
User’s guide to xml2ly

Jacques Menu

January 10, 2020 version

Abstract

This document presents the design principles behind xml2ly, as well as the way to use it. It
is part of the libmusicxml2 documentation, to be found at https://github.com/grame-cncm/
libmusicxml/tree/lilypond/doc.

All the examples mentioned can be downloaded from https://github.com/grame-cncm/

libmusicxml/tree/lilypond/files/samples/musicxml. They are grouped by subject in sub-
directories, such as basic/HelloWorld.xml.

1 Acknowledgements

Many thanks to Dominique Fober, the designer and maintainer of the libmusicxml2 library.
This author would not have attempted to work on a MusicXML to LilyPond translator without
it already available.

In particular, the conversion of MusicXML data to a tree is extremely well done directly
from the MusicXML DTD, and that was a necessary step to produce LilyPond code. Dominique
also provided a nice way to browse this tree with a two-phase visitor designe pattern, which
this author used extensively in his own code. The interested reader can find information about
that in libmusicxml2.pdf.

xml2ly and some of the specific examples presented in this document are this author’s
contribution to libmusicxml2.

2 Overview of xml2ly

The initial name of xml2ly, when it started as a clone of xml2guido, was xml2lilypond. Both
Dominique Fober and Werner Lemberg, an early tester, found it too long, and they chose xml2ly
among other names this author proposed to them.

2.1 Why xml2ly?

LilyPond comes with musicxml2ly, a translator of MusicXML files to LilyPond syntax, which
has some limitations. Also, being written in Python, it is not in the main stream of the LilyPond
development and maintainance group. The latter has much to do with C++ and Scheme code
already.

After looking at the musicxml2ly source code, and not being a Python developper, this
author decided to go for a new translator written in C++.

The design goals for xml2ly were:

• to perform at least as well as musicxml2ly;

• to provide as many options as needed to adapt the LilyPond code generated to the user’s
needs.

Speed was not an explicit goal, but as it turns out, xml2ly is not bad in this respect.

1/9

https://github.com/grame-cncm/libmusicxml/tree/lilypond/doc
https://github.com/grame-cncm/libmusicxml/tree/lilypond/doc
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/basic/HelloWorld.xml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/doc/presentation/libmusicxml2.pdf

2.2 What xml2ly does

The architecture of libmusicxml2, which can also be seen at libmusicxmlArchitecture.pdf,
is presented in figure 1. It shows the place of xml2ly in the whole.

The ’-about’ option to xml2ly details that somewhat:

1 menu@macbookprojm > xml2ly -about

2

3 What xml2ly does:

4

5 This multi -pass translator basically performs 5 passes:

6 Pass 1: reads the contents of MusicXMLFile or stdin (’-’)

7 and converts it to a MusicXML tree;

8 Pass 2a: converts that MusicXML tree into to

9 a Music Score Representation (MSR) skeleton;

10 Pass 2b: converts that tree and the skeleton into a

11 Music Score Representation (MSR);

12 Pass 3: converts the MSR into a

13 LilyPond Score Representation (LPSR);

14 Pass 4: converts the LPSR to LilyPond source code

15 and writes it to standard output.

16

17 Other passes are performed according to the options , such as

18 printing views of the internal data or printing a summary of the

score.

19

20 The activity log and warning/error messages go to standard error.

3 Options and help

xml2ly is equipped with a full-fledged set of options with the corresponding help. Since there
are many options and the translation work is done in successive passes, the help is organized in
a hierarchy of groups, each containing sub-groups of individual options called ’atoms’.

3.1 Basic principles

Options are introduced on the command line either by ’-’ or ’--’, which can be used at will.
There no difference between the two.

Each option has a short name and an optional long name. The latter is not needed if the
short name is sufficiently explicit and not too long, such as ’-jianpu’, ’-cubase’, ’-ambitus’ or
’-custos’.

Some options have their usual meaning in open-source software, such as ’-h’ (help), ’-a’
(about), and ’-o’ (output file name).

Some options name, short or long, share a common prefix, which allows them to be con-
tracted, as in ’-h=msr,lily’, which is equivalent to ’-msr, -lily’, and ’-trace=voices,notes’,
equivalent to ’-trace-voices, -trace-notes’.

There are single-character options, which can be clustered: ’-vac’ is equivalent to: ’-v, -a,

-c’.

