in memory. In most cases this

is not a big deal since most requests are small. However, it can be a problem for parts of the web site

where files are being uploaded. To avoid this problem you need to turn the request body buffering off for

those parts of the web site. (This is only a problem in the Apache 1.x version. The Apache 2.x version

will use a temporary file on disk for storage when a request is too large to be stored in memory.) In any

case it is advisable to review and configure various limits in the Apache configuration (see ht-

tp://httpd.apache.org/docs/mod/core.html#limitrequestbody for a description of LimitRequestBody,

LimitRequestsFields, LimitRequestFieldsize and LimitRequestLine directives).

ModSecurity for Apache User Guide

55

http://httpd.apache.org/docs/mod/core.html#limitrequestbody
http://httpd.apache.org/docs/mod/core.html#limitrequestbody

Other things to watch for
The debugging feature can be very useful but it writes large amounts of data to a file for every request. As

such it creates a bottleneck for busy servers. There is no reason to use the debugging mode on production

servers so keep it off.

The audit log feature is similar and also introduces a bottleneck for two reasons. First, large amounts of

data are written to the disk, and second, access to the file must be synchronised. If you still want to use

the audit log try to create many different audit logs, one for each application running on the server, to

minimise the synchronisation overhead (this advice does not remove the overhead in the Apache 2.x ver-

sion because synchronisation is performed via a central mutex).

Important notes
Please read the following notes:

• You should carefully consider the impact of every filtering rule you add to the configuration.

You particularly don't want to deny access using very broad rules. Broad rules are often a cause

of many false positives, which, in.

• Although ModSecurity can be used in .htaccess files (AllowOverride Options is re-

quired to do this), it should not be enabled for use by parties you do not trust. If you are very

paranoid you can disable this feature by compiling ModSecurity with -DDIS-

ABLE_HTACCESS_CONFIG (as a parameter to the apxs utility).

• With so many Apache modules to choose from it is impossible to test every possible configura-

tion. Always verify your configuration works as you want it to.

Changing the Apache hook at which mod_security
runs
By default mod_security will try to run at the last possible moment in Apache request pre-processing, but

just before the request is actually run (for example, processed by mod_php). I have chosen this approach

because the most important function of mod_security is to protect the application. On the other hand by

doing this we are leaving certain parts of Apache unprotected although there are things we could do about

it. For those who wish to experiment, as of 1.9dev3 mod_security can be compiled to run at the earliest

possible moment. Just compile it with -DENABLE_EARLY_HOOK. Bear in mind that this is an experi-

mental feature. Some of the differences you will discover are:

• It should now be possible to detect invalid requests before Apache handles them.

• It should be possible to assess requests that would otherwise handled by Apache (e.g TRACE)

• Only server-wide rules will run. This is because at this point Apache hasn't mapped the request

to the path yet.

Subsequent releases of ModSecurity are likely to allow rule processing to be split into two phases. One to

run as early as possible, and another, to run as late as possible.

ModSecurity for Apache User Guide

56

Examples

Parameter checking
Regular expressions can be pretty powerful. Here is how you can check whether a parameter is an integer

between 0 and 99999:

SecFilterSelective ARG_parameter "!^[0-9]{1,5}$"

File upload
Forbid file upload for the application as a whole, but allow it in a subfolder:

Reject requests with header "Content-Type" set
to "multipart/form-data"
SecFilterSelective HTTP_CONTENT_TYPE multipart/form-data

Only for the script that performs upload
<Location /upload.php>

Do not inherit filters from the parent folder
SecFilterInheritance Off

</Location>

Securing FormMail
Earlier versions of FormMail could be abused to send email to any recipient (I've been told that there is a

new version that can be secured properly).

Only for the FormMail script
<Location /cgi-bin/FormMail>

Reject request where the value of parameter "recipient"
does not end with "@webkreator.com"
SecFilterSelective ARG_recipient "![a-zA-Z0-9]+@webkreator\.com$">

</Location>

ModSecurity for Apache User Guide

57

Appendix A: Recommended Configura-
tion
Below is the recommended minimal mod_security configuration. It is only a starting point designed

not to give you an instant headache. You should look into tightening the configuration where you can.

