Maintainer’s guide to xm121y

Jacques Menu
January 10, 2020 version

Abstract

This document presents the design principles and architecture os xm121ly, as well as infor-
mation needed to maintain it. It is part of the libmusicxml2 documentation, to be found at
https://github.com/grame-cncm/libmusicxml/tree/lilypond/doc. xml2brl is mentioned
but not described in detail.

In the libmusicxml?2 library, the source code specific to xm121y can be found at https://
github.com/grame-cncm/libmusicxml/tree/lilypond/src/lilypond and https://github.
com/grame-cncm/libmusicxml/tree/lilypond/src/interface.

All the examples mentioned can be downloaded from https://github.com/grame-cncm/
libmusicxml/tree/lilypond/files/samples/musicxml. They are grouped by subject in sub-
directories, such as basic/HelloWorld.xml.

1 Acknowledgements

Many thanks to Dominique Fober, the designer and maintainer of the 1ibmusicxml?2 library!

2 Overview of xml2ly

2.1 Why xml21ly?

MusicXML (Music eXtended Markup Language) is a specification language meant to represent
music scores by texts, readable both by humans and computers. It has been designed by the
W3C Music Notation Community Group (https://www.w3.org/community/music-notation/)
to help sharing music score files between applications, through export and import mechanisms.

The homepage to MusicXML is https://www.musicxml . com.

MusicXML data contains very detailed information about the music score, and it is quite
verbose by nature. This makes creating such data by hand quite difficult, and this is done by
applications actually.

2.2 What xml2ly does

3 Prerequisites

In order to maintain xm121y, one needs to do the following;:

e obtain a working knowledge of C++ programming. The code base of xm121y uses classes,
simple and multiple inheritance, and templates;

e study MusicXML, starting maybe from IntroductionToMusicXML.tex. A deep knowledge
of that matter comes with experience;

e study the architecture of libmusicxml2, which can be seen at 1ibmusicxmlArchitecture.pdf,
and is presented in figure 1. It shows the place of xm121y in the whole.

1/5

https://github.com/grame-cncm/libmusicxml/tree/lilypond/doc
https://github.com/grame-cncm/libmusicxml/tree/lilypond/src/lilypond
https://github.com/grame-cncm/libmusicxml/tree/lilypond/src/lilypond
https://github.com/grame-cncm/libmusicxml/tree/lilypond/src/interface
https://github.com/grame-cncm/libmusicxml/tree/lilypond/src/interface
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/basic/HelloWorld.xml
https://www.w3.org/community/music-notation/
https://www.musicxml.com
https://github.com/grame-cncm/libmusicxml/tree/lilypond/doc/introductionToMusicXML/IntroductionToMusicXML.tex
https://github.com/grame-cncm/libmusicxml/tree/lilypond/doc/libmusicxmlArchitecture/libmusicxmlArchitecture.pdf

Figure 1: 1libmusicxml?2 architecture

. . MusicXML
libmusicxml2: ()

architecture overview

(light gray indicates items not yet available)

mlele]
trey

MDSR

7

()

TTT—

Braille music

(text)
MIDI
(binary)
LilyPond
(text)

Entity Description

xmlelement tree a tree representing the MusicXML markups such as <part-list>, <time> and <note>

MSR Music Score Representation, in terms of part groups, parts, staves, voices, notes, ...

LPSR LilyPond Score Representation, i.e. MSR plus LilyPond-specific items such as \score blocks

BSR Braille Score Representation, with pages, lines and 6-dots cells

MDSR MIDI Score Representation, to be designed

RandomMusic generates an xmlelement tree containing random music and writes it as MusicXML

tools a set of other demo programs such as countnotes, xmltranspose and partsummary

toBeWritten should generate an MSR containing some music and write it as MusicXML, LilyPond and Braille music

xml2ly performs the 4 hops from MusicXML to LilyPond to translate the former into the latter

xml12brl performs the 4 hops from MusicXML to Braille music to translate the former into the latter (draft)
e Note: xm121y has a -jianpu’ option
o Note: midi2ly translates MIDI files to LilyPond code
e Note: 1lilypond can generate MIDI files from its input xml2guido v2.3, xm121y v0.9, xm12brl v0.01, August 2019

2/5

4 Programming style and conventions

4.1 Source code presentation

The following text-editing conventions are used:
e tabs are not used before the first non-space character in a line, two spaces are used instead;

e the code is not tightly packed: declarations in classes have the members’ names aligned
vertically, with many spaces before them if needed, and empty lines are used to separate
successive activities in methods.

4.2 File names

The name '1ilypond’ was chosen by Dominique long before work started on
xmlTobrl.

There’s a single '1ilypond’ folder to contain MSR, LPSR, BSR, xm121y and xml12brl, even
though BSR and braille music are a distinct branch. This has been preferred by Dominique as
the manager of 1ibmusicxml?2.

Most file names start with an identification of the context they belong to, such as 'oah’,
‘mxmlTree’, ‘msr’, '1psr’, 'lilypond’, 'bsr’, ’braille’, ’xm121y’ and ’'xm12brl’.

The ’*0ah.*’ files handle the options and help for the corresponding context, such as
'xm121yQ0ah.h/.cpp’.

The 'trace0Oah.h/.cpp’, 'musicXMLOah.h/.cpp’, ’extra’ and 'general’ context are about
the corresponding help groups.

There are a couple of ’globlal’ files not related to any particular context: 'utilities.h/.cpp/,
‘messagesHandling.h/.cpp’ and ’version.h/.cpp’.

4.3 Defensive programming

The code base of xm121y is defensive programming oriented, which means that:

e identifiers are explicit and long if needed — only very local ones are short, such as iteration
loops indexes;

e the code is organized in sections, with an initial comment documenting what the code
does;

e 'msrAssert ()’ is used to do sanity checks, such as detect a null pointer prior to using it;

The MusicXML data is not systematically checked for correctness. Checks are done, however,
to ensure it won’t crash due to missing values.

3/5

5 The two-phase visitors pattern

5.1 Basic mechanism

5.2 An example

6 Passes organization

7 Translating MusicXML data to an mxmlTree
8 Translating an mxmlTree to an MSR

9 'Translating an an MSR to a LPSR

10 Translating an an LPSR to a LilyPond code

4/5

Listings

List of Figures

1 libmusicxml?2 architecture e

Contents
1 Acknowledgements

2 Overview of xml2ly
2.1 Why xm121y7 oL e e e
2.2 What xml2ly does

3 Prerequisites

4 Programming style and conventions
4.1 Source code presentation
4.2 Filenames. e e
4.3 Defensive programmingo

5 The two-phase visitors pattern
5.1 Basic mechanism
5.2 Anexample

6 Passes organization

7 Translating MusicXML data to an mxmlTree
8 Translating an mxmlTree to an MSR

9 Translating an an MSR to a LPSR

10 Translating an an LPSR to a LilyPond code

5/5

	Acknowledgements
	Overview of xml2ly
	Why xml2ly?
	What xml2ly does

	Prerequisites
	Programming style and conventions
	Source code presentation
	File names
	Defensive programming

	The two-phase visitors pattern
	Basic mechanism
	An example

	Passes organization
	Translating MusicXML data to an mxmlTree
	Translating an mxmlTree to an MSR
	Translating an an MSR to a LPSR
	Translating an an LPSR to a LilyPond code