3.2 Introspection

One can obtain help on any specific group, sub-group or atom, such as:

1 menu@macbookprojm > xml2ly -option -name -help ambitus

2

3 --- Help for option ’ambitus ’ in subgroup "Engravers" of group "

LilyPond" ---

4

5 LilyPond (-hlily , -help -lilypond):

6 These lilypond control which LilyPond code is generated.

2/9

https://github.com/grame-cncm/libmusicxml/tree/lilypond/doc/libmusicxmlArchitecture/libmusicxmlArchitecture.pdf

Figure 1: libmusicxml2 architecture

libmusicxml2:
architecture overview
(light gray indicates items not yet available)

MSR
(graph)

MusicXML
(text)

xmlelement
tree

Guido
(text)

LilyPond
(text)

LPSR
(graph)

Braille music
(text)

BSR
(graph)

MIDI
(binary)

MDSR
(?)

tools

RandomMusic

xm
l2
gu
id
o

xml2ly

xml2brl

toBeWritten

Entity Description

xmlelement tree a tree representing the MusicXML markups such as <part-list>, <time> and <note>

MSR Music Score Representation, in terms of part groups, parts, staves, voices, notes, . . .

LPSR LilyPond Score Representation, i.e. MSR plus LilyPond-specific items such as \score blocks

BSR Braille Score Representation, with pages, lines and 6-dots cells

MDSR MIDI Score Representation, to be designed

RandomMusic generates an xmlelement tree containing random music and writes it as MusicXML

tools a set of other demo programs such as countnotes, xmltranspose and partsummary

toBeWritten should generate an MSR containing some music and write it as MusicXML, LilyPond and Braille music

xml2ly performs the 4 hops from MusicXML to LilyPond to translate the former into the latter

xml2brl performs the 4 hops from MusicXML to Braille music to translate the former into the latter (draft)

• Note: xml2ly has a ’-jianpu’ option

• Note: midi2ly translates MIDI files to LilyPond code

• Note: lilypond can generate MIDI files from its input xml2guido v2.3, xml2ly v0.9, xml2brl v0.01, August 2019

3/9

7

8 --------------------------

9 Engravers (-hlpe , -help -lilypond -engravers):

10

11 -ambitus

12 Generate an ambitus range at the beginning of the staves/

voices.

Some options have an optional value such as ’-option-name-help’, whose default value
is. . . ’option-name-help’:

1 menu@macbookprojm > xml2ly -option -name -help

2

3 --- Help for option ’onh’ in subgroup "Options help" of group "Options

and help" ---

4

5 Options and help (-hoah , -help -options -and -help):

6 --------------------------

7 Options help (-hoh , -help -options -help):

8

9 -onh , -option -name -help[= OPTION_NAME]

10 Print help about OPTION_NAME.

11 OPTION_NAME is optional , and the default value is ’onh’.

3.3 Trace options

xml2ly is equipped with a range of trace options, that are crucially needed by this author when
testing and fine-tuning the code base.

The bulk of these options is placed in a group that is hidden by default:

1 Trace (-ht, -help -trace) (hidden by default)

2 --------------------------

The interested reader can see them with the ’-help-trace’ group option:

1 menu@macbookprojm > xml2ly -help=trace

2

3 --- Help for group "Trace" ---

4

5 Trace (-ht, -help -trace) (hidden by default)

6 There are trace options transversal to the successive passes ,

7 showing what’s going on in the various translation activities.

8 They’re provided as a help to the maintainers , as well as for the

curious.

9 The options in this group can be quite verbose , use them with small

input data!

10 All of them imply ’-tpasses , -trace -passes ’.

11 --------------------------

12 Options handling trace (-htoh , -help -trace -options -handling)

:

13 -toah , -trace -oah

14 Write a trace of options and help handling to standard error.

15 This option should best appear first.

16 -toahd , -trace -oah -details

17 Write a trace of options and help handling with more details

to standard error.

18 This option should best appear first.

19 Score to voices (-htstv , -help -trace -score -to-voices)

:

20 -t<SHORT_NAME >, -trace<LONG_NAME >

21 Trace SHORT_NAME/LONG_NAME in score to voices.

22 The 9 known SHORT_NAMEs are:

23 score , pgroups , pgroupsd , parts , staves , st , schanges ,

voices and voicesd.