Turn ModSecurity On
SecFilterEngine On

Reject requests with status 403
SecFilterDefaultAction "deny,log,status:403"

Some sane defaults
SecFilterScanPOST On
SecFilterCheckURLEncoding On
SecFilterCheckUnicodeEncoding Off

Accept almost all byte values
SecFilterForceByteRange 1 255

Server masking is optional
SecServerSignature "Microsoft-IIS/5.0"

SecUploadDir /tmp
SecUploadKeepFiles Off

Only record the interesting stuff
SecAuditEngine RelevantOnly
SecAuditLog logs/audit_log

You normally won't need debug logging
SecFilterDebugLevel 0
SecFilterDebugLog logs/modsec_debug_log

Only accept request encodings we know how to handle
we exclude GET requests from this because some (automated)
clients supply "text/html" as Content-Type
SecFilterSelective REQUEST_METHOD "!^(GET|HEAD)$" chain
SecFilterSelective HTTP_Content-Type \
"!(^application/x-www-form-urlencoded$|^multipart/form-data;)"

Do not accept GET or HEAD requests with bodies
SecFilterSelective REQUEST_METHOD "^(GET|HEAD)$" chain
SecFilterSelective HTTP_Content-Length "!^$"

Require Content-Length to be provided with
every POST request

ModSecurity for Apache User Guide

58

SecFilterSelective REQUEST_METHOD "^POST$" chain
SecFilterSelective HTTP_Content-Length "^$"

Don't accept transfer encodings we know we don't handle
SecFilterSelective HTTP_Transfer-Encoding "!^$"

ModSecurity for Apache User Guide

59

	ModSecurity for Apache User Guide
	Table of Contents
	Introduction
	Licensing
	Acknowledgements
	Contact

	Installation
	CVS Access
	Nightly Snapshot Download
	Stable Release Download
	Installing from source
	DSO
	Static installation with Apache 1.x
	Static installation with Apache 2.x
	Integrating into the Apache 2.x build
	Compiling the Apache 1.x version against PCRE

	Installing from binary
	Apache 1.x
	Apache 2.x

	Configuration
	Turning filtering on and off
	POST scanning
	Turning buffering off dynamically
	Controlling ModSecurity dynamically
	Chunked transfer encoding
	Default action list
	Implicit validation
	Filter inheritance
	Filter inheritance In multiuser environments
	URL Encoding Validation
	Unicode Encoding Validation
	Byte range check
	Allowing others to see ModSecurity

	Rules
	Simple filtering
	Path normalisation
	Null byte attack prevention
	Regular expressions
	Inverted expressions
	Advanced filtering
	Argument filtering exceptions
	Cookies
	Output filtering

	Actions
	Specifying actions
	Per-rule actions
	SecFilterSignatureAction

	Restricting what can appear in the per-rule action list
	Built-in actions
	pass
	allow
	deny
	status
	redirect
	proxy
	exec
	log
	nolog
	skipnext
	chain
	pause
	auditlog
	noauditlog
	logparts
	id, rev, msg, severity
	mandatory
	setenv, setnote

	Request headers added by mod_security
	Logging the request body
	Handling rule matches using ErrorDocument
	Making ModSecurity talk to your firewall

	Special Features
	File upload support
	Choosing where to upload files
	Verifying files
	Storing uploaded files
	Interacting with other daemons
	Integration with ClamAV
	Upload memory limit

	Server identity masking
	Chroot support
	Standard approach
	The ModSecurity way
	Required module ordering for chroot support (Apache 1.x)
	Required module ordering for chroot support (Apache 2.x)
	A step-by-step chroot guide

	Performance measurement

	Logging
	Debug Log
	Audit logging
	Choosing what to log by response status code
	Unique request identifiers
	Choosing what to log
	New Audit Log Type

	Guardian log
	Custom logging

	Miscellaneous Topics
	Impedance mismatch
	Testing
	Solving Common Security Problems
	Directory traversal
	Cross site scripting attacks
	SQL/database attacks
	Operating system command execution
	Buffer overflow attacks

	PHP
	PHP peculiarities
	Preventing register_global problems

	Performance
	Speed
	Memory consumption
	Other things to watch for

	Important notes
	Changing the Apache hook at which mod_security runs

	Examples
	Parameter checking
	File upload
	Securing FormMail

	Appendix A: Recommended Configuration