4/9

24 The 9 known LONG_NAMEs are:

25 -score , -part -groups , -part -groups -details , -parts , -staves

.

26

As can be seen, there are event options to trace the handling of options and help by xml2ly.
The source code contains many instances of trace code, such as:

1 #ifdef TRACE_OAH

2 if (gTraceOah ->fTraceVoices) {

3 gLogOstream <<

4 "Creating voice \"" << asString () << "\"" <<

5 endl;

6 }

7 #endif

Building xml2ly with tracing disabled only gains less than 5% in speed, this is why tracing
is available by default.

3.4 Non-musical options

3.4.1 Timing measurements

There is a ’-cpu’ option to see show much time is spent in the various translation activities:

1 menu@macbookprojm > xml2ly -option -name -help cpu

2

3 --- Help for option ’cpu’ in subgroup "CPU usage" of group "General"

4

5 General (-hg , -help -general):

6 --------------------------

7 CPU usage (-hgcpu , -help -general -cpu -usage):

8

9 -cpu , -display -cpu -usage

10 Write information about CPU usage to standard error.

In practise, most of the time is spent in passes 1 and 2b. The ’time’ command is used to
obtain the total run time, since xml2ly cannot account for input/output activities:

1 menu@macbookprojm > time xml2ly -aofn -cpu xmlsamples3 .1/

ActorPreludeSample.xml

2 *** MusicXML warning *** xmlsamples3 .1/ ActorPreludeSample.xml:44: <

system -distance /> is not supported yet by xml2ly

3

4 *** MusicXML warning *** xmlsamples3 .1/ ActorPreludeSample.xml:27761: <

direction/> contains 2 <words/> markups

5 Warning message(s) were issued for input lines 44, 45, 46, 551, 584,

732, 1121, 1215, 4724, 27761

6

7 Timing information:

8

9 Activity Description Kind CPU (sec)

10 -------- ------------------------------- --------- ---------

11

12 Pass 1 build xmlelement tree from file mandatory 0.268994

13 Pass 2a build the MSR skeleton mandatory 0.076413

14 Pass 2b build the MSR mandatory 0.276732

15 Pass 3 translate MSR to LPSR mandatory 0.056381

16 Pass 4 translate LPSR to LilyPond mandatory 0.082213

17

18 Total Mandatory Optional

19 ------- --------- ---------

20 0.760733 0.760733 0

5/9

21

22

23 real 0m0.814s

24 user 0m0.751s

25 sys 0m0.058s

This compares favorably with musicxml2ly measurements:

1 menu@macbookprojm > time musicxml2ly xmlsamples3 .1/ ActorPreludeSample.

xml

2 musicxml2ly: Reading MusicXML from xmlsamples3 .1/ ActorPreludeSample.xml

...

3 musicxml2ly: Converting to LilyPond expressions ...

4

5 musicxml2ly: Converting to LilyPond expressions ...

6 musicxml2ly: Output to ‘ActorPreludeSample.ly’

7 musicxml2ly: Converting to current version (2.19.83) notations ...

8

9 real 0m4.113s

10 user 0m3.659s

11 sys 0m0.407s

3.4.2 Chords structure

In order to invert chords, as specified by the ’<inversion>’ element in MusicXML data,
musicxml2ly knows the structure of many of them. This can be queried with the options
in the ’Extra’ group:

1 menu@macbookprojm > xml2ly -help=extra

2

3 --- Help for group "Extra" ---

4

5 Extra (-he, -help -extra):

6 These extra provide features not related to translation from MusicXML

to other formats.

7 In the text below:

8 - ROOT_DIATONIC_PITCH should belong to the names available in

9 the selected MSR pitches language , "nederlands" by default;

10 - other languages can be chosen with the ’-mpl , -msrPitchesLanguage

’ option;

11 - HARMONY_NAME should be one of:

12 MusicXML chords:

13 "maj", "min", "aug", "dim", "dom",

14 "maj7", "min7", "dim7", "aug7", "halfdim", "minmaj7",

15 "maj6", "min6", "dom9", "maj9", "min9", "dom11", "maj11", "

min11",

16 "dom13", "maj13", "min13", "sus2", "sus4",

17 "neapolitan", "italian", "french", "german"

18 Jazz -specific chords:

19 "pedal", "power", "tristan", "minmaj9", "domsus4", "domaug5",

20 "dommin9", "domaug9dim5", "domaug9aug5", "domaug11", "

maj7aug11"

21 The single or double quotes are used to allow spaces in the names

22 and around the ’=’ sign , otherwise they can be dispensed with.

23 --------------------------

24 Chords structures (-hecs , -help -extra -chord -structures):

25 -scs , -show -chords -structures

26 Write all known chords structures to standard output.

27 Chords contents (-hecc , -help -extra -chords -contents):

28 -sacc , -show -all -chords -contents PITCH

29 Write all chords contents for the given diatonic (semitones)

PITCH ,

30 supplied in the current language to standard output.

6/9

31 Chord details (-hecd , -help -extra -chords -details):

32 -scd , -show -chord -details CHORD_SPEC

33 Write the details of the chord for the given diatonic (

semitones) pitch

34 in the current language and the given harmony to standard

output.

35 CHORD_SPEC can be:

36 ’ROOT_DIATONIC_PITCH HARMONY_NAME ’

37 or

38 "ROOT_DIATONIC_PITCH = HARMONY_NAME"

39 Using double quotes allows for shell variables substitutions ,

as in:

40 HARMONY="maj7"

41 xml2ly -show -chord -details "bes ${ HARMONY}"

42 Chord analysis (-heca , -help -extra -chords -analysis):

43 -sca , -show -chord -analysis CHORD_SPEC

44 Write an analysis of the chord for the given diatonic (

semitones) pitch

45 in the current language and the given harmony to standard

output.

46 CHORD_SPEC can be:

47 ’ROOT_DIATONIC_PITCH HARMONY_NAME INVERSION ’

48 or

49 "ROOT_DIATONIC_PITCH = HARMONY_NAME INVERSION"

50 Using double quotes allows for shell variables substitutions ,

as in:

51 HARMONY="maj7"

52 INVERSION =2

53 xml2ly -show -chord -analysis "bes ${ HARMONY} ${ INVERSION}"

For example, one can obtain the structure of the B[dominant minor ninth chord’s second
inversion this way:

1 menu@macbookprojm > xml2ly -show -chord -analysis ’bes dommin9 2’

2 The analysis of chord ’bes dommin9 ’ inversion 2 is:

3

4 Chord ’bes dommin9 ’ inversion 2 contents , 5 intervals:

5 d : majorThird

6 bes : perfectUnison

7 ces : minorNinth

8 aes : minorSeventh

9 f : perfectFifth

10

11 Chord ’bes dommin9 ’ inversion 2 inner intervals:

12 f -> aes : minorThird (perfectFifth ->

minorSeventh)

13 f -> ces : diminishedFifth (perfectFifth ->

minorNinth)

14 f -> bes : perfectFourth (perfectFifth ->

perfectUnison)

15 f -> d : majorSixth (perfectFifth ->

majorThird)

16

17 aes -> ces : minorThird (minorSeventh ->

minorNinth)

18 aes -> bes : majorSecond (minorSeventh ->

perfectUnison)

19 aes -> d : augmentedFourth (minorSeventh ->

majorThird)

20

21 ces -> bes : majorSeventh (minorNinth ->

perfectUnison)

22 ces -> d : augmentedSecond (minorNinth ->

majorThird)

7/9

23

24 bes -> d : majorThird (perfectUnison ->

majorThird)

25 This chord contains 2 tritons

4 Building the xmlelement tree

5 The MSR graph

6 The LPSR graph

7 LilyPond code generation

8/9

Listings

List of Figures

1 libmusicxml2 architecture . 3

Contents

1 Acknowledgements 1

2 Overview of xml2ly 1
2.1 Why xml2ly? . 1
2.2 What xml2ly does . 2

3 Options and help 2
3.1 Basic principles . 2
3.2 Introspection . 2
3.3 Trace options . 4
3.4 Non-musical options . 5

3.4.1 Timing measurements . 5
3.4.2 Chords structure . 6

4 Building the xmlelement tree 8

5 The MSR graph 8

6 The LPSR graph 8

7 LilyPond code generation 8

9/9

	Acknowledgements
	Overview of xml2ly
	Why xml2ly?
	What xml2ly does

	Options and help
	Basic principles
	Introspection
	Trace options
	Non-musical options
	Timing measurements
	Chords structure

	Building the xmlelement tree
	The MSR graph
	The LPSR graph
	LilyPond code generation

